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We thank Dr. Ueno for the interest in our article. In reply to his
statistical concerns about the execution of the Leave-One-Group-
Out cross-validation (LOGO CV) and its interpretation, we believe
that the brevity of our explanation of the nested cross-validation
procedure may have caused confusion, and we offer the following
clarification regarding the number of CV folds and the inclusion of
all 82 patients in the confusion matrix.

We evaluated our classifier using nested cross-validation,'
where the hyperparameters in each of the 82 LOGO CV folds
were selected by 68-fold random patient split CV (68 folds were
used to balance statistical precision and hardware efficiency). The
LOGO CV method refers to the exclusion of a group of recordings
from one patient. That is, for each of the 82 patients, we trained
the classifier on the other 81 patients’ recordings and evaluated it
subsequently on the excluded patient’s recordings; thus, the
LOGO CV ran 82 folds. To ensure that the excluded patient is
entirely new to the classifier, hyperparameter tuning must also
exclude the patient. Thus, in each LOGO fold, hyperparameter
tuning by cross-validation is performed on the 81-patient training
set. This nested CV performs 68 folds of splitting 81 patients
randomly into training (70%) and testing (30%) cohorts solely to
select LOGO-fold-specific hyperparameters. These are then used
during training of the classifier on the 81 patients, which is in turn
used to classify the excluded patient’s recordings.

Since all of a patient’s recordings are evaluated by an instance
of the classifier that has never seen the patient, all recordings of all
patients can be included in the final confusion matrix.

By using nested cross-validation we have striven to prevent
overestimating the model’s performance. A larger study, as Dr.
Ueno suggests, can further validate these results.

To correct the results reported on Page 2, we would like to note
that out of 64 volunteers, the automated beat detection quality
control algorithm identified the PPG recordings in one subject to
be technically inadequate. Therefore, the model correctly classi-
fied 18/19 patients with oHCM and 62/63 healthy volunteers (80/
82 subjects total, 98% accuracy) as illustrated in Fig. 1d.
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