
ARTICLE OPEN

Language impairment in adults with end-stage liver disease:
application of natural language processing towards
patient-generated health records
Lindsay K. Dickerson 1, Masoud Rouhizadeh2, Yelena Korotkaya3, Mary Grace Bowring4, Allan B. Massie4,5, Mara A. McAdams-Demarco4,
Dorry L. Segev4,5, Alicia Cannon6, Anthony L. Guerrerio 3, Po-Hung Chen7, Benjamin N. Philosophe5 and Douglas B. Mogul3*

End-stage liver disease (ESLD) is associated with cognitive impairment ranging from subtle alterations in attention to overt hepatic
encephalopathy that resolves after transplant. Natural language processing (NLP) may provide a useful method to assess cognitive
status in this population. We identified 81 liver transplant recipients with ESLD (4/2013–2/2018) who sent at least one patient-to-
provider electronic message pre-transplant and post-transplant, and matched them 1:1 to “healthy” controls—who had similar
disease, but had not been evaluated for liver transplant—by age, gender, race/ethnicity, and liver disease. Messages written by
patients pre-transplant and post-transplant and controls was compared across 19 NLP measures using paired Wilcoxon signed-rank
tests. While there was no difference overall in word length, patients with Model for End-Stage Liver Disease Score (MELD) ≥ 30 (n=
31) had decreased word length in pre-transplant messages (3.95 [interquartile range (IQR) 3.79, 4.14]) compared to post-transplant
(4.13 [3.96, 4.28], p= 0.01) and controls (4.2 [4.0, 4.4], p= 0.01); there was no difference between post-transplant and controls (p=
0.4). Patients with MELD ≥ 30 had fewer 6+ letter words in pre-transplant messages (19.5% [16.4, 25.9] compared to post-transplant
(23.4% [20.0, 26.7] p= 0.02) and controls (25.0% [19.2, 29.4]; p= 0.01). Overall, patients had increased sentence length pre-
transplant (12.0 [9.8, 13.7]) compared to post-transplant (11.0 [9.2, 13.3]; p= 0.046); the same was seen for MELD ≥ 30 (12.3 [9.8,
13.7] pre-transplant vs. 10.8 [9.6, 13.0] post-transplant; p= 0.050). Application of NLP to patient-generated messages identified
language differences—longer sentences with shorter words—that resolved after transplant. NLP may provide opportunities to
detect cognitive impairment in ESLD.
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INTRODUCTION
End-stage liver disease (ESLD) is associated with a wide spectrum
of neurocognitive impairment ranging from minimal alterations in
attention, working memory, and psychomotor speed to coma and
death.1–3 Approximately 80% of patients with ESLD have
neurocognitive changes associated with poorer quality of life,
including deteriorating sleep and work performance. As many as
20% of adults with ESLD can develop the most severe form of
cognitive impairment, overt hepatic encephalopathy (HE), which
may portend up to 43% mortality at one year.1,3–6

Despite the considerable burden caused by these cognitive
deficits, diagnosis remains challenging. Common diagnostic
modalities include blood tests (e.g., ammonia, amino acid profiles),
neurocognitive assessments (e.g., Wechsler Adult Intelligence
Scale-Fourth Edition, Delis–Kaplan Executive Function System,
The Stroop Color and Word Test), computer-based test batteries,
electroencephalogram, and imaging.1,7–12 While the Psychometric
HE Score (PHES), a paper–pencil test battery, is considered to be
the gold standard for diagnosis of minimal HE (MHE), it remains
labor-intensive to administer and requires an in-person clinical
visit.10 Other modalities such as blood ammonia levels correlate
poorly with neurocognitive testing and severity of HE.13,14 Given
the absence of precise diagnosis and substantial mortality risk
associated with late-stage encephalopathy, there exists a need for

a real-time and determinate means to identify ESLD-related
cognitive impairment.
Research on potential language impairment in ESLD is limited

and inconclusive.15 One study demonstrated that patients with
MHE had deficits in verbal fluency and phrase construction that
resolved after transplantation, while other research has concluded
that language remains largely intact.16,17 Techniques developed
from the field of natural language processing (NLP)—a subfield of
computer science employing computational techniques to learn,
understand, and produce human language content—offer an
innovative approach for evaluating ESLD-related language altera-
tions.18 NLP is increasingly common in non-medical contexts, with
its myriad uses including virtual voice-based assistants (e.g. Siri
from Apple, Alexa from Amazon), therapy chat bots (e.g. Woebot),
and forensic linguistics methods to identify authors of anonymous
publications.19 Despite the widespread utilization of electronic
medical records (EMRs), application of NLP technology has only
recently extended to healthcare and is typically exploited more
often for analyzing provider documentation than assessing
patients’ written text or transcribed spoken language. Examples
include: identification of key words in patients’ electronic notes
that indicate bleeding, use in an algorithm to stratify risk in
patients with cirrhosis, and incorporation into a mortality
prediction model in the intensive care unit (ICU).20–22
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The aim of this pilot study was to determine if NLP-based
methods can identify and characterize language differences in
patients with ESLD that may suggest the presence of neurocog-
nitive impairment. Thus, we evaluated and compared the
language patterns in patient-generated electronic messages
written before and after transplant and by “healthy” controls
with liver disease but who were not undergoing evaluation for
transplantation. We hypothesized that NLP would detect lan-
guage alterations that resolved after transplantation, with the
post-transplant messages being similar to the language patterns
of controls.

RESULTS
Study population
The median age (interquartile range, IQR) of the 81 transplanted
patients included in analysis was 53.8 years (19–69; Table 1).
Among these, 40% were female, 73% were Caucasian, and 38%
had a Model for End-stage Liver Disease (MELD) score ≥30 at
transplant; controls matched demographically. The most frequent
indication for transplant was hepatitis C virus (HCV) cirrhosis
(33.3%), followed by nonalcoholic steatohepatitis (NASH) cirrhosis
(17.3%). The median (IQR) number of messages per patient was 3
(1–10) in the pre-transplant period, 10 (4–24) post-transplant, and
3 (2–5) for controls. For patients with MELD ≥ 30, the median
number of messages per patient was 5 (1–18) in the pre-transplant
period, 15 (5–39) post-transplant, and 2 (1–4) for controls. A
transjugular Intrahepatic portosystemic shunt was placed in 2% of
cases and no controls. Among cases, 54% people used at least one
drug that can treat HE, including 16% that used rifaximin, 7% that
used lactulose, and 25% that used both. In contrast, 1% of controls
(n= 1) used rifaximin and it was prescribed for bacterial
overgrowth. Though cases and controls were not matched by
use of drugs that may influence cognition (e.g., opioids), the
frequency of their use was similar in each group.

Lexical domain
Word length. Among all patients with ESLD (n= 81), word length
was similar pre-transplant (median [IQR]: 4.06 [3.85, 4.35]) and
post-transplant (4.12 [3.99, 4.23]; p= 0.9; Table 2). Word length in
control messages (4.1 [3.9, 4.4]) was also similar to pre-transplant
(p= 0.6) and post-transplant (p= 1.0). Among patients with
MELD ≥ 30, words were on average shorter in pre-transplant
messages (3.95 [3.79, 4.14]) compared to post-transplant (4.13
[3.96, 4.28]; p= 0.01) and controls (4.2 [4.0, 4.4]; p= 0.01) (Table 3).
There was no difference in word length between post-transplant
and control messages for MELD ≥ 30 (p= 0.4).

6+ letter words. Among all patients with ESLD, there were no
differences in the percent of 6+ letter words pre-transplant
compared to post-transplant or controls. However, patients with
MELD ≥ 30 had a lower percentage of 6+ letter words in pre-
transplant messages (19.5 [16.4, 25.9] compared to post-transplant
(23.4 [20.0, 26.7]; p= 0.02) and controls (25.0 [19.2, 29.4]; p= 0.01).
There was no difference in percent of 6+ letter words between
post-transplant and control messages for MELD ≥ 30 (p= 0.6).

Numeral words, capitalized words. There were no differences in
the percent of numeral words or capitalized words between pre-
transplant and post-transplant messages or control messages,
overall or for those with MELD ≥ 30.

Lexico-syntactic domain
Pronouns. Among all patients with ESLD, there was no difference
in percent of pronouns between pre-transplant (11.5 [9.7, 14.5])

and post-transplant messages (12.0 [10.1, 13.2]; p= 0.9). Control
messages contained a higher percent of pronouns (13.4 [11.1,
15.4]) when compared to pre-transplant (p= 0.048) and post-
transplant (p= 0.02). Among patients with MELD ≥ 30, there was
no difference in percent of pronouns between pre-transplant (11.5
[8.9, 14.1] and post-transplant messages (12.1 [10.3, 13.1]; p= 0.3).
However, patients with MELD ≥ 30 had a lower percent of
pronouns in pre-transplant messages compared to controls (13.5
[11.9, 15.4]; p= 0.02), and similar percent of pronouns in post-
transplant and control messages (p= 0.1).

Function words, question words, verbs, adjectives, nouns. Among
all patients with ESLD and those with MELD ≥ 30, there were no

Table 1. Demographics, Model for End-stage Liver Disease (MELD)
score, message number, and transplant indication

Characteristic Controls Overall MELD ≥ 30

n= 81 n= 81 n= 31

Age (years) Mean (range) Mean (range) Mean (range)

53.7 (20–70) 53.8 (19–69) 52.6 (30–69)

Gender n (%) n (%) n (%)

Female 32 (40) 32 (40) 15 (48.4)

Race and ethnicity n (%) n (%) n (%)

Asian 2 (2.5) 2 (2.5) 1 (3.2)

Black/African
American

14 (17.3) 14 (17.3) 8 (25.8)

Hispanic 2 (2.4) 1 (1.2) 0 (0.0)

Mixed/Other 5 (6.2) 5 (6.2) 2 (6.5)

White/Caucasian (non-
Hispanic)

58 (71.6) 59 (72.8) 20 (64.5)

Pre-transplant MELD – n (%) n (%)

≤9 – 5 (6.2) –

10–19 – 11 (13.6) –

20–29 – 34 (41.9) –

30–39 – 23 (28.4) 23 (74.2)

≥40 – 8 (9.9) 8 (25.8)

Message number Median (IQR) Median (IQR) Median (IQR)

Pre-transplant 3 (2–5) 3 (1–10) 5 (1–18)

Post-transplant – 10 (4–24) 15 (5–39)

Transplant indications n (%) n (%) n (%)

Hepatitis C virus (HCV)
cirrhosis

26 (32.1) 27 (33.3) 8 (25.8)

Nonalcoholic
steatohepatitis (NASH)
cirrhosis

14 (17.3) 14 (17.3) 4 (12.9)

Primary sclerosing
cholangitis

9 (11.1) 12 (14.8) 10 (32.3)

Alcoholic cirrhosis 3 (3.7) 11 (13.6) 4 (12.9)

Abnormal LFTs 16 (19.8) – –

Other 13 (16.0) 17 (21) 5 (16.1)

Use of drugs that
influence cognition

n (%) n (%)

Narcotics 23 (28%) 18 (22%)

Antiepileptics 4 (5%) 3 (4%)

Antipsychotics 1 (1%) 3 (4%)

Anxieolytics 17 (21%) 14 (17%)

Other 2 (2%) 2 (2%)
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differences in these NLP measures between pre-transplant, post-
transplant, and control messages.

Syntactic domain
Sentence length. Among all patients with ESLD, sentence length
was increased in pre-transplant messages (12.0 [9.8, 13.7])
compared to post-transplant (11.0 [9.2, 13.3]; p= 0.046). Control
messages had slightly decreased sentence length (10.5 [8.7, 13.8]),
however, this was not statistically significant when compared to
pre-transplant (p= 0.1) or post-transplant (p= 0.5) messages.
Patients with MELD ≥ 30 had marginally increased sentence length
in pre-transplant messages (12.3 [9.8, 13.7]) when compared to
post-transplant (10.8 [9.6, 13.0]; p= 0.050). Control messages had
slightly decreased sentence length (10.8 [8.6, 15.1]), however, this
was not statistically significant when compared to pre-transplant
(p= 0.3) or post-transplant (p= 0.9) messages.

Noun phrase ratio. Among all patients with ESLD, there was no
difference in the noun phrase ratio pre-transplant and post-
transplant, or when compared to controls. Among patients with
MELD ≥ 30, the noun phrase ratio was greater in pre-transplant
(1.63 [1.47, 1.82]) than in post-transplant messages (1.55 [1.45,
1.71; p= 0.03). However, there were no differences between
control messages (1.6 [1.5, 1.7]) and pre-transplant (p= 0.4) or
post-transplant (p= 0.2) among those with MELD ≥ 30.

Subject–verb–object ratio, Flesch–Kincaid grade readability score.
Among all patients with ESLD and those with MELD ≥ 30, there
were no differences in subject–verb–object ratio or Flesch–Kincaid

grade readability score between pre- and post-transplant mes-
sages or control messages.

Lexico-semantic domain
Unique words, Brunét’s Index, Honoré’s statistic. Among all
patients with ESLD and those with MELD ≥ 30, there were no
differences observed in these lexico-semantic measures between
pre-transplant, post-transplant, and control messages.

Sentiment domain
Polarity, subjectivity. Among all patients with ESLD and those
with MELD ≥ 30, there were no differences in polarity or
subjectivity between groups.

DISCUSSION
In this retrospective, pilot study of patient-generated EMR
messages, certain NLP measures identified linguistic differences
in messages of adults with liver disease before as compared to
after transplant. Most notably among patients with high MELD
score, messages written in the pre-transplant period contained
longer sentences consisting of shorter words and longer noun
phrases, in contrast to shorter sentences with longer words and
shorter noun phrases in the post-transplant period. After
transplant, these differences largely resolved such that post-
transplant messages were similar to controls. Thus, NLP identified
differences primarily in the lexical and syntactic domains. Results
were particularly pronounced in patients with MELD ≥ 30,

Table 2. Change in NLP measures between messages pre-transplant to post-transplant and vs. controls

NLP measure Pre-transplant Post-transplant p-value Controls p-valuea p-valueb

Median (IQR) Median (IQR) Median (IQR)

Lexical

Word length 4.06 (3.85, 4.35) 4.12 (3.99, 4.23) 0.9 4.1 (3.9, 4.4) 0.6 1

6+ letter words (%) 23.4 (18.7, 27.3) 23.0 (20.2, 25.0) 0.6 22.8 (18.6, 27.3) 0.6 0.8

Numeral words (%) 2.2 (0.8, 4.0) 1.8 (0.9, 3.2) 0.1 1.5 (0, 2.9) 0.1 0.6

Capitalized words (%) 7.1 (3.2, 11.2) 7.2 (3.5, 13.8) 0.5 6.0 (3.1, 11.8) 0.9 0.5

Lexico-syntactic

Pronouns (%) 11.5 (9.7, 14.5) 12.0 (10.1, 13.2) 0.9 13.4 (11.1, 15.4) 0.048 0.02

Function words (%) 36.2 (32.0, 39.0) 35.2 (31.6, 37.5) 0.3 36.6 (32.0, 39.2) 0.9 0.3

Question words (%) 0.6 (0.0, 1.3) 0.6 (0.3, 1.0) 0.9 0.6 (0, 1.2) 0.8 0.8

Verbs (%) 17.3 (15.2, 20.8) 17.1 (16.0, 18.7) 0.4 17.3 (14.8, 18.8) 0.3 0.6

Adjectives (%) 4.2 (2.9, 5.9) 4.8 (3.7, 5.8) 0.2 4.6 (2.7, 6.2) 0.2 0.9

Nouns (%) 22.1 (20.0, 26.1) 23.0 (20.7, 26.0) 0.8 21.7 (18.5, 26.0) 0.6 0.2

Syntactic

Sentence length 12.0 (9.8, 13.7) 11.0 (9.2, 13.3) 0.046 10.5 (8.7, 13.8) 0.1 0.5

Noun phrase ratio 1.59 (1.49, 1.75) 1.59 (1.51, 1.73) 0.2 1.6 (1.4, 1.7) 0.1 0.5

Subj–verb–object ratio 6.3 (4.6, 8.1) 6.2 (4.9, 7.2) 0.3 5.2 (3.7, 7.6) 0.1 0.2

Flesch–Kincaid grade 4.4 (2.9, 5.0) 4.0 (2.8, 5.2) 0.3 4.2 (2.9, 5.2) 0.5 0.6

Lexico-semantic

Unique words (%) 85.5 (80.0, 89.9) 85.6 (80.3, 89.2) 0.8 85.1 (80.5, 90.2) 0.8 0.8

Brunét’s Index 7.3 (6.6, 8.2) 7.3 (6.4, 8.4) 0.9 7.3 (6.2, 8.2) 0.2 0.3

Honoré’s statistic 2242.4 (2034.6, 2644.8) 2347.6 (2055.1, 2681.2) 0.9 2175.9 (1863.6, 2573.2) 0.3 0.2

Sentiment

Polarity 0.04 (0.00, 0.10) 0.06 (0.02, 0.11) 0.1 0.05 (0.01, 0.10) 0.2 0.7

Subjectivity 0.18 (0.11, 0.24) 0.19 (0.15, 0.24) 0.2 0.18 (0.09, 0.25) 0.7 0.3

aPre-transplant vs. controls
bPost-transplant vs. controls

L.K. Dickerson et al.

3

Scripps Research Translational Institute npj Digital Medicine (2019)   106 



indicating that NLP may be especially useful for identifying
neurocognitive changes as liver disease severity worsens.
Although there are limited studies that have applied NLP tools

to analyze cognitive impairment, to the best of our knowledge,
this pilot study is the first analysis that applies these tools towards
patient-generated EMR messages. Recently, Beltrami et al. com-
pared recorded transcripts of people with known cognitive
impairment and healthy controls and identified several lexical
and syntactic differences between the groups.15 Presently about
one quarter of people in the United States have engaged with
their EMR, and about one in five people have sent a message to a
provider, thus indicating the existence of troves of data that can
be analyzed to better characterize changes in language in specific
populations.34 If findings from our study can be replicated in
larger populations, both with ESLD, as well as other disorders
associated with cognitive deficits, it may represent a tremendous
opportunity to identify screen for these disorders in as well as
monitor their disease as it progresses.
While ESLD is known to be associated with neurologic and

psychiatric complications, few studies have investigated the
impact of ESLD on language. In one study by Mooney et al. using
a test battery to examine cognitive dysfunction in patients with
ESLD, language appeared preserved.17 In contrast, Adekanle et al.
reported that patients with cirrhosis scored lower than controls in
a test’s language domain with respect to naming, comprehension,
fluency, definition, and repetition.35 Furthermore, Mattarozzi et al.
found that word fluency (i.e. the ability to form and express words
necessary for normal social and occupational function) and phrase
construction (i.e. the grammatical arrangement of words in a
phrase) improved 6 months after liver transplant in adults with

cirrhosis and MHE.16 Furthermore, in children with chronic liver
disease, de-Paula et al. noted delays in language development in
children awaiting transplantation compared to those who had
undergone transplantation.36

In our study, the somewhat surprising finding that pre-
transplant messages were actually longer than post-transplant
messages may suggest that cognitive impairment leads to
rambling sentences with simpler words prior to transplant,
compared to more concise sentences with longer words after
transplant and in control messages (Supplementary Table 2). For
example, one patient wrote pre-transplant: “I was asked by my
wife to request that when you send the fax to my disability
insurance company that if you could include the following (word
count: 26) [list of information to include]. Once I go back to work
full time and be off work again I will have to wait an extended
period of time before, and if I will receive any benefits (word
count: 31).” The same patient wrote post-transplant: “I have
scheduled a small vacation and will be out of town for 3 days
(word count: 15). My wife wants to make sure this will be ok (word
count: 10).”
Given that language alterations may be subtle in liver disease,

technology from NLP could fill a current gap in diagnosis of MHE,
and provide an opportunity for earlier and more consistent
detection of linguistic differences indicative of cognitive decline.
Using NLP-based methods is an appropriate choice in this context
for multiple reasons. First, these methods have been used
successfully for diagnostic and prognostic purposes in neurologi-
cal and psychiatric disorders.37 For example, Elvevag et al.
employed a technique in NLP called latent semantic analysis
(LSA) to quantify incoherence, a complex and nonconcrete

Table 3. Change in NLP measures among patients w/MELD ≥ 30 at transplant (n= 31)

NLP measure: median (IQR) Pre-transplant Post-transplant p-value Controls p-valuea p-valueb

Median (IQR) Median (IQR) Median (IQR)

Lexical

Word length 3.95 (3.79, 4.14) 4.13 (3.96, 4.28) 0.01 4.2 (4.0, 4.4) 0.01 0.4

6+ letter words (%) 19.5 (16.4, 25.9) 23.4 (20.0, 26.7) 0.02 25.0 (19.2, 29.4) 0.01 0.6

Numeral words (%) 1.7 (0.4, 5.5) 1.8 (0.8, 2.2) 0.2 1.3 (0, 3.1) 0.5 0.8

Capitalized words (%) 8.9 (3.9, 11.2) 8.8 (5.2, 14.3) 0.7 6.1 (3.7, 9.1) 0.3 0.4

Lexico-syntactic

Pronouns (%) 11.5 (8.9, 14.1) 12.1 (10.3, 13.1) 0.3 13.5 (11.9, 15.4) 0.02 0.1

Function words (%) 36.2 (32.0, 40.1) 34.9 (31.8, 37.1) 0.4 37.4 (33.3, 41.7) 0.4 0.2

Question words (%) 0.7 (0.3, 1.5) 0.7 (0.3, 1.2) 0.4 0.4 (0, 0.8) 0.1 0.1

Verbs (%) 17.4 (16.3, 21.0) 17.7 (16.3, 18.7) 0.6 17.4 (15.7, 19.8) 0.8 0.8

Adjectives (%) 4.2 (2.7, 5.9) 4.5 (3.0, 5.7) 0.3 5.2 (2.4, 6.5) 0.2 0.7

Nouns (%) 21.4 (17.5, 25.0) 23.3 (19.7, 26.5) 0.2 22.2 (17.9, 26.8) 0.8 0.2

Syntactic

Sentence length 12.3 (9.8, 13.7) 10.8 (9.6, 13.0) 0.05 10.8 (8.6, 15.1) 0.3 0.9

Noun phrase ratio 1.63 (1.47, 1.82) 1.55 (1.45, 1.71) 0.03 1.6 (1.5, 1.7) 0.4 0.2

Subj–verb–object ratio 6.5 (5.6, 8.7) 6.9 (6.1, 8.3) 0.7 6.8 (4.1–9.1) 0.8 0.7

Flesch–Kincaid grade 3.9 (2.8, 5.0) 4.2 (3.3, 4.7) 0.3 4.4 (3.3, 5.7) 0.4 0.5

Lexico-semantic

Unique words (%) 87.1 (81.6, 93.9) 86.2 (82.7, 90.6) 0.8 85.2 (81.1–87.8) 0.5 0.5

Brunét’s Index 7.1 (6.4, 8.0) 7.2 (6.2, 7.6) 0.8 7.6 (5.6, 8.1) 0.8 0.7

Honoré’s statistic 2388.7 (2115.8, 2844.6) 2398.7 (2130.3, 2713.2) 0.8 2197.2 (1937.2, 2583.2) 0.2 0.4

Sentiment

Polarity 0.05 (0.02, 0.10) 0.05 (0.02, 0.09) 1 0.04 (0.01, 0.11) 0.4 0.7

Subjectivity 0.19 (0.11, 0.26) 0.19 (0.15, 0.22) 0.7 0.18 (0.09, 0.28) 0.7 0.8

aPre-transplant vs. controls
bPost-transplant vs. controls
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measure, in the transcribed speech of patients with schizophre-
nia.38 In addition, Beltrami et al. deemed NLP techniques
promising for identifying cognitive decline in the transcribed
speech of patients with preclinical dementia.15 Second, as
discussed by Kreimeyer et al. NLP has been shown to be a
suitable tool for analyzing and gathering data from unstructured
free text such as that in the EMR.39 For example, Amazon Web
Services’ new NLP service Comprehend Medical takes advantage
of this capability for clinical decision support, revenue cycle
management, and other tasks.40 Application of NLP to identify
subclinical cognitive decline in the EMR messages of patients with
ESLD builds on the above research.
Although these pilot data suggest the potential for NLP tools to

identify important abnormalities in cognition, one important
limitation of this study was that we were unable to correlate our
results to validated measurements or clinical consequences of HE,
such as neurocognitive testing or inability to perform activities of
daily living, respectively. Indeed, the abnormalities we are
detecting here may also be seen in other forms of dementia,
such as uremic encephalopathy of end-stage kidney disease or
Alzheimer’s disease. Future prospective studies should include
standardized cognitive assessment that are most suggestive of HE
to, among other aims, determine a threshold at which NLP can
identify alterations in cognition. A second limitation is that pre-
transplant and post-transplant messages were analyzed within a
single specific time period rather than longitudinally. While we
chose to analyze for this pilot study the period before and after
transplant, since this interval is likely to show the biggest change
in cognition, additional studies should incorporate NLP technol-
ogy over the course of months to establish potential changes in
language over time as patients progress to, and subsequently
recover following, transplant. Studies could likewise correlate
variations in language as people are receiving therapy for HE to
determine if treatment influences language as detected
using NLP.
Additional limitations concern the patients that were included

in analysis. For example, it is possible that patients with the most
severe language abnormalities were excluded from results as they
needed a proxy to write to their provider. While this could indicate
language differences among groups were underestimated, it also
highlights the importance of confirming that the message author
is the patient of interest, should NLP technology be incorporated
into an automatic clinical decision support system in the future.
Similarly, only a subset of patients transplanted during the study
interval (81/234 or 35%) met the inclusion criteria of having at
least one message in the pre-transplant and post-transplant
periods and alcoholic cirrhosis was underrepresented in the study
population (13.6%) as compared to the the group of people that
were excluded (n= 151) due to lack of EMR messages (34.4%).
These observations suggest the possibility that findings from our
study might not be representative of the general population. It is
worth noting that the matched analysis of our study, in which
cases are both compared before and after transplant as well as to
controls with similar diseases, strengthens the internal validity of
the findings even as one should be cautious in extending the
findings to other groups. At the same time, it is now understood
that use of the internet and smartphones has reached “near
saturation” such that individuals from all socioeconomic groups at
least have access to platforms such as EPIC MyChart, thereby
allowing for the possibility that our findings could be generalized
to other groups.41

An important next step would be to use NLP tools to
prospectively analyze patients’ language in comparison to a
standardized neuropsychological testing measure or other estab-
lished clinical or diagnostic indicators of neurocognitive impair-
ment. Subsequent findings may allow for the creation of a clinical
decision support system built into the EMR that automatically
analyzes patient-to-provider messages, alerting providers when

further evaluation of a patient’s cognitive status is warranted. The
hope would be that this could change the care delivered to the
patient, and potentially even justify advocacy for higher place-
ment on the transplant waitlist.
As NLP use in medicine grows, careful consideration should be

given to ensuring clinical effectiveness, seamless integration into
care processes, and high-value application of the technology. We
believe patient-generated, unstructured free text in the EMR is a
largely untapped cache of data for which NLP analysis is uniquely
suited. While NLP has shown promise in identifying cognitive
impairment in patients with neurologic and psychiatric conditions
through analysis of transcribed speech, the application of the
technology to patient-generated EMR messages for the purpose of
detecting language abnormalities is novel, particularly in evaluat-
ing ESLD-related cognitive decline.

METHODS
Identification of transplanted patients
We identified 469 adults (>18 years) with ESLD who received a liver
transplant at the Johns Hopkins Hospital (JHH) from April 1, 2013, when
patient-generated electronic messages were incorporated into the EMR, to
January 31, 2018. Participants were eligible if they had: (1) at least one
patient-generated message in the “pre-transplant” period, defined as
6 months prior to the date of admission for transplant, (2) one patient-
generated message in the “post-transplant” period, defined as between
30 days and 6 months after discharge, and (3) absence of an International
Classification of Diseases, 10th revision (ICD-10) diagnosis code indicating a
neurologic/psychiatric comorbidity or developmental disability (e.g.
dementia, schizophrenia, or autism spectrum disorder; Supplemental
Table 3). Among 469 transplanted patients, 205 were first excluded
because they had an ICD-10 diagnosis code indicating neurologic/
psychiatric comorbidity. Among the remaining 234 patients, 153 were
excluded because they did not have at least one MyChart message in both
the pre-transplant and post-transplant period. Eighty-one individuals with
ESLD satisfied inclusion/exclusion criteria. The Institutional Review Board
for each hospital in the Johns Hopkins Healthcare System approved this
study. A waiver of informed consent was obtained by the Institutional
Review Boards. The data are not publicly available given that they are not
de-identifiable and could compromise patient privacy.

Identification of healthy controls
Transplanted patients were matched 1:1 to “healthy” controls who had at
least one patient-generated message based on the following criteria: age
at transplant (±8 years), gender, and race/ethnicity, and diagnosis similar to
the indication for transplant. For example, a patient who was transplanted
for “alcoholic cirrhosis” was matched to a control with “alcoholic liver
disease” and a patient transplanted for “hepatocellular carcinoma” was
matched to a control with “benign neoplasm of the liver.” In instances in
which no controls matched all the necessary characteristics, controls with
the diagnosis of “abnormal liver function tests” were selected (Supple-
mentary Table 3). All charts were manually reviewed to make sure
potential controls had no evidence of cirrhosis as indicated by clinical
notes, laboratory, imaging, or biopsy reports. Potential controls who had
been referred for liver transplant evaluation or who had evidence of severe
medical comorbidities (e.g., cancer, congestive heart failure), frequent
hospitalizations, neurologic/psychiatric comorbidities, or developmental
disability were excluded.

Data extraction
The Johns Hopkins Healthcare System uses EPIC (Verona, WI), an EMR that
allows for electronic messages to be sent through a portal called MyChart.
The MyChart interface is similar to email, and patients access MyChart
through a web-based portal on their computers, tablets, or smartphones.
In addition to messages, demographic and clinical information was
extracted including age, gender, race/ethnicity, indication for transplant,
ICD-10 diagnosis codes, and allocation MELD score at transplant (i.e., score
used for allocation, either the calculated score or the score with exception
points, whichever is greater). A manual chart review was performed when
a patient’s transplant indication was inconclusive based on ICD-10 codes.
System-generated and redundant (i.e. copied) content was removed from
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the messages, and the text was segmented into individual sentences
based on reasonable judgment of a native English-speaking reviewer (LD).
Greetings, endings, and contact or identifying information, such as phone
number, address, or date of birth was annotated and excluded from NLP
results. Messages written by proxies, such as a spouse, were identified by
the reviewer (LD) and removed from analysis.

NLP-based measures
Nineteen NLP measures across five domains were analyzed using Python
NLP Libraries, including Natural Language Toolkit and spaCy (Explosion AI,
Berlin, Germany).

Lexical domain
Lexical measures encompass the property of words and the vocabulary of
language, and include word length (i.e. letters per word), percent of 6+
letter words, percent of numeral words, and percent of capitalized words.23

Lexico-syntactic domain
Lexico-syntactic measures refer to the property of words in the context of a
sentence’s grammatical structure (mainly parts of speech) and include
percent of function words (i.e. conjunctions and prepositions such as
“and,” “but,” “by,” “with”), question words, verbs, adjectives, nouns, and
pronouns.24

Syntactic domain
Syntactic measures characterize the grammatical structure of sentences
and include sentence length (i.e. words per sentence), subject–verb–object
ratio (i.e. number of subject–verb–object triples per sentence), noun
phrase ratio (i.e. the sum of words in phrases functioning as the sentence’s
subject, object, or prepositional object divided by the total number of
these phrases), and Flesch–Kincaid grade level (i.e. the readability score of
text expressed as a U.S. grade level based on calculations involving total
words, sentences, and syllables).25,26

Lexico-semantic domain
Lexico-semantic measures target the semantic use, or meaning, of words
and lexical richness (i.e. the ratio of total words to unique words), such as
percent of unique words (i.e. type–token ratio).27 Brunét’s Index (W), also in
the lexico-semantic domain, generates a measure of lexical richness from
calculations involving the total number of words (N) and the total
vocabulary used (V), such that W= Nv−0.165, with a lower value denoting
richer text.28,29 Honore’s statistic (R) generates a lexical richness measure
from calculations involving the total number of words, total vocabulary,
and words used only once (V1), such that R= 100 log N/(1−V1/V), with a
higher value denoting richer text.30,31

Sentiment domain
Sentiment measures include polarity and subjectivity.32,33 Polarity quan-
tifies the positive, negative, or neutral emotional content expressed in text
while subjectivity quantifies the author’s personal feelings, opinion, or
beliefs (polarity scale −1 to +1, subjectivity scale 0 to +1).

Statistical analysis
NLP measures were calculated for each message. If patients sent multiple
messages pre-transplant or post-transplant, then the average of the NLP
measures was calculated to represent their pre-transplant or post-
transplant results, respectively. Paired Wilcoxon signed-rank tests were
used to compare the NLP measures in messages written by patients with
ESLD pre-transplant versus post-transplant, pre-transplant versus “healthy”
controls, and post-transplant versus healthy controls (n= 81). Similar
analyses were performed for the subgroup of ESLD patients with MELD ≥
30 (n= 31). All analyses were assessed for statistical significance at the α=
0.05 confidence level and were not adjusted for multiple comparisons. All
analyses were performed using Stata/SE 15 (StataCorp).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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The data are not publicly available since they contain identifiable information that
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