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Digital biomarkers of cognitive function
Paul Dagum1

To identify digital biomarkers associated with cognitive function, we analyzed human–computer interaction from 7 days of
smartphone use in 27 subjects (ages 18–34) who received a gold standard neuropsychological assessment. For several
neuropsychological constructs (working memory, memory, executive function, language, and intelligence), we found a family of
digital biomarkers that predicted test scores with high correlations (p < 10−4). These preliminary results suggest that passive
measures from smartphone use could be a continuous ecological surrogate for laboratory-based neuropsychological assessment.
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INTRODUCTION
By comparison to the functional metrics available in other
disciplines, conventional measures of neuropsychiatric disorders
have several challenges. First, they are obtrusive, requiring a
subject to break from their normal routine, dedicating time and
often travel. Second, they are not ecological and require subjects
to perform a task outside of the context of everyday behavior.
Third, they are episodic and provide sparse snapshots of a patient
only at the time of the assessment. Lastly, they are poorly scalable,
taxing limited resources including space and trained staff.
In seeking objective and ecological measures of cognition, we

attempted to develop a method to measure memory and
executive function not in the laboratory but in the moment,
day-to-day. We used human–computer interaction on smart-
phones to identify digital biomarkers that were correlated with
neuropsychological performance.

RESULTS
In 2014, 27 participants (ages 27.1 ± 4.4 years, education
14.1 ± 2.3 years, M:F 8:19) volunteered for neuropsychological
assessment and a test of the smartphone app. Smartphone
human–computer interaction data from the 7 days following
the neuropsychological assessment showed a range of correla-
tions with the cognitive scores. Table 1 shows the correlation
between each neurocognitive test and the cross-validated
predictions of the supervised kernel PCA constructed from
the biomarkers for that test. Figure 1 shows each participant
test score and the digital biomarker prediction for (a) digits
backward, (b) symbol digit modality, (c) animal fluency,
(d) Wechsler Memory Scale-3rd Edition (WMS-III) logical
memory (delayed free recall), (e) brief visuospatial memory test
(delayed free recall), and (f) Wechsler Adult Intelligence Scale-
4th Edition (WAIS-IV) block design. Construct validity of the
predictions was determined using pattern matching that
computed a correlation of 0.87 with p < 10−59 between the
covariance matrix of the predictions and the covariance matrix
of the tests.

Table 1. Fourteen neurocognitive assessments covering five cognitive
domains and dexterity were performed by a neuropsychologist.
Shown are the group mean and standard deviation, range of score,
and the correlation between each test and the cross-validated
prediction constructed from the digital biomarkers for that test

Cognitive predictions

Mean (SD) Range R (predicted),
p-value

Working memory

Digits forward 10.9 (2.7) 7–15 0.71 ± 0.10, 10−4

Digits backward 8.3 (2.7) 4–14 0.75 ± 0.08, 10−5

Executive function

Trail A 23.0 (7.6) 12–39 0.70 ± 0.10, 10−4

Trail B 53.3 (13.1) 37–88 0.82 ± 0.06, 10−6

Symbol digit modality 55.8 (7.7) 43–67 0.70 ± 0.10, 10−4

Language

Animal fluency 22.5 (3.8) 15–30 0.67 ± 0.11, 10−4

FAS phonemic fluency 42 (7.1) 27–52 0.63 ± 0.12, 10−3

Dexterity

Grooved pegboard test
(dominant hand)

62.7 (6.7) 51–75 0.73 ± 0.09, 10−4

Memory

California verbal learning test
(delayed free recall)

14.1 (1.9) 9–16 0.62 ± 0.12, 10−3

WMS-III logical memory
(delayed free recall)

29.4 (6.2) 18–42 0.81 ± 0.07, 10−6

Brief visuospatial memory test
(delayed free recall)

10.2 (1.8) 5–12 0.77 ± 0.08, 10−5

Intelligence scale

WAIS-IV block design 46.1(12.8) 12–61 0.83 ± 0.06, 10−6

WAIS-IV matrix reasoning 22.1(3.3) 12–26 0.80 ± 0.07, 10−6

WAIS-IV vocabulary 40.6(4.0) 31–50 0.67 ± 0.11, 10−4
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DISCUSSION
We have shown that we can generate digital biomarkers
correlated with gold-standard neurocognitive tests using passively
acquired data during daily use of a smartphone. Using supervised
kernel PCA we can generate cross-validated predictions of the test
scores with precision comparable to the gold-standard test–retest
reliabilities.1,2 These digital biomarkers offer several advantages to
conventional assessments. First, they are unobtrusive, placing no
burden on the subject beyond the normal use of a smartphone.
Second, they are ecological since the smartphone data is captured
in a natural environment. Third, they provide dense daily
assessments with potential insight into hour to hour or day to
day variations in cognitive function. Lastly, they could scale
globally with three billion smartphone users today, projected to

6 billion by 2020 (https://techcrunch.com/2015/06/02/6-1b-
smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-
subscriptions/).
An obvious limitation of this pilot study is the small size (n= 27)

relative to the large number of potential biomarkers (n= 1035). To
counter the risk of over-fitting these results, predictions were
made using leave-one-out cross validation (LOOCV), stringent
confidence level (p < 10−4) and a simple linear kernel that was
regularized. Nevertheless, these results should be considered
preliminary until replicated in an independent sample. A further
limitation is that the neuropsychological assessment occurred at
one time point and the digital features were collected ecologically
over the first 7 days following the assessment. For clinical
assessments, one might argue that the real-world, continuous
assessment would yield critical information relevant to function.

Fig. 1 A blue square represents a participant test Z-score normed to the 27 participant scores and a red circle represents the digital biomarker
prediction Z-score normed to the 27 predictions. Test scores and predictions shown are a digits backward, b symbol digit modality, c animal
fluency, d Wechsler memory Scale-3rd Edition (WMS-III) logical memory (delayed free recall), e brief visuospatial memory test (delayed free
recall), and f Wechsler adult intelligence scale-4th Edition (WAIS-IV) block design
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Indeed, we postulate that the daily variability in the digital
biomarkers will provide rich temporal insight into state-dependent
changes in cognition and emotional health that may arise from
disease and environmental effects. The selection of 7 days
provided ecological data from which to select the peak value of
each biomarker, which consistently led to the best predictions,
suggesting that in the laboratory a participant performs at their
best while in the real-world the participant’s function will deviate
from peak depending on disease and environmental effects.
Several large clinical studies will confirm our hypothesis and
further establish the clinical utility of our approach.

METHOD
All participants, recruited via social media, signed an informed consent
form. Inclusion criteria required participants to be functional English
speaking and active users of a smartphone. The protocol involved 3 h of
psychometric assessment, installation of an app on their smartphone. The
test battery is shown in the first column of Table 1. A single
psychometrician performed all testing in a standard assessment clinic.
The app on the phone ran passively in the background and captured
tactile user activity that included swipes, taps, and keystroke events,
collectively termed human–computer interactions (HCI).
From the HCI events we identified 45 event patterns. Each pattern

represents a task that is repeated up to several hundred times per day by a
user during normal use of their phone. Most patterns consisted of two
successive events, such as tapping on the space-bar followed by the first
character of a word, or tapping delete followed by another delete tap.
Some patterns were collected in a specific context of use. For example,
tapping on a character followed by another character could be collected at
the beginning of a word, middle of a word, or end of a word. Each pattern
generated a time-series composed of the time interval between patterns.
The time-series were segmented into daily time-series. To each daily time-
series we applied 23 mathematical transforms to produce 1035 distinct
daily measurements that we term digital biomarkers.
For each participant we selected the first 7 days of data following their

test date. A biomarker was considered a candidate for a neurocognitive
test if over the 7 day window the 7 correlations between sorted biomarker
values and the test scores were stable (meaning of the same sign). The
two-dimensional design matrix for the supervised kernel PCA was
constructed by selecting the peak value of each candidate biomarker
over the 7 days. For each test, we constructed a linear reproducing Hilbert
space kernel from the biomarkers and used a supervised kernel principal
component analysis3 with LOOCV as follows. To predict the 1st participant
test result the model fitting algorithm was run on the remaining
participants without access to the 1st participant’s data, and so forth
iterating 27 times to generate the 27 predictions.

Code availability
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Data availability
The data that support the findings of this study are available on reasonable
request from the author.
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