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Detecting neurodegenerative disorders from web search signals
Ryen W. White1, P. Murali Doraiswamy2 and Eric Horvitz3

Neurodegenerative disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), are important public health problems
warranting early detection. We trained machine-learned classifiers on the longitudinal search logs of 31,321,773 search engine
users to automatically detect neurodegenerative disorders. Several digital phenotypes with high discriminatory weights for
detecting these disorders are identified. Classifier sensitivities for PD detection are 94.2/83.1/42.0/34.6% at false positive rates (FPRs)
of 20/10/1/0.1%, respectively. Preliminary analysis shows similar performance for AD detection. Subject to further refinement of
accuracy and reproducibility, these findings show the promise of web search digital phenotypes as adjunctive screening tools for
neurodegenerative disorders.
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INTRODUCTION
Neurodegenerative disorders (NDs) are prevalent and a major
source of healthcare expenditure.1 NDs progress slowly,2 and their
symptoms may be subtle and mistaken for more common
conditions.3,4 Early detection of NDs enables earlier intervention,
which can slow their progression. This study examines the use of
digital phenotypes5 for detecting NDs, operationalized as patterns
of search activity gathered during engagement with web search
engines. Methods based on these observational data show
promise in offering new pathways for the early detection of brain
disease.
Prior studies with large-scale logs of the search activity of

millions of people have highlighted opportunities for detection of
cancer6,7 and for disease surveillance.8,9 This study investigates
how analyses of longitudinal log data from search engines might
help detect evidence of Parkinson’s disease (PD), a common
progressive ND affecting some 7–10 million people worldwide.
Dopaminergic deficiency in PD results in symptoms such as
tremors and cognitive decline,10 evidence of which may be
apparent in search log signals. PD is challenging to diagnose: the
current accuracy of clinical diagnosis of probable PD for patients
presenting with motor symptoms in primary care settings is
around 80%, with limited improvements in the past 25 years,
especially at early disease stages.11 Hence, there is a need for a
simple scalable test that can be used for screening in the
community or at home. This work also explores whether classifiers
using search log signals can help with diagnostic challenges in PD,
specifically distinguishing early PD from essential tremor (ET).3,4

This study uses a total of 18 months of deidentified logs of
United States search activity from the Microsoft Bing web search
engine, comprising millions of English-speaking searchers from
September 2015 to February 2017 inclusive. These data are
routinely collected for improving search results and permitted
through Bing’s Terms of Service. A range of observational features
were computed per searcher over the duration of the logs: (1)
Symptom: presence of PD symptom-related query terms (includ-
ing synonyms) derived from published literature; (2) Motor: motor
symptoms such as cursor movements, including speed, direction

changes, tremors (defined as horizontal or vertical oscillations in
cursor position up to 20 pixels in each direction), and vertical
scrolling. Cursor position data were sampled while the cursor was
in motion; (3) Repetition: presence of repeat queries, repeat result
clicks, and repeat query-result click pairs, and (4) Risk Factors:
presence of risk factors derived from previous work (e.g.,12–14).
These included age and gender (inferred using proprietary Bing
classifiers), and head trauma, toxin exposure, and familial factors
based on terminology appearing in query text. For the Motor class,
feature values are first computed per query instance and then
averaged across all query instances for the searcher. Some
features align with criteria used by physicians (e.g., tremors)10,15

while others are more difficult to measure in clinical practice (e.g.,
memory loss).16

From the full set of logs, searchers who input queries containing
first-person statements about PD diagnosis (e.g., “just diagnosed
with parkinsons”) were identified. These experiential diagnostic
queries are used as evidence of receiving a PD diagnosis. Cases
exhibiting evidence that diagnostic queries were for others (e.g.,
father, spouse, etc.) were excluded. Multiple additive regression
trees (MART) classifiers17 were trained to detect evidence of PD
diagnosis from all PD symptom searchers. Advantages of MART
include model interpretability, facility for rapid training and
testing, and robustness against noisy labels and missing values.
There were 703 positive cases, of searchers who queried for
symptoms and issued at least one experiential diagnostic query
(30.8% of the experiential diagnostic searchers), and 31,321,070
negative cases, of searchers who only issued queries on PD
symptoms. The data were used in classifier training as is. The
application of sampling methods to correct for class imbalance is
left to future work. Since NDs progress slowly2 and the
observation window is limited to 18 months, the classification
task likely identifies the existence of PD rather than forecasting a
future diagnosis.
Ten-fold cross validation was used to train and test the classifier.

It predicts the input of an experiential diagnostic query for PD
with strong performance (area under the receiver operating
characteristic curve [AUROC] = 0.9357) using 18 months of search
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Table 1. Features used in PD classifier, ranked by discriminative weight and scored with respect to the top-ranked feature: TimeBetweenRepeatQueries.
Features are computed over all queries for each searcher. Features from the Motor class are first computed for each query instance and then
averaged across all query instances for that searcher

Feature name Class Brief description Weight

TimeBetweenRepeatQueries Repetition AVG time between repeat queries 1.000000

FractionOfQueriesAreRepeats Repetition % of all queries that are repeat queries 0.971182

NumberOfTremorEvents Motor # of tremor eventsa 0.715004

AverageTremorFrequency Motor AVG tremor frequency in hertz (# of oscillations/time) 0.595772

FractionOfQueriesHaveSymptoms Symptom % of all queries with 1+ symptoms 0.457336

AgeIs50To85 Risk Factors Inferred searcher age is 50–85 years 0.432355

FractionOfClicksAreRepeats Repetition % of result clicks that are repeat clicks on same result 0.341164

FractionOfQueriesHaveRiskFactors Risk Factors % of all queries with 1+ risk factors 0.329801

GenderIsFemale Risk Factors Inferred gender is female 0.313425

TotalTimeCursorMoving Motor Total time mouse cursor is actively moving 0.297699

NumberOfScrollEvents Motor # of scroll events 0.259432

NumberOfScrollEventsDownward Motor # of scroll events downward 0.256692

AverageScrolVelocity Motor AVG scrolling velocity 0.249454

MinimumCursorYCoordinate Motor MIN y-coordinate of mouse cursor (top of page y is 0) 0.247770

FractionOfCursorTransitionsAreDirectionChanges Motor % of mouse cursor transitions with direction changesb 0.243873

AverageCursorAcceleration Motor AVG acceleration of mouse cursor 0.239814

NumberOfHyperlinkClicks Motor # of hyperlink clicks 0.239568

AverageCursorVelocity Motor AVG velocity of mouse cursor 0.232418

NumberOfCursorTransitionsAreDirectedUpward Motor # of transitions directed upward 0.232311

TotalDistanceScrolled Motor Total distance scrolled 0.215000

AverageCursorXCoordinate Motor AVG x-coordinate of mouse cursor (left of page x is 0) 0.214955

FractionCursorTimeInWhitespace Motor % of time mouse cursor in whitespacec 0.211925

MaximumDeviationInPreclickCursorTrail Motor MAX deviation in pre-click mouse cursor traild 0.210185

AveragePreclickCursorVelocity Motor AVG velocity of mouse cursor before click 0.208572

TotalScrollingTime Motor Total time spent scrolling 0.207520

AverageCursorJounce Motor AVG jounce of mouse cursor 0.206460

MinimumCursorXCoordinate Motor MIN x-coordinate of mouse cursor 0.199193

MaximumCursorVelocity Motor MAX mouse cursor velocity 0.196639

NumberOfCursorTransitions Motor # of mouse cursor transitions between logged points 0.192631

GenderIsMale Risk Factors Inferred gender is male 0.191614

AverageCursorVelocity Motor AVG velocity of mouse cursor 0.190826

CursorExhibitsReadingBehavior Motor Cursor shows evidence of reading behavior21 0.190713

FractionCursorMoveTimeHaveTremors Motor % of mouse cursor move time having tremor events 0.188127

AverageCursorYCoordinate Motor AVG y-coordinate of mouse cursor 0.171520

AverageCursorJerk Motor AVG jerk of mouse cursor 0.168440

NumberOfTransitionsDirectedRightward Motor # of mouse cursor transitions directed rightward 0.157965

TotalNumberOfClicks Motor # of mouse clicks, inc. non-hyperlink (in whitespace) 0.153249

AverageAccelerationOfCursor Motor AVG acceleration of mouse cursor 0.150714

AgeIs35To49 Risk Factors Inferred searcher age is 35–49 years 0.145166

NumberOfNonHyperlinkClicks Motor # of non-hyperlink mouse clicks 0.132365

MaximumCursorYCoordinate Motor MAX y-coordinate of mouse cursor 0.127897

NumberOfCursorEvents Motor # of mouse cursor events 0.126026

NumberOfScrollEventsUpward Motor # of upward scroll events 0.117682

TotalCursorDistanceTraveled Motor Total distance traveled by mouse cursor 0.111703

AverageCursorPreclickOverrunDistance Risk Factors AVG pre-click mouse cursor link overrun distancee 0.110122

AverageCursorPreclickDeviation Motor AVG deviation in pre-click mouse cursor trail 0.106043

NumberOfCursorTransitionsDownward Motor # of mouse cursor transitions directed downward 0.104645

MaximumCursorJerk Motor MAX jerk of mouse cursor 0.098519

NumberOfCursorLoops Motor # of 360° loops in mouse cursor movementsf 0.094700

FractionOfTimeWithCursorInWhitespace Motor % of time spent with mouse cursor in whitespace 0.092794

MaximumCursorYCoordinate Motor MAX y-coordinate of mouse cursor 0.081183
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log data. AUROC drops to 0.8626 with 12 months of data, and
0.8151 with 6 months of data. Since false positives can generate
unnecessary alarm and additional healthcare utilization in fielded
uses (e.g., at population-scale in search engines), low false positive
rates (FPRs) are desirable. Classifier sensitivities at FPR = 20/10/1/
0.1% are 94.2/83.1/42.0/34.6%, respectively. The results offer
evidence that the existence of NDs in searchers is detectable
from streams of data from the use of search engines over time.
Table 1 shows the list of observational features with non-zero
discriminatory weights in the learned classifier. Features related to
tremors—both from search terms (e.g., “hands shaking”) and from
mouse cursor movements (e.g., estimated rate of cursor position
oscillation), repeat queries, and repeat search-result clicks, and the
inferred age and gender of searchers, had highest discriminatory
weights.
Tremors have many explanations, including ET, which shares

some symptoms with PD. Distinguishing between ET and early PD
is important for tremor sufferers.3 Focusing on those who
searched for tremors (n = 4,262,953), a MART classifier was trained
to distinguish PD (n = 309) and ET (n = 307). Figure 1 shows the
ROC curve illustrating strong classifier performance (AUROC =
0.9205) using all features available to the classifier. Features
related to scrolling, cursor direction changes, tremor frequencies,
and query repetition were important. This is corroborated by
ablation studies, where the largest drop in AUROC (23%, Z = 7.10,
p < 0.00118) occurs when Motor features are excluded. Motor
symptoms, including tremor frequencies, are also important in
distinguishing ET and PD during clinical examinations.19

The classifiers learned from search query and motor interaction
data show promise for developing new kinds of diagnostic tools
for NDs. The periodic application of these methods may support
the study of temporal dynamics in NDs for consenting searchers.
They can also help discriminate between illnesses with similar
symptoms, as shown with a case study of identifying searchers
with experiential diagnostic queries for ET versus PD. The classifier
leverages evidence unavailable to physicians (e.g., longitudinal
query repetition, mouse cursor activity) that could aid in more
traditional clinical diagnoses. Application of these classifiers could
help screen for patients with higher ND likelihoods. Surfacing their
predictions and confidence scores to physicians could offer
additional evidence to help physicians discriminate between
conditions. Identifying the specific digital phenotypes (e.g.,
estimated tremor frequencies) related to NDs that carry most
weight for each patient may also have diagnostic utility. It is noted
that while experiential diagnostic queries provide evidence of ND,

definitive ground truth was unavailable in this study. Future work
will expand this analysis to other NDs and perform prospective
analyses with clinically diagnosed ND patients at different stages
of illness to validate the diagnostic and prognostic utility of digital
signals. Preliminary analysis shows that the methods in this study
may scale to other NDs, such as Alzheimer’s disease (AUROC =
0.9135, classifier sensitivities at FPR = 20/10/1/0.1% are 91.0/81.5/
38.8/26.1%, respectively). A recent study of keystroke typing
patterns in verified PD patients20 found similar results to those on
PD presented herein. The findings of the two studies taken

Table 1 continued

Feature name Class Brief description Weight

NumberOfCursorTransitionsLeft Motor # of mouse cursor transitions directed left 0.074749

MaximumCursorJounce Motor MAX jounce of mouse cursor 0.072211

AgeIs25To34 Risk Factors Inferred searcher age is 25–34 years 0.069420

NumberOfCursorDirectionChanges Motor # of mouse cursor direction changes 0.068290

FractionQueriesWithRepeatQueryClick Repetition % of queries with repeat query-result click pair 0.045272

MaximumCursorPreclickVelocity Motor MAX velocity of pre-click mouse cursor trail 0.035155

a Tremor events are defined as horizontal or vertical oscillations in the position of the mouse cursor, with a mouse cursor movement of no more than 20 pixels in
either direction
b Transitions between logged cursor position data points where a change in mouse cursor direction is noted (e.g., moving the mouse cursor leftward then
moving the mouse cursor rightward)
c Fraction of total time spent on the search engine result page where the mouse cursor is parked over whitespace (i.e. regions of the result page where there
are no elements)
d Average residuals in a line of best fit for the five cursor position data points (i.e. the cursor trail) logged before a hyperlink click
e Total distance traveled (in pixels) by mouse cursor pre-click after initial pass over the target hyperlink
f Number of 360-degree loops in the mouse cursor trails, where a loop is defined as a sequence of direction changes resulting in a circular motion of the
mouse cursor (e.g., move right, move down, move left, move up)

Fig. 1 Receiver-operator characteristic curve for the task of
discriminating between Parkinson’s disease (PD) and essential
tremor (ET), using all features and with feature ablations. Starting
with the classifier using all features (All), ablations removed features
of the repetition class (all minus repetition), repetition and motor
classes (all minus repetition and motor), and repetition, motor, and
risk factors classes (all minus repetition, motor, and risk factors).
After each class is removed, the classifier is retrained and AUROC is
recomputed. When all three classes are removed, the classifier uses
only features from the Symptom class (purple line)
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together support the promise of using digital phenotypes for early
detection of PD.
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