
npj | 2D materials and applications Article
Published in partnership with FCT NOVA with the support of E-MRS

https://doi.org/10.1038/s41699-024-00458-9

Bio-inspired “Self-denoising”capability of
2D materials incorporated optoelectronic
synaptic array

Check for updates

Molla Manjurul Islam1,2,5, Md Sazzadur Rahman3,5, Haley Heldmyer4, Sang Sub Han1,
Yeonwoong Jung 1,4 & Tania Roy 1,3

In in-sensor image preprocessing, the sensed image undergoes low level processing like denoising at
the sensor end, similar to the retina of human eye. Optoelectronic synapse devices are potential
contenders for this purpose, and subsequent applications in artificial neural networks (ANNs). The
optoelectronic synapses can offer image pre-processing functionalities at the pixel itself—termed as
in-pixel computing. Denoising is an important problem in image preprocessing and several
approaches have been used to denoise the input images. While most of those approaches require
external circuitry, others are efficient only when the noisy pixels have significantly lower intensity
compared to the actual pattern pixels. In this work, we present the innate ability of an optoelectronic
synapse array to perform denoising at the pixel itself once it is trained to memorize an image. The
synapses consist of phototransistors with bilayerMoS2 channel and p-Si/PtTe2 buried gate electrode.
Our 7 × 7 array shows excellent robustness to noise due to the interplay between long-term
potentiation and short-term potentiation. This bio-inspired strategy enables denoising of noise with
higher intensity than thememorized pattern, without the use of any external circuitry. Specifically, due
to the ability of these synapses to respond distinctively to wavelengths from 300 nm in ultraviolet to
2 µm in infrared, the pixel array also denoises mixed-color interferences. The “self-denoising”
capability of such an artificial visual array has the capacity to eliminate the need for raw data
transmission and thus, reduce subsequent image processing steps for supervised learning.

The demand to process vast amounts of data generated from state-of-the-
art, high-resolution cameras has motivated energy-efficient on-device
artificial intelligence (AI) solutions. Visual data in such cameras are usually
captured in analog voltages by a sensor pixel array, and thenconverted to the
digital domain for subsequent AI processing using analog-to-digital con-
verters (ADCs). Recent research has tried to take advantage of massively
parallel low-power analog/digital computing in the form of near- and in-
sensor processing, in which the AI computation is performed partly in the
periphery of the pixel array and partly in a separate on-board CPU/accel-
erator, accounting for computing at the edge1–3. Unfortunately, high-
resolution input images still need to be streamed between the camera and
the AI processing unit, frame by frame, causing energy, bandwidth, and

security bottlenecks4. For the current state-of-the-art algorithms, the
number of input parameters (100’s of millions) and memory requirement
scale proportionatelywith the input dimensionality and scales exponentially
with the accuracy requirements because of the high quality of the video.
Hence, it is impossible to performAI operations at the edgewith the current
hardware technology.

Image pre-processing by creating circuits which emulate the retina of
the eye has been prevalent for some time5. However, their scalability has
been low, because of whichmost of the tasks are performed off-chip. Recent
reports demonstrate artificial neural networks (ANNs) using 2D materials
(photodiodes using WSe2)

6 and silicon p-i-n photodiode arrays7 where in-
sensor image processing with multiply and accumulate (MAC) operations
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are realized with photocurrents. The absence of non-volatile memory in
most optoelectronic devices for in-pixel (in-sensor) processing precludes
the realization of more complex image processing and vision tasks.

Several demonstration of optoelectronic synapses exist in the
literature8. These reports focus on the modulation of conductance using
light pulses. The conductance modulation is the result of persistent pho-
toconductivity (PPC), which is a bane for photodetectors since it prevents
the photoconductance to return to the value at dark after light is withdrawn.
However, the same phenomenon is useful in optoelectronic synapses, since
PPC allows the retention of photoconductance. PPC can be caused by
charge trapping due to defects, ion migration, phase changes, and the pre-
sence of energy barriers that prevent photogenerated carrier recombination
commonly known as photogating effect9–13. Most of these reports show the
operation of the optoelectronic synapses under UV and visible light8, with
fewer demonstrations of synaptic behavior under IR wavelengths13,14. Light
pulses with a high intensity compared to state-of-the-art photodetectors are
used to potentiate the optoelectronic synapses15,16. The optical pulse width
applied to potentiate the synapses are reported to be in the range of
10ms–5 s15,17–19, which is quite slow considering the current image proces-
sing applications. Apart from pair pulse facilitation (PPF), excitatory post
synaptic current (EPSC) and short term memory (STM), these works dis-
plays the non-volatile memory-capability of the devices. However, the long
term memory of these devices are reported to be in the range of several
second to a few minutes20–22. Besides, most of these report dwell with the
performance of individual devices. How these devices can be used for per-
forming image processing tasks is seldomreported18,23.We aim to showhow
optoelectronic synapses as pixels can exhibit built-in image processing
functionalities.

Image denoising is one of the essential components in any image
processing task. Traditionally, the gaussian smoothing filter for high fre-
quency noise removal, or median filter for salt and pepper noise, along with
algorithms like non-local median, wavelet denoising and deep learning-
based denoising, are integrated for image denoising operations24–27. These
are realized with considerable amount of circuitry in the back-pane of
displays28 or energy hungry cloud communications6. There are different
types of signals present in the natural surroundings. The ability to extract
desired information from complicated surroundings is crucial to reduce
processing time and energy consumption. The human brain utilizes pre-
vious experiences and personal judgment to comprehend the information it
perceives from the environment, allowing the visual system to filter out
noise signals and selectively process visual data29. This means that despite
the brain receiving a vast amount of visual information from the environ-
ment, the ultimate visual perception typically focuses on a few particular
objects in the surroundings, while the other stimuli are eventually dis-
regarded. This is the “self-denoising” capability of the human visual system
which is expected to be an inherent property of a bioinspired artificial visual
system. Although several bioinspired adaptability characteristics like sco-
topic and photopic behavior of optoelectronic synapses have been
studied21,22,30, the “self-denoising” capability of an artificial visual system is
seldom explored. A few reports exist on the implementation of image
denoising using phototransistors. Ma et al. utilized a peripheral control
circuit to implement median filtering algorithm to remove salt and pepper
noise where the image sensors consist of 619 pixels with 8582 MoS2
transistors28. In a 3 × 3 array of MoS2 phototransistors, Dodda et al. used
positive gate voltage pulses to erase the memory induced by illumination to
remove noise from the images31. This scheme, though bio-inspired, would
require additional control circuitry for deciphering noise from the original
image. Instead of using electrical pulses for depression, Shan et al. uses
ultraviolet light pulses for removing noise by the process of depression,
which adds complexity to the neuromorphic vision sensor system32. With
pixels using optoelectronic synapses, noise with intensity much lower than
the image can be removed by contrast enhancement, as demonstrated by
Zhou et al.18. In most reports where noisy images are tested for pattern
recognition accuracy, an external computing system is employed for the
denoising operation6. However, the “self-denoising” capability of an

optoelectronic synapse array used as pixels for image processing has not
been explored yet.

In this paper, we develop a bio-inspired scheme to “self-denoise”
images at the pixel array without connecting to any external circuitry. Two-
dimensional (2D)materials are considered ideal candidates formid infrared
(MIR) optoelectronic devices because of their broadband photosensitive
properties and easy integrability33. Several materials have been explored
including semi-metallic graphene34 and black phosphorus35 for MIR photo
carrier generation. However the gapless nature of graphene and poor air
stability of black phosphorus make them unsuitable in emulating optoe-
lectronic synapse characteristics. Recently discovered metal dichalcogen-
ides, PtTe2

36 and PtSe2
37 has been adopted as viable 2D materials for

photocarrier generation in the mid-infrared (MIR) for their ability to
transition from a semiconductor to a type-II Dirac semimetal with
increasingnumberof layers, coupledwith excellent air stability13,36,38,39.Here,
we developed individual pixels of the optoelectronic synaptic array by
combining an infrared-sensitive PtTe2/Si as the gate electrode with a UV-
visible-sensitive bilayer MoS2 as the conduction channel, configured as a
field-effect transistor (FET). The optoelectronic synapses exhibit short-term
and long-term potentiation, similar to biological synapses. By virtue of this
property, we demonstrate that if such an array is trained to memorize a
pattern and then some noise or any other interferences intend to corrupt its
memory, the array has the capacity to nullify the effect of the noise and
restore thememorized pattern. Using optoelectronic synapses that respond
to light from 300 nm in UV to 2 μm in IR, we demonstrate the “self-
denoising” capability using the interplay of short-term and long-term
memory. The optoelectronic synapse pixels in a 7 × 7 array exhibit a sig-
nificant memory retention of at least 1200 s. The robustness of the array
against multi-color interferences is shown in this work, owing to the multi-
wavelengthdetection capability of ourdevices,whichdepicts thepotential of
the device to identify unwanted wavelengths in an incoming pattern and
remove its effect. This work illustrates the universal capability of optoelec-
tronic synapses for “self-denoising”.

Results
Optoelectronic Synaptic Array with “Self-denoising” Capability
Inspired by the process of learning in humans, we have designed a process
for image denoising. When we learn something well, the synapses undergo
long-term potentiation (LTP). A strong or frequent stimulus causes this
LTP, resulting in long-term memory. A weak or infrequent stimulus either
does not potentiate the synapses sufficiently, or causes short-term poten-
tiation (STP), which results in short-term memory. Figure 1a shows a car-
toon to illustrate the concept of “self-denoising” process expected from an
optoelectronic synapse array. First, the array is trained with a pattern using
optical excitation so that the devices respond to the photo-stimuli of the
pattern and “learn” it. In other words, the optical stimulus sends the
optoelectronic synapses into LTP. This training could also be a part of any
other process like pattern recognition or preprocessing of an image, which is
beyond the scope of this work. Our scheme requires that the conductance
state corresponding to LTP should be substantially higher than the con-
ductance state corresponding to STP.Oneof theways toattain this is to train
thedeviceswith a longer exposure time compared to thenear-zero latencyof
200ms for real-time video streaming40. In this work, we implement the long
exposure time by means of exposing the arrays to a large number of optical
pulses. Another important property for successful “self-denoising” opera-
tion is that the LTPperiodof each synapse shouldbe reasonably long, so that
the array can remember the pattern long enough for the conductance states
to be read and transmitted to subsequent circuitry for further processing.
Now, during this timewhen the synapses are in LTP, if a noisy image falls on
the array, it will potentiate the devices in the array accordingly. In our
scheme, we call the process of reading the noisy data on the array as
“scanning”. It is expected that the “scanning” of the noisy image will occur
for a far shorter period than the training process, i.e. the stimulus corre-
sponding to thenoise “scanning”will be infrequentorweak compared to the
stimulus corresponding to the training process. During the “scanning”
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process, two effects occur: the pattern pixel goes through a second-level
learning on top of their previous memory, which we are terming as
“relearning”, while for the noise pixels, it is afirst-time experience,whichwe
will be calling as “first-level learning” or “first-time learning”. The
“relearning” enhances the LTP state further as every pattern pixel’s con-
ductance increases. On the other hand, noise pixels, being first-time
potentiated with lesser exposure (“scanning”) period, retain lower con-
ductance levels, i.e. only be short term potentiated. The ultimate result is
after the noisy image is being “scanned”, the pattern pixels get stronger and
consequently, the noise pixels fade away in contrast to the pattern pixels’
conductance levels. Thus, an optoelectronic synaptic array should be able to

denoise itself for any interference after training. Although the “self-denois-
ing” process might appear as an inherent property for any optoelectronic
synapse, the requirement of successful and fast denoising is possible only if
the synapsehas significantdifferencebetween theconductance levels of “first-
time learning” and “relearning”, established by the difference in conductance
levels between its STP state and LTP state respectively. This property governs
not only the denoising capability, but also the denoising time.

To establish the “self-denoising” concept, we fabricated a 7 × 7 array of
optoelectronic synapse devices. Figure 1b shows the schematic of a multi-
wavelength optoelectronic synapse device based on our previous report13.
The device consists of a bilayer MoS2 channel acting as an UV-visible

Fig. 1 | Concept of “self-denoising” of an optoelectronic synapse array. aCartoon
of the concept of “self-denoising” process of an optoelectronic synapse array, where
the pattern pixels, which are already trained undergo “relearning” process, while the
noise pixels experience “first-time learning” resulting in fading of noise by contrast
without involving any external circuitry. b Schematic and c optical microscope
image of a 2D materials-based optoelectronic synapse device consisting of MoS2 as
the channel and p-Si/PtTe2 as the buried gate electrode. d Transfer characteristics,
ID – VGS of the device in dark and under four wavelengths: 300 nm, 450 nm, 1 μm
and 2 μm, showing broadband response and distinct threshold shift for each

wavelength. eOptical potentiation of the device by applying four bursts of 256 pulses
of pulse width 5 ms (effective illumination time = 1.28 s) and optical wavelengths of
300 nm, 450 nm, 1.0 µm and 2.0 µmwithmemory retention recorded for 300 s after
application of each burst of pulses. For all wavelengths, memory gets stronger at
each “relearning” level (2nd level learning and onwards). The final memory (con-
ductance) of the devices after four-level learning is more than twice of that of “first-
time (first-level) learning”, which ensures the capability of the device to sufficiently
demonstrate “self-denoising” process.
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sensitive material during operation41–44, an Al2O3 back gate dielectric, and a
p-Si/PtTe2 gate electrode, which is sensitive to infrared (IR)
wavelengths36,38,39. The details of the chemical vapor deposition (CVD) and
device fabrication processes are provided in the Methods section. The
materials characterization showing the existence of bilayer MoS2 are pre-
sented in Supplementary Fig. 1a, b. Figure 1c shows the optical image of a
device in the array. Figure 1d shows the transfer characteristics of a typical
device in the array at VDS = 1V, in dark and under illumination of 300 nm
(UV), 450 nm(visible), 1.0 µm(near-IR), and2.0 µm(IR)wavelengths,with
an intensity of 400 μWcm−2. The threshold voltage (Vth) shifts negatively
under light. The largest negative shift in Vth at 450 nm corresponds to the
peak of the absorption spectrum of MoS2

45,46. The operational principle of
the device under light excitation is discussed in our previous work by Islam
et al.11,13.

Now we focus to gain insight about the “learning” and “relearning” of
the synapse devices. We potentiated a representative device four times
consecutively, each timewith a burst of 256 (28) optical pulses having a pulse
width of 5ms (effective illumination time = 1.28 s). The memory retention
was recorded for 300 s, followingwhich the next burst of pulseswas applied.
The increasing levels of conductance states with each burst of pulses
accounts for the increasing levels of learning by the device, corresponding to
“first-time learning” (first level learning), “second level learning (first
relearning)” and so on. Figure 1e shows the stepwise optical potentiation
and learning of the device at 300 nm, 450 nm, 1.0 µm and 2.0 µm wave-
lengths with memory retention shown up to 300 s after application of each
burst of pulses.VDS is held constant at 1 V andVGS at -2.5 V throughout the
experiment. The photoconductance retention occurs only at a negative gate
voltage13. The memory retention of the device after 300 s of applying one
burst of pulses increases as the device is trained multiple times: memory is
enhanced from “first-time learning” to second-level learning, from second-
level learning to third level learning and so on. It implies that when the
devices “relearn” the same information by optical stimulus, there occurs
significant difference in the conductance levels between the “first-time
learning” and the “relearning” stages. For all wavelengths, the conductance
level at the fourth stage (i.e. 3rd “relearning”) is over two times higher than
the first stage (“first time learning”) for our optoelectronic synapse device.
The parabolic growth of the memory of the device for the four wavelengths
are shown in Supplementary Fig. 2a-d. This is a significant finding for our
denoising scheme. We anticipate that this difference between the con-
ductance levels of “first-time learning” and “relearning” should be sufficient
to provide the optoelectronic synapse device with the “self-denoising”
capability even at a higher wavelength or lower energy photon excitation. In
addition, the same principle can be implemented to achieve dynamic
motion processing as previously reported47,48. As objects approach or leave
the synaptic array, the number of illuminated pixels keep increasing or
decreasing. Therefore, pixels recieving repetitive train of pulses achieve
higher conductance levels compared to the pixels receiving a single train of
optical pulses. By sensing these contrasts with additional circuitry, dynamic
motion processing can be emulated.

Figure 2a displays an optical image of the 7 × 7 array of the optoe-
lectronic synapse devices described above. The ID-VGS characteristics of
the 49 devices in the array in dark and under illumination with the four
light wavelengths of 300 nm, 450 nm, 1 µm and 2 µmare shown in Fig. 2b.
All devices show sufficient uniformity to establish the “self-denoising”
concept at the array level. The transfer characteristics are distinct for the 4
different wavelengths for all 49 devices, which shows the strength of the
array to distinguish between 300 nm, 450 nm, 1 μm and 2 μm light input.
This indicates the potential of the devices in color recognition and relevant
wavelength-selective artificial visual operations. For all these operations,
“self-denoising” capability is an important attribute whenever the input is
corrupted by noise or other interferences. Figure 2c represents the tight
distribution ofVth shifts,ΔVth upon illumination for the 49 optoelectronic
synapses in the array. For all wavelengths ΔVth remains within a standard
deviation of ~ 0.22 V, implying average device-to-device variability
of ~10%.

As mentioned earlier in the manuscript, long-term memory is one of
the key performance parameters of optoelectronic synapse array with “self-
denoising” capability. It is important that the memory of the devices does
not degrade during the pre-processing of an image before moving on to the
next process. To evaluate the long-termmemory performance of the array,
we train the 7 × 7 array tomemorize the pattern of “U”. Figure 2d shows the
capability of the array to memorize the letter “U” for the four different
incident light wavelengths of 300 nm, 450 nm, 1.0 µm and 2.0 µm. The
training is performed with 1024 light pulses of 5ms pulse width (effective
illumination time = 5.12 s) for each wavelength separately, at VGS = -2.5 V,
VDS = 1 V to induce LTP. The long exposure ensures that the pixels exposed
to the “U” pattern attain a sufficiently high conductance states to be capable
of “self-denoising”. Afterwithdrawing the light pulses, the conductancewas
measured for 1200 seconds by recording ID in dark.With the application of
each light pulse, the devices’ photoconductance increases. The photo-
conductance state is retained for at least 1200 s after the withdrawal of light.
Supplementary Fig. 3 shows the change in photocurrent for individual pixel
of the optoelectronic synapse arrayduring the applicationof pulses and after
withdrawal of light for 1200 s.Our results show that the arraymemorizes the
imageof the letter “U” at least up to 1200 s afterwithdrawing the light pulses.

Next, we demonstrate the “self-denoising” operation of the optoelec-
tronic synapse pixel array. The 7 × 7 array was first trained to memorize an
image “U” by applying 1024 optical pulses of 5ms pulse width to induce
LTP. Thememory status of the array after 100 s is shown in Supplementary
Fig. 4.While the array is under LTP, a noisy image of “U”was “scanned” on
the trained array with 256 optical pulses of 5ms pulse width (effective
illumination time = 1.28 s) and the change in conductance of the synapse
devices in the array was recorded. The scanning time was kept long enough
to emulate the worst-case scenario because these images are expected to be
“scanned” by any visual system for a short time span. We exposed the
optoelectronic synapse array to “U” patterns with Gaussian noise having
standard deviations σ = 0.2 and σ = 0.3. Thus, the pixels are subjected to
varying light intensities, some with intensity higher and some lower than in
the original “U” pattern. The first columnof Fig. 3 illustrates the noisy input
imagewith 300 nm, 450 nm, 1 μmand 2 μmwavelengths with two different
noise levels which is “scanned” on the array for observing “self-denoising”
effect. The intensity of the incident light normalized to the standard
intensity of 400 μWcm−2 (used in the training experiments) is expressed as
relative intensity in these figures. After the noisy image “scanning” was
completed and the light stimulus is removed, the conductance of eachdevice
in the array ismeasured after 0 s, 10 s, 30 s, and 60 s. First four rows of Fig. 3
(column 2–column 5) represents the contour heatmap plot for “self-
denoising” phenomena of the trained array for (a) 300 nm, (b) 450 nm, (c)
1 μm, and (d) 2 μmwavelengths of the optical stimulus in “U” pattern with
Gaussian noise level of σ = 0.2. The contour plot depicts the change in
normalized conductance (ID/IOFF) levels of the devices representing the
pixels. The array was able to accurately differentiate between noise and
target signals, suggesting its capability to detect complex signals from the
environment, and thus suppressing the effect of noise. For a noisy input at
300 nm, 450 nm, and 1.0 µmwavelengths, the array was able to denoise the
noisy input image immediately after scanning (t ~ 0 s). For 2.0 µm wave-
length, the noise pixels were processed with immediate influence-reduction
after scanning. However, those pixels were completely denoised within 10 s
of the scanning because of the lower conductance level obtained by the
devices with this low photon energy. The array shows a clear image of
the letter “U”, indicating that the noise signals were removed. Note that in
the noisy input pattern, there are twonoise pixels located at (5,4)th and (5,6)th

position in the array, whichwere subjected to the relative light intensity 0.65
and 0.50 respectively, indicating that those two pixels which received no
light input while training were subjected to 65% and 50% of the standard
(training) intensity of 400 μWcm−2. The array could denoise itself com-
pletely within 10 s for all of the wavelengths, even for those high intensity
noise inputs. In addition, the extended time up to 60 s illustrates that there
occurs no memory degradation in the “self-denoising” process, rather a
contrast enhancement effect occurs due to the “relearning” effect.
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Supplementary Figs. 5–8 illustrate the temporal variation of ID in all pixels at
the varying wavelengths.

The same experiment was conducted on the same array for another
noisy image of “U”with a higherGaussian noise level of σ = 0.3. Figure 3e–h
represents the 7 × 7 contour heatmap plot of the normalized conductance
levels of the array devices for the four wavelengths of 300 nm, 450 nm, 1 µm
and2 µm.The self-denoising effect occurs appreciablywithin 10 s.Note that
one of the noise pixels at (2,4)th position is subjected to a light intensity of
100% of that of the standard (training) intensity of 400 µW cm−2. The array
was able to accurately differentiate between noise and target signals and
denoised the noisy input image after scanning, eliminating every noise effect
within 10 s for all wavelengths. However, for 2 μm wavelengths two noise
pixels required 30 s to be removed completely. This is attributed to the low
conductance levels attained by the low photon energy of 2 μmwavelength.
These results show that even if the LTP conductance state is low, the
denoising process occurs successfully but takes longer time compared to

cases where the LTP states are higher. Thus, ourMoS2-based optoelectronic
synaptic array depicted successful “self-denoising” operation for every noise
intensity for a wide range of wavelengths. Supplementary Figs. 9–12 show
the temporal variation of ID for every pixel for the four different wave-
lengths. The satisfactory performance for 1 μm and 2 μm wavelengths is
particularly significant in this work because it indicates the potential of our
array for near- and mid-IR sensing operations at room temperature, which
are challenging due to low photon energy and responses being masked by
thermal noise levels.

In natural environments, various signals can interfere with the target
signal and cause distortion. These noise signals can be either single-colored
or multicolored and can impact the input. It becomes then imperative that
an in-sensor computing system be capable of considering undesired colors
as interference/noise and remove its effect. Analyzing the long-term
retention levels (conductance) of our array in the previous single-color “self-
denoising” section, we devise an algorithm to make our array capable of

Fig. 2 | 7 × 7 optoelectronic synapse array with excellent memory retention.
a Optical image of optoelectronic synapse array showing 49 devices. b Transfer
characteristics of all 49 devices in the array in dark and under light (λ = 300 nm,
450 nm, 1 μm and 2 μm) showing distinct threshold voltage shifts for each of the 4
wavelengths. c Threshold voltage shift, ΔVth distribution of the 49 devices.
dMemory retention of the arraywhen it is trainedwith “U” patternwith 1024 optical
pulses of 5 ms pulse width (effective illumination time = 5.12 s) for 300 nm, 450 nm,

1.0 µm, and 2.0 µm wavelength at 300 s, 600 s, 900 s, and 1200 s after withdrawing
the pulses. The array shows excellent memory retention capability. In the input side
the color represents the relative light intensity of the input sources and at the output
side the color indicates the normalized conductance level (ID /IOFF) of the synaptic
devices. ID, drain current of a device at a particular time; IOFF, average off current of
the devices in the array.
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Fig. 3 | “Self-denoising” capability of the synapse pixel array. a Noisy “U” with
Gaussian noise of σ = 0.2 (column 1) is “scanned” (allowing the input image to shine
the device or reading the image) by the trained 7 × 7 array with 256 optical pulses of
5 ms pulse width (effective illumination time = 1.28 s) at light wavelength of 300 nm.
Relative intensity is obtained by normalizing the intensity of light on each pixel to
400 μWcm−2, the intensity used for image memorization. Photoconductance
retained afterwithdrawal of noisy image immediately after scanning (column2), 10 s
after withdrawal (column 3), 30 s after withdrawal (column 4) and 60 s after with-
drawal (column 5). Panels b–d represent the same information for incident

wavelengths of 450 nm, 1 µm and 2 µm, respectively. Panels e–h show the input
noise pattern and photoconductance retention for “U” input with Gaussian noise of
σ = 0.3. For all wavelengths and both noise levels, the array is capable of denoising
itself within 10 s (maximum), even for the noise pixels having intensity comparable
to pattern intensity, e.g. (2,4)th pixel of noisy image with σ = 0.3 e–h has 100% of the
pattern intensity, still the array can appreciably eliminate the noise within 10 s for all
wavelengths. Conductance values up to 60 s depict no memory degradation during
this “self-denoising” process.
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being immune to multicolor interferences, where the array will be able to
keep its training information intact if multi-color information intends to
corrupt it. Thememorization is performedbyexposing the array to apattern
at light wavelength of 450 nm, since the LTP states are higher than at other
wavelengths with the same intensity and exposure time. This is because
bilayerMoS2, which is serving as theUV and visible photosensitivematerial
of the pixel design, has maximum optical absorption near 450 nm
wavelength45. Now, when amulticolor pattern is “scanned” by the array, the
presence of other wavelengths in the pattern do not have an overall impact
on thememorizedpatternbecause theLTP levelswithotherwavelengths are
much lower than with 450 nm. The 7 × 7 optoelectronic synapse array was
first trained to memorize an image “U” by applying 1024 optical pulses of
450 nm wavelength and 5ms pulse width. Then a mixed color input image
of “U” was scanned over this array with 256 optical pulses of 5ms pulse
width. This experiment was performed for three different mixed color
combinations of 450 nm/2.0 µm (column 1 of Fig. 4a), 450 nm/1.0 µm
(column 1 of Fig. 4b), and 300 nm/450 nm (column 1 of Fig. 4c) wave-
lengths. The 7 × 7 contourheatmapplots in the column2 to column4of Fig.
4a–c depicts the changes in normalized conductance of the devices at 0 s
(immediately after “scanning”), 10 s, 30 s, and 60 s after withdrawing the
scanning pulses. Our array can completely remove this mixed-color inter-
ference just after scanning the image (0 s) retaining its original pattern of
450 nm. Next, we tried a more intense multi-color corruption of an image.
Column 1 of Fig. 4d shows the noisy image having computer generated
randomly positioned color pixels (among 300 nm, 450 nm, 1 μmand 2 μm)
corrupting the original “U” pattern, which was used as a multi-color noisy

input. All pixels are exposed to the same light intensities (relative inten-
sity = 1). Figure 4d (column 2–column 5) represents the respective heatmap
plot of the pixel conductance variation as a function of time after the light
withdrawal. Again, despite having all noise pixels at 100% intensity levels, as
well as pattern pixels being corrupted by 100% intense multi-color coun-
terparts, the array was able to accurately differentiate between noise and
target signals and denoised the noisy input image after scanning. The noise
pixelswere processed and reduced immediately after scanning and thenoise
pixels were completely denoised within 10 s of scanning. Supplementary
Figs. 13–16 show the temporal ID variations of the pixel for all four multi-
color interference scenarios. Therefore, the artificial visual array successfully
demonstrated the ability to preprocess single colored and multicolored
noisy images by removing noise signals to avoid redundant raw data. It was
able to produce a clear image of the letter “U”, indicating the effectiveness of
the “self-denoising” functionality for both single colored and multicolored
noisy inputs. Hence, like the human visual system, the array simulated the
process of sensing and processing target optical information by itself
without any external aid.

Discussion
In summary, we illustrate the innate ability of optoelectronic synapses to
perform “self-denoising” at the pixel level. This is possible because of the
ability of these devices toundergo short termpotentiationwhen subjected to
infrequent inputs and long-term potentiation when subjected to frequent
stimuli. When the synapse array is responsive to a broad range of light
wavelengths, the pixels can denoise themselves against multi-color

Fig. 4 | “Self-denoising” with mixed-color input.Heatmap plot of the normalized
conductance levels of the array, as the trained array is “scanned” (allowing the input
image to shine the device or reading the image) with an “U” input corrupted by
multi-color interference with 256 pulses having pulse width 5 ms (effective illumi-
nation time = 1.28 s), a–c only the pattern is corrupted by single-color interference
d the whole pattern is corrupted by random colored pixels with equal optical
intensity (light intensity = 400 μWcm−2). The conductance states of the array is

shown immediately (column2), at 10 s (column3), 30 s (column4) and 60 s (column
5) after the scanning pulse removal. For all cases, the array was trained with “U”
pattern at 450 nm wavelength light, allowing the conductance levels of the pixel
devices to reach high enough to be capable of “self-denoising”. For a–c the multi-
color interference is removed immediately after scanning, while for d the array
denoised itself completely in ~10 s.
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interferences as well. However, the strategy is applicable to supervised
learning alone. Further algorithms need to be developed to establish noise-
robustness for unsupervised learning. In addition, more investigation needs
to be done to enhance the operational speed of the device. First, the CVD
growth ofMoS2 can further be optimized to grow larger grain size. Also, the
interface between MoS2 and gate dielectric oxide can be further studied to
improve the interface to increase carrier lifetime.However, both approaches
might negatively impact the memory retention of the optoelectronic
synapse device. To circumvent that, a different device design approach for
memory retention can be implemented.Moreover, contact engineering can
also improve the operational speed of the device. The devices could be
designedwith a shorter channel length and larger channel width to improve
theON current, and thereby improve the operational speed of the synapses.

Methods
Materials and device fabrication
The fabrication process flow of theMoS2 field effect transistor-basedmulti-
wavelength optoelectronic synapse is illustrated in Supplementary Fig. 17.
After patterning with photolithography, on a Si substrate, Pt was deposited
by e-beam evaporation at a thickness of 6.0 nm followed by lift off.Within a
thermal furnace (BlueMMini-Mite, Lindberg), thePt deposited Si substrate
was placed at the middle of the quartz tube, and the tellurium (Te) powder
with a purity of 99.8%, particle size of 200 mesh (CAS No. 13494-80-9),
whichwas obtained fromSigma-Aldrich Inc., was put into an alumina boat.
This boat was positioned upstream of the furnace. The substrate with Pt
deposited on it, along with the Te powder in an alumina boat, was placed
inside aquartz tube.The tubewas thenpumped to a lowpressureof less than
30 millitorr and purged with argon (Ar) gas to eliminate any oxygen and
organic materials. Next, the furnace was gradually heated to reach the
growth temperature of 400 °Cover a period of 50min. The temperaturewas
held constant at 400 °C for another 50min before allowing the furnace to
cool down naturally to the ambient temperature. Throughout the tell-
urization process of Pt, the flow of argon (Ar) gas was kept at approximately
200 standard cubic centimeters per minute (sccm), while maintaining a
pressure of approximately 110mTorr. After patterning with photo-
lithography, 200 nmof SiO2 is deposited by e-beamevaporation followedby
liftoff to electrically separate the PtTe2 contact from the bottom Si substrate.
Following photolithography patterning, e-beam evaporation was used to
deposit 10 nm of Ti and 230 nm of Au as a contact for PtTe2 followed by
liftoff. To form the gate dielectric, a layer of 20 nanometers of aluminum
oxide (Al2O3) was deposited using atomic layer deposition (ALD) techni-
que. The source and drain contacts were created by patterning with pho-
tolithography and deposition of Ni/Au using e-beam evaporation with a
thickness of 60 nanometers for nickel and 40 nanometers for gold, onto the
Al2O3 gate dielectric followedby liftoff.UsingMoS2powder as aprecursor, a
high-quality and large-area bilayer ofMoS2was grownusing chemical vapor
deposition (CVD) in anMTI furnace on a separate Si/SiO2 substrate with a
size of 2.0 × 2.0 cm2.

Supplementary Fig. 18a illustrates the process of growing bilayerMoS2
using chemical vapordeposition (CVD).TheMoS2powderprecursorwitha
molecular weight of 160.07 was bought from Sigma Aldrich. High quality
and large area of bilayerMoS2was grownonaSi/SiO2 substratewith a size of
2.0 × 2.0 cm2. The precursor, which was MoS2 powder, was positioned
upstream at the center of the heating zone and the substrate was positioned
downstream at 5.0 cm from the precursor. The tube was pumped down to a
pressure of less than 15millitorr and then purged with argon gas to remove
any organicmaterials or oxygen. Ar was used as the carrier gas supplied at a
constant rate tomaintainpressureof 1.75 Torr.TheMoS2precursorpowder
temperature was ramped up to 950 °C at a rate of 10 °C per minute for
95minutes. The temperature was held constant at 950 °C for another
30minutes before allowing the furnace to cool down naturally to the
ambient temperature. The substrate was kept at 800 °C during the MoS2
growth process and the whole 2 × 2 cm2 substrate was completely covered
with bilayer of MoS2. Supplementary Fig. 18b shows the comparison
between the growth parameters for bilayer and monolayer of MoS2.

Supplementary Fig. 18c represents the optical microscope image of CVD
grown (i) bilayer, and (ii) monolayer MoS2.

Two batches of phototransistor devices were fabricated using CVD
grown bilayer and monolayer MoS2 films to compare optoelectronic
synapse device performance. After comparing the electrical characteristics
of devices with CVD grown monolayer and bilayer MoS2 as described in
supporting information Supplementary Fig. 19, the bilayer MoS2 film was
transferred onto the source drain contact patterned substrate for 7 × 7 array
of optoelectronic synapse devices. The bilayer MoS2 was transferred by wet
transfer method as explained in Supplementary Fig. 20.

CVD grown bilayer MoS2 was coated with a thin layer of poly
methylmethacrylate (PMMA), followed by drying at room temperature
for 12 hours. The PMMA coated sample was then immersed in DI water
at an angle of 450. Capillary action draws DI water into the substrate/
MoS2 interface, separating the MoS2 film with the PMMA from the
substrate. TheMoS2 filmwith PMMAwas then transferred on the target
drain/source contact patterned p-Si/PtTe2/Al2O3 substrate and dried
for 15 min. The sample was heated on a hot plate at 150 °C for 5 min and
the PMMA layer was removed by immersing the sample in acetone for
3 h. The transferredMoS2 film was then patterned by photolithography
and etched in Reactive Ion Etching (RIE) to form the MoS2 conduction
channel.

Device characterization
The Horiba LabRAM HR Evolution Nano Spectrometer was used to
performRamanmapping and photoluminescence spectroscopy with an
excitation wavelength of 532 nm. The electrical properties were char-
acterized using a Micromanipulator probe station at room temperature
in the air, using a Keysight B1500A Semiconductor Device Analyzer.
The light source for the experiments was a Newport Quartz Tungsten
Halogen lamp, which was split into specific wavelengths using a New-
port CS130B-3-MC monochromator. The intensity of light was mea-
sured with a THORLABS S401C thermal power sensor, and a Newport
75150 Apex Optical Chopper System was utilized to achieve the desired
frequency of light pulses.

Data availability
All data generated and analyzed during this study are either included in the
published article itself (or available within the Supplementary Informa-
tion files).
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