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Probing miniband structure and Hofstadter butterfly in gated
graphene superlattices via magnetotransport
Alina Mreńca-Kolasińska 1,2✉, Szu-Chao Chen 2,3✉ and Ming-Hao Liu 2✉

The presence of periodic modulation in graphene leads to a reconstruction of the band structure and formation of minibands. In an
external uniform magnetic field, a fractal energy spectrum called Hofstadter butterfly is formed. Particularly interesting in this
regard are superlattices with tunable modulation strength, such as electrostatically induced ones in graphene. We perform
quantum transport modeling in gate-induced square two-dimensional superlattice in graphene and investigate the relation to the
details of the band structure. At low magnetic field the dynamics of carriers reflects the semi-classical orbits which depend on the
mini band structure. We theoretically model transverse magnetic focusing, a ballistic transport technique by means of which we
investigate the minibands, their extent and carrier type. We find a good agreement between the focusing spectra and the mini
band structures obtained from the continuum model, proving usefulness of this technique. At high magnetic field the calculated
four-probe resistance fit the Hofstadter butterfly spectrum obtained for our superlattice. Our quantum transport modeling provides
an insight into the mini band structures, and can be applied to other superlattice geometries.
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INTRODUCTION
Graphene, a 2D material characterized by a linear low-energy
dispersion relation, hosts charge carriers named Dirac fermions
due to the resemblance of relativistic (massless) particles
described by the Dirac equation. Modifying the underlying
graphene lattice by a smooth periodic potential can affect the
band structure through folding of the pristine graphene Dirac
cone into mini bands1, formation of the secondary Dirac points,
and anisotropic renormalization of velocity2–6. Periodic modula-
tion has been obtained in graphene through chemical functiona-
lization7, placing graphene on self-assembled nanostructures8,
and by stacking graphene together with aligned or slightly
misoriented hexagonal boron nitride (hBN), resulting in periodic
moiré modulation which generates hexagonal superlattices
(SLs)9–15. Moiré SLs were also created in low-angle twisted
graphene bilayers, followed by van der Waals structures made
up of few layers of graphene16–21 and other 2D materials22,23. SLs
are suitable for the observation of the self-similar energy spectrum
called Hofstadter butterfly13,14 and Brown-Zak oscillations24,25 that
occur when the magnetic flux through the superlattice unit cell is
of the order of the magnetic flux quantum, ϕ0= h/e, and in
pristine 2D crystals require unattainable magnetic fields. Also
worth mentioning are the many-body phenomena present in
moiré SLs26,27.
Despite their potential, artificial lattices tailored by chemical

methods or moiré SLs suffer from inability to tune the strength of
the periodic potential. In moiré SLs the period can be tuned to
some extent via the rotation angle between the stacked layers,
but they are inherent of a hexagonal symmetry. Precise control
over the SL geometry, period, and strength is vital for the band
structure engineering. The above limitations can be circumvented
in electrostatic gate-induced SLs that allow an arbitrary design via
the gates geometry, with the gate voltage being a knob for the
potential strength. The experimental attempts to create gated SLs

in graphene included 1D arrays of metal gates28–30, followed by
patterned dielectric substrates31,32, and few-layer graphene
patterned bottom gates for 1D33,34 and 2D SLs35,36 with down
to sub-20 nm periods34 manifesting the flexibility of this approach.
With the recent advance in the fabrication techniques, gated SLs
with the period of a few tens of nanometers are achievable with
good device quality and long electron mean free path32. This
enabled observation of commensurability oscillations32,33,36,
Hofstadter butterfly34,35 and Brown-Zak oscillations36 at magnetic
fields of the order of a few tesla. This is more affordable compared
to about 25 T required for graphene/hBN SL, where, due to small
lattice constant mismatch of 1.8%, the SL period can reach up to
14 nm for aligned lattices.
While transport in quantizing magnetic field in gated SLs has

been thoroughly studied, the intermediate magnetic field regime
remained mostly unexplored. In the semiclassical treatment, at
low magnetic field fermions undergo cyclotron motion that can
be probed in transport measurements via transverse magnetic
focusing (TMF). This technique has been used to experimentally
probe the band structure in pristine mono-, bi-, and tri-layer
graphene37, graphene/WSe2 heterostructures38, and moiré super-
lattices39,40, and theoretically considered in graphene pn junc-
tions41,42 and 1D gated SLs6.
In this work, we perform a theoretical study of the TMF in 2D

gate-induced square SLs, and analyze the relation between the
observed TMF spectra and the miniband structure. This is
complemented by the investigation of magnetotransport in the
quantum Hall regime, where we observe signatures of Hofstadter
butterfly, matching the numerical Hofstadter spectrum calculated
for our gated SL. Our study is performed using quantum transport
calculations for multiterminal structures, considering realistic
experimental conditions. To model a realistic geometry, we
consider SL induced by a patterned dielectric substrate31,32 with
a uniform global backgate underneath the dielectric layer, and the
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graphene sheet sandwiched between two hBN layers lying on top
(Fig. 1a). The hBN/graphene/hBN sandwich is covered by a global
top gate. The voltage applied to the back gate Vbg controls the
strength of the periodic modulation, while the top gate voltage
Vtg is used to tune the carrier density across the SL. We follow the
design of Ref. 31, with a square lattice etched in SiO2 substrate,
with a lattice period λ= 35 nm (Fig. 1b). For the ease of the
calculation, we use a model function Cbg(x, y) (see Fig. 1b) that
approximates the electrostatically simulated capacitance,
obtained previously by some of us43. Previous studies35,44 and
modeling of previous experiment on magnetic focusing in
monolayer graphene37 show good agreement between experi-
ment and simulation for graphene superlattice devices (see
Methods), and the present purely theoretical work can be
regarded as a guide for further experimental magneto-transport
studies.

RESULTS
No external magnetic field
We first simulate the four-point longitudinal resistance Rxx. We
consider a four terminal device shown in the right inset of Fig. 1c,
where the system length L= 1152 nm, widthW= 385 nm, and the
top lead width w= 245 nm. With the four leads labeled in the
right inset of Fig. 1c, we calculate Rxx= R14,23 (for details see
“Methods”) and show its dependence on the top and back gate
voltages in the main panel of Fig. 1c. As can be seen from the
map, the strength of the backgate mostly influences the super-
lattice modulation.
Figure 1d presents the linecuts of Rxx marked in Fig. 1c with the

respective colors. Whereas at Vbg ≈ 0 only a single Dirac peak is
visible, for increasing ∣Vbg∣ second and higher order satellite Dirac
peaks start to appear, as the periodic modulation gets stronger. At

Vbg= ± 40 V (linecuts in Fig. 1d), a few higher-order Dirac points
are resolved. On the other hand, changing the top gate voltage
mostly tunes the carrier density in the device. The left inset of
Fig. 1c shows a close-up of the boxed region with 30 V ≤ Vbg ≤ 45
V and− 3.5 V ≤ Vtg ≤− 1.6 V, where two sharp lines are visible at
both sides of the main Dirac peak, corresponding to the secondary
Dirac points, and several fainter lines, corresponding to higher
order Dirac points. Similar results based on the same capacitance
model function have been reported in43, where two-terminal
transport simulations were performed. The character of the bands
can be verified in magnetotransport, as shown in the following
subsections.

Low magnetic field
For a general band dispersion ϵ(k), the semiclassical equations of
motion for an electron are given by45

_r ¼ 1
_
∇kϵðkÞ; (1)

_ _k ¼ �eðEþ _r ´BÞ; (2)

where− e is the electron charge, E is the external electric field,
and B the magnetic field. In the presence of constant out-of-plane
magnetic field B= (0, 0, B) only, one can obtain the relation
between the shape of the Fermi contour in the momentum space
Δk(t) and the carrier trajectory in real space Δr(t) 45

ΔrðtÞ ¼ _

eB
ΔkðtÞ ´ ẑ; (3)

meaning that the cyclotron orbit is obtained by rotating the orbit
in the momentum space by 90° clockwise, as illustrated in
Fig. 2b, c. Carriers encircle closed orbits of electron type or hole
type in the counterclockwise or clockwise direction, respectively,

Fig. 1 Zero magnetic field characterization of the superlattice. a Sketch of the gated superlattice system. The backgate (dark gray) lays
below the patterned substrate (light gray), which induces modulated potential in graphene sandwiched between two hBN layers (blue). The
global top gate is shown in yellow. b The backgate capacitance profile with the periodicity λ= 35 nm in the units of 1012cm−2V−1.
c Longitudinal resistance Rxx as a function of the backgate and top gate voltages in a four-terminal device shown in the right inset. Left inset:
zoom of Rxx in the boxed region. d Rxx line cuts as marked with the respective line colors in (c).

A. Mreńca-Kolasińska et al.

2

npj 2D Materials and Applications (2023)    64 Published in partnership with FCT NOVA with the support of E-MRS

1
2
3
4
5
6
7
8
9
0
()
:,;



as determined via the group velocity, v=∇kϵ(k)/ℏ, and the
equation _ _k ¼ �eBv ´ ẑ. In pristine graphene at low energy,
cyclotron orbits exhibit a circular shape (Fig. 2b), but the bands
formed in systems with SL modulation can be highly distorted
from the original, conical shape, and thus, noncircular Fermi
contours can be observed (e.g. Fig. 2c).
In a typical device designed for transverse magnetic focusing

measurement, an emitter and collector [in Fig. 2a marked as 1 and
2, respectively] are located on the same edge at a center to center
distance ℓ= d+w, and other contacts act as absorbers. The
current injected from an emitter flows along cyclotron orbits with
a radius Rc depending on the magnetic field strength, and at the
boundary propagates along skipping orbits. The current can end
up in the collector, when the diameter or its multiples match ℓ
(Fig. 2b), or otherwise in absorber contacts. In the nonlocal
resistance measurement (Fig. 2a), this results in maximum or
minimum, respectively, of the resistance Rf= R14,23 (see Methods).
For electron-like (hole-like) orbits, the resistance maximum
condition can be obtained for positive (negative) B.
In pristine graphene, a typical TMF spectrum as a function of

magnetic field and voltage contains two fans of focusing peaks,
one for the electron band and the other for the hole band37. In a
superlattice, the emerging replicas of the Dirac cone cause a
substantial modification of the TMF signal. In the following
discussion, we choose Vbg= 40 V, such that a few higher-order
Dirac peaks are present next to the main Dirac point as seen in
Fig. 1c.
For transverse magnetic focusing, we choose the system

geometry shown in Fig. 2a, with the distance between the
bottom leads d= 1200 nm, their widths w= 100 nm, the side
leads width W= 1636 nm, and the top lead width L= 1792 nm.
Figure 3a shows the Rf map as a function of B and Vtg. One can

see several series of fans, with the focusing peaks appearing at
B > 0 or B < 0. The map is put together with the Rxx calculated at
B= 0, shown in Fig. 3b, where the main and secondary Dirac
peaks are seen. The sign change of the focusing peaks in Fig. 3a
occurs either at the Dirac points, or van Hove singularities, and for
the former, it coincides with the Rxx peaks. This confirms the sign
change of the carriers when tuning Vtg, occurring as an effect of
the band reconstruction due to the superlattice potential. To
understand the result in detail, in Fig. 3c–f we plot the miniband
structures calculated at B= 0, as described in Ref. 43, and the Fermi
contours at E= 0, at selected values of Vtg marked by arrows in
Fig. 3a. Additionally, in Fig. 3g–k we show zoomed regions of the
Rf map marked with the colored rectangles in Fig. 3a.
In Fig. 3c, at Vtg=− 2.75 V, the Fermi level is located at the C1

subband, and the Fermi contour has a rounded shape
(Figs. 2b, 3c). In the semiclassical description, electrons injected
from lead 1 (Fig. 2a) with an initial velocity v= (0, v) and k= (0, k),
in a moderate magnetic field travel along a rounded trajectory,

and after half a period, t= T/2 encircle half of the closed orbit.
From Eq. (3), this corresponds to traveling a distance equal to the
diameter, 2Rc= 2ℏk/eB along the x direction (Fig. 2b). For ℓ= 2Rc,
it leads to the first maximum of Rf. For smaller Rc, the beam is
reflected at the edge, and can flow to the collector when
ℓ= 4Rc, 6Rc,… , giving rise to higher order Rf peaks. In general, we
can evaluate the field at which the jth maximum occurs as
Bj= 2ℏjk/eℓ, j= 1, 2,… . We find k(Vtg) numerically and plot Bj with
dashed lines in Fig. 3(g). The C1 subband cone is within− 2.9V≲
Vtg≲− 2.5 V. We find a very good agreement with the Rf signal
for up to j ≈ 7. Higher j are not resolved as the system enters the
quantum Hall regime, and semiclassical description of the
skipping orbits at the edge no longer applies. At− 3.1V≲ Vtg≲−
2.9 V, for the V1 subband, Rf is noisy due to scattering of low-
energy carriers by the periodic potential.
When the Fermi level is tuned to the van Hove singularity

(at Vtg ≈− 2.5 for the electron subband, and Vtg ≈− 3.1 for the
hole subband), the focusing signal vanishes, and smaller fans
reappear. Based on the miniband structures (Fig. 3d), we interpret
them as due to focusing of the secondary Dirac cones fermions.
For example, at Vtg=− 3.12 V (Fig. 3d) at E= 0 there are tiny Dirac
cones around the M and X points of the Brillouin zone.
For Vtg≲− 3.2 V and Vtg≳− 2.4 V, the miniband structures

around the Fermi level get more complex, with many overlapping
subbands. Nevertheless, we find ranges of Vtg where a single
isolated higher-order Dirac cone is present, giving clear focusing
signal [see Fig. 3e for the V2 subband, the corresponding Rf zoom
in Fig. 3h, and the zoom in Fig. 3i for the C2 subband]. When there
are more overlapping subbands, the signal gets very faint.
Nevertheless, one can spot fans that fit well to the hole-like orbit
within the V4 subband around the M point, see Fig. 3f at
Vtg=− 3.85 V, and zoomed Rf in Fig. 3j. A similar feature is
resolved in Fig. 3k for the electron-like orbits.
To further illustrate the relation of the real-space orbits to the

subbands, we calculate the current density maps at selected
focusing peaks. Figure 4a–c shows the line cuts of Rf at Vtg and B
marked by the respective colors in Fig. 3g, h, j. In Fig. 4a for the C1
subband, the first two focusing peaks are marked by ∘ and ⊲. The
respective current density maps are presented in Fig. 4d, e,
revealing typical current densities found for TMF calculations in
pristine graphene46,47. In Fig. 4b the line cut for the V2 subband is
shown. For the focusing peaks marked with ◇ and ▿, the current
density maps are shown in Fig. 4f, g. The trajectories acquire a
shape close to a rectangle, consistent with the Fermi contour
(Fig. 3e). For the line cut in the hole-like V4 subband (purple)
(Fig. 4c), the current densities of the first two peaks are shown in
Fig. 4h, i. The orbits acquire a rhombus shape, matching well the
Fermi contour in the corner of the Brillouin zone (Figs. 2c, 3f). The
red dashed lines show semiclassical trajectories calculated using
the Fermi contours obtained from our band structures and
Equation 3 with the contour starting at k for which vx∝ ∂E/∂kx= 0.
These semiclassical orbits show similarity with the current density,
but the current density is obtained from quantum calculation so
they are expected to be similar but not strictly identical, in
particular, counter-intuitive patterns may occur at certain resonant
conditions (e.g. a vertical blob on top of the rhombus-like pattern
in Fig. 4h). Note that in Fig. 4f–g the current density is non-zero in
the area between the vertical segments, as it contains contribu-
tions from multiple initial kx for which vx is low. The noisy
background visible in Fig. 4a–c originates from scattering and
resonant states due to SL which are irregular and complex due to
the wave-like nature of the carriers.
Although the focusing spectrum is not symmetric with respect

to the main Dirac point, it is qualitatively similar in minibands
above and below the main Dirac point, except for the noisy signal
for low-energy valence subbands. Let us note that the modulation
induced by electrostatic gates is a complex function of Vbg and Vtg,
and the band structure is significantly modified merely by

Fig. 2 The TMF schematics. a Sketch of the geometry considered
for magnetic focusing. Fermi contours in the reciprocal space for a
circular (b) and noncircular (c) orbit, and the corresponding focused
trajectories in real space.
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changing Vtg (Fig. 3c–f). This is in contrast to the SLs induced via
low-angle twisted hBN substrate or twisted graphene layers, where
the top gate only sweeps the carrier density without affecting the
periodic modulation, and the band structure remains unchanged.
This leads to the shape of the fans in Rf closer to straight lines,
unlike Refs. 39,40 that observed ones close to parabolic.

High magnetic field. Now, we turn our attention to the high-field
regime, where we expect the Hofstadter spectrum to emerge
when the magnetic flux per SL unit cell of area A, ϕ= AB, is of the
order of the flux quantum ϕ0= h/e. To simulate longitudinal
resistance Rxx and Hall resistance Rxy at the same time, while
keeping calculations for the four-point resistances minimized, we
consider a 5-terminal Hall bar sketched in Fig. 5a with the actually
considered geometric dimensions shown. We compute all the
5 × 4= 20 transmission functions between all pairs among the five
leads, and process the data to obtain longitudinal resistance
Rxx= R14,23 and Hall resistance Rxy= R14,52 following the Büttiker
formalism48,49, according to the lead labels shown in Fig. 5a. For all
the following discussions, we convert our Vtg axis to the
numerically obtained average carrier density n over the entire
lattice, in order for a more transparent presentation of our high-
field transport simulations.
Figure 5 b, c show the Hall conductance GH ¼ R�1

xy as a function
of n and magnetic field B, with the back gate voltage fixed at
Vbg= 0 and Vbg= 40 V, respectively. To better highlight the
Landau fans arising from the quantum Hall effect of graphene, we

limit the color range to− 40 ≤ GH/G0 ≤+ 40 in Fig. 5b, where
G0= e2/h is the conductance quantum. The same limit of the color
range is applied to Fig. 5c in order for a direct comparison. Line
cuts at B= 2 T marked by the black line on Fig. 5b and orange line
on Fig. 5c are shown and compared in Fig. 5d. The lowest few
quantum Hall conductance plateaus GH= ± 2G0, ± 6G0,
± 10G0,⋯ can be clearly seen in the Vbg= 0 case free of
superlattice potential (black line), while the combined strong
magnetic field (B= 2 T) and strong superlattice modulation
(Vbg= 40 V) result in a more complex transport feature, in
accordance with the predictions50,51 for a periodic 2D modulation,
which can be better understood by checking Rxx, instead of Rxy (or
GH), to be discussed soon below.
Without taking the inverse of Rxy, Fig. 5e shows the Hall

resistance at B= 0.2T with Vbg= 0 [red, corresponding to the n
range marked on Fig. 5b] and Vbg= 40 V [cyan, corresponding to
the n range marked on Fig. 5c]. The former (without superlattice)
shows a single sign change at n ¼ 0, typical for graphene, while
the latter (with superlattice) shows multiple sign changes at
positive and negative n, in addition to the main Dirac point at
n ¼ 0, consistent with our previous low-field magnetotransport
simulations discussed above. Considering the same range of n and
B as Fig. 5b and c, Fig. 5f shows the longitudinal resistance Rxx with
the back gate voltage fixed at Vbg= 40 V. Since the period of our
gate-controlled superlattice is λ= 35 nm, and hence the square SL
unit cell area A= λ2= 1225 nm2, the condition ϕ/ϕ0= AB/(h/e)= 1
is reached at B ≈ 3.376 T≡ B1, which is in sharp contrast with the

Fig. 3 Magnetic focusing in the superlattice. a Nonlocal resistance Rf as a function of magnetic field and top gate voltage at Vbg= 40 V. b Rxx
calculated for the same system at B= 0. c–f Top row: the miniband structures calculated at Vtg marked by the arrows in (a). In (f) C1, C2, and
V1-V4 label selected minibands. Bottom row: the corresponding Fermi contours at E= 0. g–k The zoomed map in (a) at the rectangles marked
with the corresponding colors. The dashed lines mark the focusing condition ℓ/2n= ℏk/eB, n= 1, 2,… .
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graphene/hBN moiré superlattice that requires B ≈ 24 T in order to
reach ϕ/ϕ0= 1, because of its periodicity limited to λ≲ 14 nm and
hence the area A ¼ ffiffiffi

3
p

λ2=2t170nm2. As is visible on Fig. 5f, the
seemingly complicated Rxx map does exhibit certain features at B1
and B1/2, and vaguely at B1/3 (marked by black triangles),
corresponding to ϕ/ϕ0= 1, 1/2, 1/3, respectively, consistent with
our calculation of the magnetic energy subbands shown in Fig. 5g,
where the vertical axis of ϕ/ϕ0 corresponds to exactly the same B
range as Fig. 5f, as well as the average density range. Good
consistency between the Rxx map of Fig. 5f and the Hofstadter
butterfly shown in Fig. 5g can be seen. For methods adopted to
calculate Fig. 5g, see “Methods”.

DISCUSSION
In summary, we theoretically investigated transport in gated
superlattices based on monolayer graphene. Our zero and low
magnetic field transport calculations remain in a good agreement
with the continuum model band structure calculated in presence
of periodic modulation. We explored the potential of TMF for
probing the intricate band structure of graphene with periodic

modulation. It offers possibilities to study a plethora of
phenomena in superlattices, and opens the door for studies of
strongly correlated systems in twisted bilayer graphene52 or in
bilayer graphene superlattices53. By exploring the reconstructed
band structure via magnetotransport calculations it is possible to
engineer devices relying on directed electron flow due to the
distortion of Fermi contour, as well as for other applications based
on mini band electron optics. We also obtained high-magnetic-
field response consistent with the Hofstadter spectrum calculated
for a gated superlattice as a function of the gate voltage. Our
modeling can be generalized to other superlattice geometries,
and is promising for the investigations of future band structure
engineered devices working in a broad range of magnetic fields.

METHODS
Gated superlattice model
To model a realistic geometry, we consider SL induced by a
patterned dielectric substrate31,32 with a uniform global backgate
underneath the dielectric layer, and the graphene sheet

Fig. 4 Non-circular motion of Dirac fermions. Line cuts at Vtg and B ranges as marked in Fig. 3g, h, j by the respective colors at (a)
Vtg=− 2.75 V, (b) Vtg=− 3.3 V, and (c) Vtg=− 3.85 V. d–i are the current density maps in arbitrary units at B marked in (a–c) by the respective
symbols. The red dashed lines show the expected semi-classical trajectory.

Fig. 5 High-field transport. a The 5-terminal system used for the calculation. b, c are GH ¼ R�1
xy as a function of average carrier density n and

magnetic field B with Vbg fixed at 0 and 40 V, respectively, where horizontal lines at B= 2 T and B= 0.2 T mark the line cuts shown in (d) for GH
and (e) for Rxy. f Longitudinal resistance Rxx as a function of n and B. g Calculated Hofstadter spectrum corresponding to (c) and (f).
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sandwiched between two hBN layers lying on top [Fig. 1a of the
main text]. The hBN/graphene/hBN sandwich is covered by a
global top gate. The voltage applied to the back gate Vbg controls
the strength of the periodic modulation, while the top gate
voltage Vtg is used to tune the carrier density across the SL. We
follow the design of Ref. 31, with a square lattice etched in SiO2

substrate, with a lattice period λ= 35 nm. We use a model
function Cbg(x, y)

Cdðx; yÞ ¼ Cout � ðCout � CinÞ tanh exp � x2 þ y2

d2smooth

 !" #
; (4)

Cbgðx; yÞ ¼ Cd x � λ

2

� �
%λ� λ

2
; y � λ

2

� �
%λ� λ

2

� �
; (5)

where dsmooth= 7.5 nm is the smoothness of the modulation, Cout/
e= 0.77 × 1011 cm−2V−1 and Cin/e= 0.22 × 1011 cm−2V−1, and a%
b means the remainder after dividing a by b. The top gate
capacitance is assumed to be Ctg/e= 1 × 1012 cm−2V−1. Using the
parallel capacitor model, this roughly corresponds to the top hBN
thickness dt ≈ 16.6 nm, from Ctg/e= ε0εhBN/edt, where ε0 is the
vacuum permittivity, εhBN= 3 is the dielectric constant of hBN,
and− e is the electron charge. Figure 1b of the main text shows
the profile of the above model function (5).
For the dual-gated graphene sample free from intrinsic doping,

the carrier density is given by

nðx; yÞ ¼ Cbgðx; yÞ
e

Vbg þ Ctg

e
V tg: (6)

Assuming that the carrier energy in graphene is given by
E= ± ℏvFk, where ℏ is the reduced Planck constant, vF ≈ 106 m/s
is the Fermi velocity of graphene, and using _vF � 3

ffiffiffi
3

p
=8 eV nm,

the onsite potential energy can be obtained from

U ¼ �sgnðnÞ_vF
ffiffiffiffiffiffiffiffi
πjnj

p
; (7)

in order to set the global Fermi energy at E= 0 where transport
occurs.

Transport calculation
For transport calculation, we use the tight-binding Hamiltonian

H ¼ �
X
i;jh i

tijc
y
i cj þ

X
j

UðrjÞcyj cj; (8)

where ci (c
y
i ) is an annihilation (creation) operator of an electron on

site i located at ri= (xi, yi). The first sum contains the nearest-
neighbor hoppings with the hopping parameter tij, and the
second sum describes the onsite potential energy profile. In the
presence of an external magnetic field B= (0, 0, B), the hopping
integral is modified by tij ! tij expðiϕÞ, where the Peierls phase
ϕ ¼ ð�e=_Þ R rjri A � dr, with A being the vector potential that
satisfies∇ × A= B, and the integral going from the site at ri to the
site at rj. For a feasible simulation of realistic devices, we use the
scalable tight-binding model54, where the hopping parameter
becomes tij= t0/sf, and the lattice spacing a= a0sf, sf is the scaling
factor, and we use t0=− 3 eV and a0 ¼ 1=4

ffiffiffi
3

p
nm. Transport

calculations based on Hamiltonian (8) are done within the wave-
function matching for the TMF, and real-space Green’s function
method in other cases, at the global Fermi energy E= 0 and zero
temperature. The conductance from lead i to lead j is obtained
from the Landauer formula Gji= 2(e2/h)Tji, where the transmission
probability Tji is evaluated as a sum over the propagating modes
Tji ¼

P
q
Tq
ji , and

Tq
ji ¼

X
p

jtpqij j: (9)

Here, tpqij is the probability amplitude for the transfer from the
incoming mode p in lead i to the outgoing mode q in lead j.
In the multiterminal devices, we solve the transport problem for

each lead as an input, and build the conductance matrix G48,49

which relates the current Ii fed to the system in lead i to the
voltage at j-th lead Vj through Ii ¼

PN
j¼1 GijV j . For an N-terminal

system, the matrix elements are

Gij ¼ �Gij; i ≠ j; (10)

Gii ¼
XN
j¼1;j≠i

Gij: (11)

We set the voltage at l-th lead equal to zero, and eliminate the l-th
row and column of the matrix. The reduced (N− 1) × (N− 1)
matrix G can be inverted to get R ¼ G�1

, where the R matrix
satisfies

Vi ¼
XN
j¼1;j≠l

Rij Ij : (12)

Fig. 6 Revisiting the TMF experiment on graphene. a Computed four-point resistance R61,54 as a function of magnetic field B and carrier
density n revisiting the TMF experiment on graphene37, and two exemplary transmission functions required for R61,54: (b) T23 and (c) T41. The
inset in (a) shows the orientation of the considered Hall bar and the configuration of the leads for ground, injector, and voltage probes.
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With the elements of matrix R, one can evaluate the resistance

Rkl;mn ¼ Vm � Vn

Ik
¼ Rmk �Rnk (13)

with the current flowing from lead k to lead l, zero current in other
terminals, and voltage drop measured between leads m and n.

Transverse magnetic focusing
As a numerical example of applying the above outlined Landauer-
Büttiker formalism for computing the four-point resistance Eq.
(13), we revisit the first TMF experiment on graphene37,
considering the same probe spacing (ℓ= 500 nm) and width
(100 nm) but slightly different geometry of the scattering region
(total length 700 nm and width 500 nm) for a 6-terminal Hall bar,
made of a graphene lattice scaled by sf= 12. Choosing the same
configuration of the leads for injector, ground, and voltage probes
as the revisited experiment, the computed R61,54 as a function of
the external magnetic field B perpendicular to the plane of
graphene and the carrier density n is reported in Fig. 6a, showing
a map rather consistent with the experiment. Due to the isotropic
low-energy dispersion of graphene, the resulting cyclotron
trajectory is a simple circle of radius Rc= ℏk/eB, which is simplified
from Eq. (3). By requiring the probe spacing to be equal to an
integer times the cyclotron diameter, ℓ= j ⋅ 2Rc, j= 1, 2,⋯ ,
together with k ¼ ffiffiffiffiffiffiffiffi

πjnjp
for graphene, one can solve for carrier

density corresponding to the jth peak of the TMF on the B-n map
of Fig. 6a:

njðBÞ ¼ 1
π

eBℓ
2_j

� �2

: (14)

The dashed lines on Fig. 6a show n1, n2, n3, n4, matching very well
with the patterns of the simulated R61,54, which requires totally
6 × 5= 30 transmission functions for such a 6-terminal device, as
explained above. Figure 6b, c shows two exemplary maps of
transmission functions, which can look generally very different
from the resulting four-point resistance.

Choosing the gauge
In the presence of an external magnetic field and semi-infinite
leads, the vector potential must satisfy the translational invariance
of the leads. For the magnetic field along the ẑ axis, the most
common choice is the Landau gauge, A= (− yB, 0, 0) or
A= (0, xB, 0) for the lead which is translationally invariant along
the x or y direction, respectively. For other lead orientation, in
general, the proper gauge is different. Therefore, in a multi-
terminal device, the required vector potential is not uniform in the
entire space. This is not a problem since adding an arbitrary curl-
free component to the vector potential does not change the
magnetic field. Here, we use the approach introduced in55.
Assuming that the proper gauge in the 1st lead is A1(r), for
another lead that is at an angle θn with respect to lead 1, the
gauge can be chosen as

AnðrÞ ¼ A1ðrÞ þ ∇f nðrÞ; (15)

with

f nðrÞ ¼ Bxysin2ðθnÞ þ 1
4
Bðx2 � y2Þ sinð2θnÞ: (16)

The addition of a gradient of a scalar function does not influence
the requirement∇ × A= B. As an illustration of the transforma-
tion, consider A1(r)= (− yB, 0, 0), and θn= 90°. Then, fn(r)= Bxy,
∇ fn(r)= (By, Bx, 0), and An(r)= (− yB, 0, 0)+ (yB, xB, 0)= (0, xB, 0).
Applying the transformation (15) so that it only affects lead n is

possible by defining a smooth step function ζn(r) which is only

nonzero in the translationally invariant part of lead n

ζnðrÞ ¼
1; r in lead n;

0; r in leadm≠n;

smooth interpolation r elsewhere :

8><
>: (17)

Then, in (15) we substitute fn(r)→ ζn(r)fn(r) for lead n. In general,
for the entire system we define

f ðrÞ ¼
XN
n¼2

ζnðrÞf nðrÞ; (18)

this completes our gauge transformation. Adopting the vector
potential

AðrÞ ¼ A1ðrÞ þ ∇f ðrÞ; (19)

we have B=∇ × A everywhere in the system, and the translation
invariance in each lead is guaranteed. Importantly, curl of (19)
gives exactly the desired B, regardless of the smoothness of the ζn
function.
As an example, for the system used for the TMF modeling (Fig. 2a),

in the vertical leads we choose the same gauge A= (0, xB) with ζðrÞ
¼ ðexpð�ðy � y1Þ=dstepÞ þ 1Þ�1 þ ðexpð�ðy2 � yÞ=dstepÞ þ 1Þ�1,
y1= 1607 nm, y2=− 49 nm, and dstep= 2 nm. In the rest of the
system, A= (− yB, 0) is used. The resulting Ax and Ay profiles are
shown in Fig. 7.

Hofstadter butterfly calculation
For the calculation of Hofstadter butterfly one has to consider a
magnetic unit cell whose length is the least common multiple of
the lattice periodicity and the periodicity introduced by the Peierls
phase. For graphene, it contains more than hundreds of
thousands of carbon atoms when the magnetic field strength is
smaller than 1 T. However, the calculation is greatly simplified by
considering a graphene ribbon. For an armchair ribbon with
translational invariance along the x direction and finite width
along the y direction, in the presence of a perpendicular magnetic
field, dispersionless Landau levels appear near kx= 0, and the
dispersive edge states show up at larger kx. Calculating Ekx¼0 as a
function of magnetic field, we get the Hofstadter butterfly of
graphene. Because of the finite width of the ribbon, the spectrum
can also contain edge states. With the increase of B the Landau
levels elongate, and at some B the edge states are pushed to
kx= 0, which results in the appearance of the states in the gaps.
To lower the computational burden, we use the scalable tight-
binding model54 with sf ~ 8 to calculate Ekx¼0 as a function of
magnetic field for an armchair ribbon with periodic length along
the x axis equal to the superlattice period (λ). Here, in order to
ensure superlattice period equal to a multiple of 3a, sf is not an
integer, and the ribbon width is larger than 20λ to show the
superlattice effect.
In transport, only the states at the Fermi level contribute to

the conductance. Therefore, we calculate Hofstadter butterfly
spectra for all Vtg values and collect the Fermi states to
construct the gate-dependent Hofstadter butterfly spectrum to
compare with Rxx and GH obtained from the transport

Fig. 7 Spatial profiles of the vector potential. a Ax and (b) Ay vector
potential components used for the 5-terminal TMF simulation.
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calculation. Note that the spectrum in Fig. 5(g) contains energy
levels that appear across the gaps, which are an artifact of the
method due to the finite width of the ribbon. As mentioned
above, they appear since at some value of B the edge states are
pushed to kx= 0.
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