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Electron transport and scattering mechanisms in ferromagnetic
monolayer Fe3GeTe2
Danis I. Badrtdinov 1✉, Georgy V. Pushkarev2, Mikhail I. Katsnelson 1 and Alexander N. Rudenko 1✉

We study intrinsic charge-carrier scattering mechanisms and determine their contribution to the transport properties of the two-
dimensional ferromagnet Fe3GeTe2. We use state-of-the-art first-principles calculations combined with the model approaches to
elucidate the role of the electron-phonon and electron-magnon interactions in the electronic transport. Our findings show that the
charge carrier scattering in Fe3GeTe2 is dominated by the electron-phonon interaction, while the role of magnetic excitations is
marginal. At the same time, the magnetic ordering is shown to effect essentially on the electron-phonon coupling and its
temperature dependence. This leads to a sublinear temperature dependence of the electrical resistivity near the Curie temperature,
which is in line with experimental observations. The room temperature resistivity is estimated to be ~ 35 μΩ ⋅ cm which may be
considered as a lower intrinsic limit for monolayer Fe3GeTe2.
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INTRODUCTION
The interest to two-dimensional (2D) systems is driven by the
continuous progress in the development of novel technologies
involving miniaturization of electronic devices and low-energy
consumption. A special place in this search is devoted to 2D
magnetic materials, which became the subject of active studies
after the exfoliation of van der Waaals magnets such as CrI31,
Cr2Ge2Te62, Fe3GeTe2 (FGT)3–6, etc. Magnetic properties of these
systems demonstrate high tunability (e.g. by external electrical
field7 and environmental screening8) promising for technological
application, as well as serve as an excellent platform for probing
the magnetic interactions in low dimensions.
Most of the known 2D magnets are insulating or semiconducting,

which limits our understanding of their transport properties and the
underlying physical mechanisms. In contrast, FGT has a number of
special characteristics since it combines a metallic behavior, needed
for the realization of controllable transport9,10, with the ferromagnetic
ground state and comparably high Curie temperature TC≃
220 K3,4,11, surviving down to the monolayer limit5. One of the most
remarkable properties of FGT is the absence of inversion symmetry,
allowing for the formation of topologically nontrivial magnetic
textures12,13. A hexagonal lattice of skyrmions is recently observed in
this system14–16, which might be important for spintronics applica-
tions. While a considerable attention is paid to skyrmions, the
electron transport and scattering mechanisms in FGT remain unclear
from the microscopic point of view.
In comparison to nonmagnetic 2D systems, the charge carrier

scattering in conductive magnets is not limited to the impurities or
phonons, but may include scattering by spin fluctuations17,18 (Fig. 1b),
providing essential contribution to the transport characteristics and/
or give rise to qualitatively new effects (e.g., Kondo effect)19,20.
Moreover, temperature dependence of the spin-polarized electronic
structure in magnetically ordered systems might play a role for the
conventional sources of scattering (e.g., phonons). The first-
principles theory of electron-phonon interactions is well estab-
lished21, and has been routinely applied to study transport
properties of nonmagnetic 3D and 2D materials22–26. Strictly

speaking, a theoretical description of the electron-phonon scatter-
ing in 2D is more involved due to the presence of flexural phonon
modes27, allowing for multiple phonon scattering27–29, yet the
single-phonon formulation turns out to be sufficient even for a
quantitative description of the charge carrier transport in most of
the cases30. Generalization of the first-principles scattering theory to
magnetic materials is not straightforward for at least two reasons: (i)
Unequal and temperature-dependent contribution of the majority
and minority electronic states; (ii) The presence of additional
scattering channels such as collective spin excitations (magnons)
and spin inhomogeneities. Despite a notable progress in this
direction being made in recent years, the proposed theories for the
first-principles description of electron-magnon interactions 17,31 are
limited to zero temperature, i.e. not readily applicable to study
transport characteristics. Alternatively, there are well-established
theories based on the model description of magnetism32–34, which
are sufficient to capture the corresponding effects qualitatively and,
in many cases, quantitatively.
In this work, we perform a systematic study of the charge carrier

transport in ferromagnetic monolayer Fe3GeTe2 using first-
principles calculations combined with magnetic models. We
analyze electron-phonon and electron-magnon scattering, and
estimate their contribution to the temperature-dependent scatter-
ing rate. The main contribution of the electron-magnon scattering
to the resistivity is observed around the Curie temperature,
resulting in a marginal resistivity enhancement. On the other
hand, interpolation of the electron-phonon scattering between
the ferromagnetic and paramagnetic phases leads to a pro-
nounced modification of the resistivity with sublinear temperature
dependence close the Curie temperature, which is in line with the
experimental observations4,9,11,35,36.

RESULTS
Electronic structure
Figure 2 shows the electronic structure and Fermi surfaces
calculated for monolayer Fe3GeTe2. We explicitly consider electronic
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states in the ferromagnetic (FM) and nonmagnetic phases. The
bands in the vicinity of the Fermi energy are predominantly formed
by the Fe (3d) states hybridized with Te (5p). The spin-resolved
electronic structure in the FM phase displays multiple energy bands
crossing the Fermi energy, resulting in the formation of several
isolated pockets in the Fermi surface, being in agreement with the
experimental data9,19. Near the Γ point, one can observe a
hexagonal-like shaped pocket of the spin-down states, which is to
contribute to the nesting at wave vectors q ¼ k � k0 away from the
zone center. Around the K points, one can see circular pockets
allowing for transitions near the zone center i.e. at small q. The spin-
up (majority) Fermi surface is more complicated and it has more
possibilities for transition at different q. In both cases, the
momentum transfer processes are expected to occur predomi-
nantly near the Γ point with discrete regions of q points around the
nesting wave vectors. The electronic structure from the nonmag-
netic calculations is considerably different. The Fermi surface is
composed of circular pockets around the Γ point, allowing the
transitions in a broad range of q vectors. We note that a moderate
variation of the Fermi level (i.e. the doping effect) can significantly
change the observed picture, which will influence the electron-
phonon interaction as we will show below. It is also worth noting
that the electronic states in monolayer Fe3GeTe2 are not strongly
affected by the electron-phonon interactions. The spectral functions
shown in the top of Fig. 2 do not show any significant
renormalization in the vicinity of the Fermi energy in comparison
to other systems24. At the same time, the inclusion of the electron-
phonon coupling induces a finite linewidth, leading to a finite
lifetime of charge carriers. The DOS calculated for the FM and
nonmagnetic states, as well as in the disordered local moment
approximation are presented in Supplementary Methods 2.

Phonon dispersion
The phonon dispersion and the corresponding spin-resolved
linewidths are shown in Fig. 3 for the ferromagnetic and

nonmagnetic calculations. The obtained dispersion of acoustic
phonons is typical for 2D systems, demonstrating two linearly-
dispersing branches and one flexural out-of-plane mode with a
quadratic dispersion around the Γ point24,26. The optical phonon
modes appear at energies from ~ 8 meV to ~ 45 meV. Interestingly,
one can see a number of nearly flat branches, the most prominent
of which appear near 15, 21, and 32 meV. The phonon modes with
energies <15 meV correspond predominantly to the vibration of
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Fig. 1 Schematic crystal structure and main electron scattering
mechanisms in monolayer Fe3GeTe2. a Crystal structure of
Fe3GeTe2 with side (left) and top (right) views. FeI and FeII denote
two inequivalent iron atoms. b A sketch showing scattering of an
electron on phonons and magnons.
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Fig. 2 Spin-dependent electron spectral functions and Fermi
contour maps for the ferromagnetic and nonmagnetic phases of
monolayer Fe3GeTe2. a Spectral functions Aσkðω; TÞ ¼�1=π Im½Gσ

kðω; TÞ� calculated in the presence of the electron-
phonon interactions for T= 100 K for the states near the Fermi
level. Original DFT band structure is shown by the blue solid line.
Zero energy corresponds to the Fermi energy. b The corresponding
Fermi contour maps.
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Fig. 3 Phonon dispersion curves and momentum-resolved elec-
tron-phonon coupling calculated for the ferromagnetic and
nonmagnetic phases of monolayer Fe3GeTe2. a Phonon dispersion
curves shown with the spin-dependent linewidth that is propor-
tional to Im½Πσ
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heavy Te atoms, hybridized with Fe and Ge vibration states. The two
highest energy modes represent a hybridized vibration of Fe and Ge
atoms, while the rest phonon modes predominantly correspond to
the Fe atoms vibration. Overall, the calculated phonon spectra are in
good agreement with previously reported data37. The phonon
linewidths are somewhat different for the magnetic and non-
magnetic spectra. In particular, for the spin majority states in the
ferromagnetic phase, most of the line broadening takes place near
the Γ point around 15 meV, i.e. within the range of thermal
excitations. In the nonmagnentic case, most of the line broadening
is observed above 25meV, thus their excitation is less likely. All this
suggests that thermal transport in different magnetic states of FGT
must be different, which might be interesting for further studies.

Electron-phonon coupling and its interpolation
We now turn to the electron-phonon interaction in monolayer
Fe3GeTe2. As one can see from Fig. 3b, the q-resolved electron-
phonon interaction constant λq is essentially different for spin-up
and spin-down channels, which is expected from the spin-
resolved linewidths shown above. For the spin-down states, the
dominant electron-phonon coupling originates from the interac-
tion with long-wavelength phonons, which results in a highly
localized maximum of λq at the Γ point. In the spin-up case, the
contributions with q > 0 play a moderate role, although the
maximum is still observed around the Γ point. In the nonmagnetic
case λq is distributed practically uniformly, which is in line with the
electronic structure and the Fermi contours discussed above.
The integrated electron-phonon coupling constant λσ ¼ P

qνλ
σ
qν

for spin up and spin down states are found to be 0.50 and 0.26,
respectively, i.e. λ↑/λ↓ ~ 2. In the nonmagnetic case, we find
λnonmg ≃ 0.45. The resulting constant λσ < 1, which can be qualified
as a moderate electron-phonon interaction38. Given that the
electron-phonon interaction constant is different for different
magnetic states, it is important to take its temperature depen-
dence into account when calculating the transport properties.
In what follows, we mimic the paramagnetic state of the system

by a nonmagnetic solution obtained from the non-spin-polarized
DFT calculations. Strictly speaking, this assumption is quite strong as
it ignores the presence of residual disordered local magnetic
moments at T> TC, which may affect the electronic structure and
related properties, especially in itinerant magnets. The most
appropriate approach to deal with the paramagnetic state in first-
principles calculations is to use the method of disordered local
moments (DLM)39–43. This method requires considering large
supercells in the DFT calculations, making DFPT calculations for
paramagnetic states prohibitively expensive. However, our DLM
calculations of the density of states (DOS) for monolayer Fe3GeTe2
(see Supplementary Methods 2) demonstrate that the DLM DOS near
the Fermi energy turns out to be comparable to the nonmagnetic
DOS. This behavior can be attributed to quenching of the local
magnetic moment on the FeII atoms (see Fig. 1a) in most of the
disordered configurations such that hS2z iII ¼ 0 in the DLM state.
Unlike the ground-state FM configuration, the FeII-d states are not
expected to be split in the paramagnetic phase, providing a sizeable
contribution at the Fermi energy, as in the nonmagnetic solution.
Based on the argumentation given above, at temperatures

T > TC, we assume that the results converge to the nonmagnetic
case. We can then approximate the temperature-dependent
electron-phonon coupling constant using the interpolation
formula:

λσðTÞ ¼ λnonmg þ λσ � λnonmg
� � Szh i

S
: (1)

At T= 0 K, the average spin Szh i equals to the nominal spin S= 1,
yielding λσ(0)= λσ. On the other hand, above Curie temperature,
we have λσ(T > TC)= λnonmg. The magnetization is determined self-
consistently as described in Methods. The resulting magnetization
curve is shown in Fig. 4, from which the Curie temperature

TC= 317 K can be determined. The obtained value overestimates
the experimental temperature TC ~ 200 K4,5,11,44 likely due to
overestimation of the exchange interactions. This could be
attributed to a limited applicability of the localized spin models,
which neglect coupling to the electronic subsystem. In addition,
renormalization of the electron spectrum due to correlation
effects9 may also contribute to the reduction of the exchange
interactions. Also, the discrepancy between the theoretical and
experimental TC might be related, e.g., to contamination of the
experimental samples, as well as to the effect of substrate, which
is absent within our consideration. Nevertheless, the obtained
magnetization curve Szh i can be used to interpolate the results
between the magnetic and nonmagnetic solutions keeping in
mind that some ambiguity in the estimated TC exists. In Fig. 4, we
plot the result of the electron-phonon coupling constant
interpolation using Eq. (1). With the increase of temperature the
constants λσ for both spin channels smoothly change their values,
converging into the nonmagnetic λnonmg= 0.45 result at TC.

Temperature-dependent scattering rate
In Fig. 5a, we show averaged phonon-mediated scattering rate
τ�1
σ

� � ¼ 1
Nσ
F

P
nkτ

�1
nkσδðεnkσÞ as a function of temperature. Similarly

to the coupling constant, the scattering rate calculated for the
nonmagnetic phase has the value in between the spin-up and
spin-down cases. At T= 300 K, we obtain hτ�1

" i= 117 ps−1,
hτ�1

# i= 62 ps−1, and hτ�1
nonmgi= 91 ps−1. In the relevant tempera-

ture range, all these three curves demonstrate a linear-in-
temperature behavior. Indeed, at sufficiently high temperatures
phonons can be considered classically with the occupation
numbers bqν≃ kBT/ℏωqν, ensuring a linear dependence of the
electron linewidth ImΣσqνðTÞ as well as the scattering rate26.
However, these results do not take temperature dependence of
the electronic structure into account, which is important for
magnetic systems. For this purpose, we use the following
interpolation between the magnetic and nonmagnetic scattering
rates

τ�1
σ ðTÞ� � ¼ τ�1

nonmg

D E
þ τ�1

σ

� �� τ�1
nonmg

D Eh i Szh i
S

; (2)

which allows us to make a connection between the scattering
rates above and below TC. The interpolation changes the linear
dependence of hτ�1i at T > 100 K, inducing a convergence of hτ�1

" i
and hτ�1

# i to the nonmagnetic solution hτ�1
nonmgi at T= TC (Fig. 5a).

Remarkably, the averaged spin-up and spin-down scattering rates
are very close the nonmagnetic scattering rate over the whole
range of temperatures.
The magnon contribution to the scattering rate is shown in

Fig. 5b. The electron-magnon coupling constant is estimated to
be I ⋅ NF ≃ 0.01, i.e. an order of magnitude smaller compared to
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Fig. 4 Spin-resolved electron-phonon coupling constant λσ (blue)
and magnetization Szh i (red) calculated for monolayer Fe3GeTe2 as a
function of temperature using the interpolation scheme discussed
in the main text.
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the electron-phonon coupling. As a consequence, the calculated
τ�1h imag is significantly smaller than τ�1h iph (Fig. 5b). Overall, the
magnon-mediated scattering rate demonstrates an exponential
increase with temperature up to TC, which can be explained by
the increase of the magnon population. Nevertheless, even close
to TC, the contribution of magnons to the scattering rate is
marginal. At T > TC the long-range ferromagnetic order disap-
pears, i.e. Szh i ¼ 0, and Eq. (9) is seemingly inapplicable.
However, the contribution of spin excitations does not disappear
in the paramagnetic phase due to the short-range spin
fluctuations45. Indeed, at sufficiently large T, we have bqν ≃ kBT/
ℏωqν with ωqν ~〈Sz〉, leading to elimination of the magnetiza-
tion in Eq. (9), which ensures nonzero scattering rate by static
spin fluctuations. Nevertheless, as this contribution cannot be
significantly larger than the contribution from magnons in the
ferromagnetic phase, we ignore it from the explicit
consideration.

Spin-resolved transport
We now calculate electric resistivity ρ= 1/σ as a function of
temperature by means of the semi-classical Boltzmann theory (Eq.
(4) in Methods). To this end, we use the Matthiessen’s rule46,
τ�1h i= hτ�1

ph i + hτ�1
magi. Fully spin-polarized (sp) resistivity

(ρ�1
sp ¼ ρ�1

" þ ρ�1
# ) is represented in Fig. 6. Due to the magnon

contribution, ρsp(T) demonstrates a jump around TC, which is
attributed to the behavior of hτ�1

magi shown in Fig. 5b.
The nonmagnetic resistivity ρnonmg demonstrates a less steep

behavior compared to the resistivity in the ferromagnetic phase.
This can be explained by the two factors: (i) temperature
dependence of the scattering rate (Fig. 5); and (ii) different carrier
velocities: v";# ’ 2 × 105 m ⋅ s−1, while vnonmg = 1.3 × 105 m ⋅ s−1.
The interpolation of v � NF between the magnetic and nonmag-
netic phases using the procedure described above, leads to the

following conductivity:

σσðTÞ ’ e2

Ω
τσðTÞh i vσ � Nσ

FðTÞ
� �

; (3)

which is shown as the green line in Fig. 6. One can see that at
T > 100 K the linear resistivity behavior is modified, lowering the
resistivity. At T= TC the resistivity drops abruptly to the
nonmagnetic value. Such a behavior is likely unphysical and
could be attributed to our approximation of the paramagnetic
phase by a nonmagnetic one. Moreover, the transition region is to
be smoothed by taking into account scattering by spin
inhomogeneities above the Curie temperature as well as by the
electron-impurity scattering. Nevertheless, our interpolated results
allow us to qualitatively explain the temperature dependence of
the resistivity near transition region observed in recent
experiments4,9,11,35,36.
At T= 300 K, the interpolated resistivity ρ(T) is estimated to be

35 μΩ ⋅ cm. The available experimental estimates for bulk
FGT4,9,11,35,36 vary from 150 to 200 μΩ ⋅ cm, which is 4–5 times
higher than the calculated values. This disagreement can be
ascribed to the presence of other scattering channels in the
experimental samples (e.g., impurities), which also leads to
nonzero ρ at T ~ 0 K, as well as to the dimensionality effects.
Our calculations provide the lowest boundary for the intrinsic
resistivity in monolayer Fe3GeTe2. At the same time, this value is
an order of magnitude larger than resistivities of noble metals
such as ρCu ~ 1.5 μΩ ⋅ cm and ρAu ~ 2.0 μΩ ⋅ cm47. The relatively
high resistivity of monolayer FGT might limit its prospects for
electronic applications.

DISCUSSION
In summary, we have systematically studied the charge-carrier
scattering mechanisms in ferromagnetic monolayer Fe3GeTe2. We
show that the phonon-mediated scattering of charge carriers
plays a dominant role. The effect of magnons is also present, but
can be considered as negligible in the relevant temperature
region. At the same time, the magnetism-induced splitting of the
energy bands modifies the electron-phonon coupling and induces
a nontrivial contribution to its temperature dependence. This
results in a sublinear temperature dependence of the electrical
resistivity near the ferromagnetic-paramagnetic phase transition,
observed experimentally. Also, we demonstrate that the charge
doping (see Supplementary Methods 3) does not lead to any
pronounced changes in the transport properties of Fe3GeTe2. Our
calculations provide a lower estimate for the room temperature
resistivity (35 μΩ ⋅ cm) in monolayer FGT. The resulting value is an
order of magnitude larger compared to typical metals, limiting
potential applicability of monolayer FGT in electronics. For
multilayer FGT, drastic changes of transport properties are not

Fig. 5 Temperature-dependent electron-phonon and electron-
magnon contributions to the scattering rate in monolayer
Fe3GeTe2. a Averaged phonon-mediated scattering rate calculated
for different spin channels in the ferromagnetic phase of monolayer
Fe3GeTe2 (dashed lines), and for the nonmagnetic phase (green
line). Solid red and blue lines correspond to the interpolation
between the magnetic and nonmagnetic phases. b Averaged
magnon-mediated scattering rate calculated for different spin
channels.
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Fig. 6 Electrical resistivity shown as a function of temperature in
monolayer Fe3GeTe2 calculated as: (i) ρ�1

sp ¼ ρ�1
" þ ρ�1

# , i.e. from fully
spin-polarized calculations without interpolation (low-T limit); (ii)
ρnonmg i.e. nonmagnetic calculations (T > TC); (iii) ρ�1ðTÞ ¼ ρ�1

" ðTÞ þ
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# ðTÞ (interpolated via Eq.(3)).
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expected due to comparably weak van der Waals interaction
between the layers. Nevertheless, additional interlayer scattering
may occur in multilayer samples, which would shorten the
scattering rate. Therefore, in the absence of disorder, transport
properties of monolayer FGT are expected to be superior to the
multilayer samples. On the other hand, experimental single-layer
samples are usually more contaminated compared to their
multilayer counterparts, which might have an opposite effect on
the layer-dependence of the transport properties.
The model approach presented in this paper to study transport

properties of magnetic conductors can be applied to other 2D
magnetic materials. Particularly, we expect a non-trivial role of the
electron-magnon interactions in systems with weak electron-
phonon coupling.

METHODS
Technical details
Electronic structure calculations and structural optimization were
performed within the plane-wave based QUANTUM ESPRESSO (QE)48,49

package utilizing Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional50 and 2.0.1 version scalar-relativistic norm-
conserving pseudopotentials, generated using “atomic" code by A.
Dal Corso v.5.0.99 svn rev. 10869. In these calculations, we use 80
Ry as the plane-wave energy cutoff, a (16 × 16 × 1) k-mesh for the
Brillouin zone integration, and 10−8 eV for the energy conver-
gence criteria. The experimental crystal structure of bulk Fe3GeTe2
was used3, where a vacuum space 20 Å between monolayer
replicas in the vertical z direction was introduced to avoid spurious
interactions between the periodic supercell images. The effective
volume Ω ¼ d � S with layer thickness d= 8.165 Å of 2D unit cell
area S = 13.95 Å2 was used in the calculations. Positions of atoms
were allowed to relax until all the residual force components of
each atom were less than 10−4 eV ⋅ Å−1. In the calculations of the
transport properties we consider either the ferromagnetically
ordered or nonmagnetic (non-spin-polarized) ground state. From
the obtained electronic structure, maximally localized Wannier
functions51 were constructed using the WANNIER90 package52

projecting onto the valence Fe(3d) and Te(5p) states, which were
used in the calculations presented below. Phonon spectra were
calculated using density functional perturbation theory (DFPT)53

implemented in the QE package. In these calculations, we use a
(4 × 4 × 1) q−mesh and a 10−14 eV as the self-consistency
threshold.

Electron transport
In the semi-classical Boltzmann theory, the in-plane (xx) compo-
nent of the conductivity tensor has the form46,54:

σσ
xx ¼ � e2

Ω

X
nk

∂f σnk
∂εσnk

τσnk½vxnkσ�2; (4)

with the momentum-dependent scattering rate τnk, which can be
related to the imaginary part of the electron self-energy:

1=τσnk ¼ 2
_
ImΣσnk: (5)

In the expression (4), vxnkσ ¼ ∂εσnk=∂ð_kxÞ is the x (in-plane)
component of the group velocity for band n and wave-vector k,
and f σnk is the Fermi occupation function for the electron states
with energy εσnk , f

σ
mk ¼ ðexp½ðεσmk � εFÞ=kBT � þ 1Þ�1, where εF is

the Fermi energy. We note that the expression (4) is applicable at
not too low temperatures where vertex corrections, that is,
difference between transport and single-electron relaxation time
becomes important27,46,54.
Phonon-mediated scattering was analyzed via calculating

electron-phonon interaction. For this purpose, we use EPW55 code,
which takes the advantage of Wannier functions based

interpolation scheme21. Initial version of the code was modified
to treat the spin channels independently. The electron self-energy
of this interaction in the Migdal approximation has the following
form:

Σσnkðω; TÞ ¼
P
mqν

jgσmn;νðk;qÞj2 ´

´
bqνþf σmkþq

ω�εσmkþqþ_ωqν�iη þ
bqνþ1�f σmkþq

ω�εσmkþq�_ωqν�iη

� �
;

(6)

where bqν ¼ ðexp½_ωqν=kBT � � 1Þ�1 corresponds to the Bose
occupation function for phonons with wave vector q, mode index
ν and frequency ωqν. The electron-phonon matrix elements
contain the information about the derivative of self-consisted
spin dependent electronic potential ∂qνVσ in the basis of Bloch
functions ψσ

nk :

gσmn;νðk;qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

2m0ωqν

s
ψσ
mkþqj∂qνVσjψσ

nk

D E
: (7)

The electron-phonon coupling constant for each phonon mode
ν with wave vector q is given by

λσqν ¼
1

Nσ
Fωqν

X
mnk

jgσmn;νðk;qÞj2δðεσnkÞδðεσmkþqÞ; (8)

where Nσ
F is the electron density of states (DOS) for spin σ at the

Fermi level.
Magnon-mediated scattering is estimated from the electron-

magnon interaction. The corresponding self-energy in case of a
ferromagnetic order can be calculated in the spirit of the s− d
model32–34 as:

Σ"nkðω; TÞ ¼ 2I2 Szh iP
qν

bqνþf #nkþq

ω�ε#nkþqþ_ωqν�iη

Σ#nkðω; TÞ ¼ 2I2 Szh iP
qν

bqνþ1�f "nk�q

ω�ε"nk�q�_ωqν�iη
:

(9)

Here, I is the electron-magnon interaction constant (s− d
exchange parameter) averaged over the Fermi surface

I ¼ 1
2SNF

X
m kσ

ðε"mk � ε#mkÞ
∂f σmk

∂εσmk
; (10)

and Szh i and ωqν correspond to the temperature-dependent
magnetization and magnon frequencies, respectively. NF is the
total electron density of states at the Fermi energy, NF ¼ N"

F þ N#
F.

In both approximations [Eqs. (6) and (9)], we consider the static
limit, i.e. ω= 0 which is justifiable at not too low temperatures.

Temperature-dependent magnetization
In order to calculate Szh i and ωqν, we consider the following
quantum spin model with S= 1:

Ĥ ¼
X
i>j

Jij ŜiŜj � A
X
i

S2z i: (11)

The magnetic exchange interactions Jij are calculated within the
local force theorem approach56,57 (see Supplementary Methods 1).
We note that we are not aiming at a precise determination of the
Hamiltonian parameters within this study which would require a
complicated discussion on possible quantum corrections, etc. Our
main purpose is to qualitatively reproduce the temperature-
dependent magnetization as well as the magnon spectrum.
On-site anisotropy parameter A= 0.35 meV per Fe atom is

calculated as a total energy difference for magnetic moments
oriented along the in-plane and out-of-plane directions taking the
spin-orbit coupling effects into account.
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Equation (11) allows us to introduce the spin-wave Hamiltonian,
whose eigenvalues correspond to the magnon frequencies ωqν

58:

ĤSW
μν ðqÞ ¼ δμν½Aþ

X
χ

Jμχð0Þ� � JμνðqÞ
" #

Szh i; (12)

where Jμν(q) are the Fourier transform of the exchange interac-
tions, and the indices μ and ν run from 1 to 3 over the Fe atoms in
the unit cell.
In turn, the magnetization Szh i entering Eq. (11) is calculated

within the Tyablikov’s Green’s functions formalism59,60. The
corresponding expression for S= 1 takes the form

Szh i ¼ S
1þ 2

P
qνbqν

1þ 3
P

qνbqν þ 3ðPqνbqνÞ2
: (13)

Here, the Bose factors bqν depend on the magnon frequencies ωqν,
which are, in turn, obtained by diagonalizing the (3 × 3)
Hamiltonian matrix [Eq. (12)]. In order to obtain Szh i and ωqν
simultaneously, we solve Eqs. (12) and (13) self-consistently. The
resulting magnetization Szh i drops down to zero at the Curie
temperature TC. Above this temperature the system becomes
paramagnetic.
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