
ARTICLE OPEN

Moiré straintronics: a universal platform for reconfigurable
quantum materials
M. Kögl 1,3✉, P. Soubelet 2,3✉, M. Brotons-Gisbert 1, A. V. Stier 2, B. D. Gerardot 1 and J. J. Finley2

Large-scale two-dimensional (2D) moiré superlattices are driving a revolution in designer quantum materials. The electronic
interactions in these superlattices, strongly dependent on the periodicity and symmetry of the moiré pattern, critically determine
the emergent properties and phase diagrams. To date, the relative twist angle between two layers has been the primary tuning
parameter for a given choice of constituent crystals. Here, we establish strain as a powerful mechanism to in situ modify the moiré
periodicity and symmetry. We develop an analytically exact mathematical description for the moiré lattice under arbitrary in-plane
heterostrain acting on any bilayer structure. We demonstrate the ability to fine-tune the moiré lattice near critical points, such as
the magic angle in bilayer graphene, or fully reconfigure the moiré lattice symmetry beyond that imposed by the unstrained
constituent crystals. Due to this unprecedented simultaneous control over the strength of electronic interactions and lattice
symmetry, 2D heterostrain provides a powerful platform to engineer, tune, and probe strongly correlated moiré materials.
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INTRODUCTION
Strong correlations among electrons arise when their mutual
Coulomb interaction is similar or larger than their kinetic energy,
and the delicate balance between these two energy scales
determines the ground state of the system and its low-energy
excitations. The rise of long period moiré patterns, formed by
vertically stacking two atomically thin crystals with a lattice
mismatch (δ) and/or relative twist angle (θ), provides a unique
capability to tune the two critical energy scales (Coulomb
interaction and kinetic energies)—and the electron density—over
several orders of magnitude, creating a highly versatile solid-state
quantum material platform1. The potential to engineer and probe
strongly correlated states has been highlighted in several moiré
material systems, including twisted bilayer graphene heterostruc-
tures near the magic angle2–4 and homo-5–7 or heterobilayer8–11

transition metal dichalcogenide (TMD) moiré heterostructures. The
physics of these systems is determined by the strong electronic
interactions in the landscape defined by the underlying moiré
potentials. Further examples of synthetic moiré materials in which
new physical properties arise due to interlayer hybridization can
be found in moiré trapped excitons12,13, twisted 2D magnets14–16,
moiré solitons17,18, moiré polaritons19, and ferroelectric moiré
materials20–22.
The simplest model to understand strongly interacting quan-

tum systems is the Hubbard model, which consists of a kinetic
term defined by the hopping parameter t and the on-site
Coulomb repulsion U. In the Hubbard picture, when U/t > 1 the
kinetic energy is quenched, and strong electronic correlations
emerge. Although it is expected that the Hubbard model can
provide valuable insight into phenomena such as high-
temperature superconductivity or exotic magnetic states23,24, only
the one-dimensional (1D) case can readily be solved. The solution
to higher dimensional problems depends on a delicate balance
between the different model parameters and the lattice geome-
try1. Hence, quantum simulators based on ultracold atomic optical

lattices, where it is possible to preset the lattice geometry and
tune U/t by adjusting the laser power and U using Feshbach
resonance techniques25, have become an exciting avenue to
probe the Hubbard model and explore emerging quantum
materials26.
Although 2D moiré materials offer access to different energy

scales and a broader range of density and temperature than what
is achievable in cold atom optical lattices, the same wide-ranging
in situ tunability (of lattice symmetry, U, and t) possible in optical
lattices has proven to be elusive for 2D quantum materials. While
the interlayer coupling and band alignment can be tuned in situ
by displacement fields5,6,22, U and t can only be tuned via the
choice of constituent materials, the stacking angle θ or adjusting
the dielectric environment of the active moiré region27,28. Since θ
and the permittivity of the surrounding layers are set during the
fabrication of the moiré heterostructure, direct continuous
modification of the Hubbard model parameters is not readily
achievable29, restricting the capability to fine-tune parameters
near critical points and broadly explore phase diagrams. This
limitation constrains the usefulness of moiré materials as quantum
simulators.
The effect of heterostrain30,31 in homo- and heterostructures,

i.e., the presence of a differential strain between the layers that
compose the structure, was found as a path forward to tailor their
electronic properties. The heterostrain issue was extensively
studied from the theoretical point of view30,32–35 with the aim
to, for instance, design flat bands in bilayer graphene and TMD
structures32,34. From the experimental side, heterostrain was
mainly studied in unintentionally strained structures or systems
without in situ tuning31,36–38 and only a few experimental
realizations have focused on the implementation of devices to
intentionally apply heterostrain on demand17,39. However, the use
of heterostrain to directly affect the moiré superlattice with the
perspective to tune U/t has not been fully investigated. In this
work, we explore the effect of heterostrain on the size and
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geometry of moiré lattices formed in vertically stacked bilayers of
van der Waals materials. Using a generic analytical approach that
is independent of the intrinsic crystal structure, we describe the
effects of biaxial, uniaxial, and shear heterostrains for realistic
experimental conditions. We find that depending on the type of
strain, we can tune the moiré wavelength or even smoothly
modify the moiré lattice from, e.g., triangular into rectangular
lattices. Furthermore, the moiré wavelength can be tuned in situ in
different lattice directions to break symmetries in the system,
satisfying lattice conditions required for exotic quantum models
beyond the standard Hubbard model, such as coupled Luttinger
chains40. Finally, we show that the use of heterostrain can be
implemented to fine-tune and tailor structures to overcome
fabrication variabilities that are typically present, for instance, in
magic-angle graphene and other moiré materials41. We thus show
that strain control is a promising strategy to provide the critical
degree of freedom required to realize reconfigurable quantum
materials and achieve a fully tunable on-chip quantum simulator.

RESULTS AND DISCUSSION
Mathematical description
Moiré lattices are large-scale interference patterns formed when
the unit cells of adjacent layers deviate either by a small twist
angle θ or a lattice constant mismatch δ42. In this work, we assume
that the unit cell of both layers of the homo-/heterostructure are
of similar geometry, while the size of the unit cell of one layer may
deviate by a scaling factor (1+ δ). The following formulation
describes a pure geometrical deformation of moiré lattices under
a global 2D strain tensor in which each layer is considered as a
rigid object, i.e., atomic reconstruction effects can be neglected.
However, to reach an experimental realization, it is important to
take atomic reconstruction into account. Possible experimental
implementations are presented in Supplementary Note 5. In
structures with small stacking angles, atoms within each layer try
to adjust the stacking landscape forming commensurate
regions17,43–45. This effect increases interlayer adhesion and leads
to higher friction between layers that hinders the possibility of
modifying the atomic registry29,46,47. Conversely, higher stacking
angles reduce the reconstruction effects and avoid strain transfer
between layers (μ ≠ 0). For MoSe2-WSe2 heterostructures, these
critical angles are found to be 2.5° and ~1.0° for 3R and 2H
stacking, respectively44,48,49, and increase to ~3.0° in the case of
2H homobilayers45. Hence, it is possible to avoid atomic
reconstruction by using a stacking angle above the critical angle
of the bilayer. On the other hand, while the atomic reconstruction
is always present, heterostrain can also reduce interlayer interac-
tion and prevents atomic reconstruction50, as it has been shown
that ϵu ~ 3% can transform a totally commensurate moiré lattice
(θ= 0°) into a partially incommensurate structure with reduced
atomic reconstruction17.
The most general moiré pattern is formed between two

monoclinic lattices with Bravais lattice vectors ai for the lower
layer and bi for the upper one, as sketched in Fig. 1a. These
primitive lattice vectors can be written as follows:

ai ¼ aiRψi
� 1

0

� �

bi ¼ aið1þ δÞRψiþθ �
1

0

� �
;

(1)

where ai are the lattice constants of a general 2D monoclinic
lattice and Rψi

is the 2D rotation matrix with an angle ψi. The angle
ψi is

ψi ¼
θ0 ; i ¼ 1

θ0 þ β ; i ¼ 2

�
(2)

with θ0 being the overall rotation of the lattices compared to the
x-axis and β the angle between the primitive lattice vectors a1(b1)
and a2(b2). The stacking of these TMDs results in a bilayer system
with a moiré pattern as presented in Fig. 1b. Such a lattice is
characterized by the moiré lattice vectors A1 and A2 whose
magnitudes are A1 and A2, respectively. In addition, we define as α
the angle between those vectors.
In the next step, both lattices are subject to a geometric

deformation due to an applied strain on the bottom layer,
expressed by a general 2D strain tensor ϵ. We restrict our
discussion to a global strain that is uniform across the whole layer.
To account for any slippage between layers, we introduce the
strain transfer parameter μ. This strain transforms the Bravais
lattice vectors ai and bi of the individual layers in the form

a0 i ¼ ai Iþ ϵð Þ � Rψi
� 1

0

� �

b0
i ¼ aið1þ δÞ Iþ μϵð Þ � Rψiþθ �

1

0

� �
:

(3)

The parameter μ allows us to model different experimental
setups (see Supplementary Note 6), for instance, a system where
the lower layer is clamped directly to the substrate while the
upper one is only in contact with the first one. Since the interlayer
friction is high for commensurate structures (small θ or δ) and low
for incommensurate structures (high θ or δ), the transferred strain
in the second layer is different for each case29,46,47. In the
incommensurate case, the strain on the lower layer is not
transferred to the upper one, i.e., μ= 0, which we refer to as
heterostrain. For small θ or δ, the layers are more commensurate
such that 0 < μ < 1. A full transfer of strain μ= 1 is referred to as
homostrain.
The strain tensor ϵ is commonly written as a symmetric 2 × 2

matrix with three independent parameters32. Hence, we express
the strain matrix as follows:

ϵ ¼ ϵxx ϵxy

ϵxy ϵyy

� �
¼ ϵcIþ ϵsSϕs

; (4)

Bilayer

Lower layer Upper layer

a1 b1

b2a2

Fig. 1 Relevant parameters describing the moiré lattice formed
by monolayers of hexagonal crystals, such as graphene and
TMDs. a Sketch of the different TMD layers that compose the moiré
lattice. The lattice parameters of the first (second) layer are a1 (b1)
and a2 (b2), the angle between those vectors is β for both layers, and
the relative angle between the lattices is θ. b Moiré lattice
parameters A1 and A2 and the internal angle α between those
vectors in a bilayer formed by the hexagonal monolayer crystals.
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where we define

● ϵc ¼ ϵxxþϵyy
2 as biaxial strain,

● ϵs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵxx�ϵyy

2

� �2 þ ϵ2xy

q
as shear strain,

● Sϕs
¼ cosðϕsÞσx þ sinðϕsÞσz as shear matrix, and

● ϕs ¼ arccos ϵxy
ϵs

� 	
as shear strain angle.

Our strain parameterization follows ref. 36, which separates the
strain into biaxial strain ϵc (which changes the size of the unit cell)
and shear strain ϵs (which alters the shape of the unit cell). Details
on the physical meaning of the shear angle and different
experimental feasibilities can be found in Supplementary Note 5.
In this context, uniaxial strain (ϵxx= ϵu, ϵxy= 0, ϵyy=−νϵu) is a
mixture of biaxial and shear strain with a shear angle set to
ϕs= 90°. Note that under uniaxial strain, the crystal is elongated
along one direction, while in the perpendicular direction, the
crystal deforms proportional to the Poisson ratio− ν.
Using the previous definitions, it is possible to calculate the real

space moiré lattice under general strain, as presented in
Supplementary Note 1. The new moiré lattice vectors A0

i take
the form

A0
i ¼ aið1þδÞ

Δ

� ð1þ δÞcμ ð1þ ϵcÞIþ ϵsSϕs

� �


� c1 ð1þ μϵcÞRθ þ μϵsSϕsþθ

� �� � Rψi
� 1

0

� � (5)

where the denominator Δ is the expression

Δ ¼ cμð1þ δÞ2 þ c1
� 2ð1þ δÞ ð1þ ϵc þ μϵcÞ þ μðϵ2c � ϵ2s Þ


 �
cosðθÞ; (6)

c1 ¼ ð1þ ϵcÞ2 � ϵ2s , and cμ ¼ ð1þ μϵcÞ2 � μ2ϵ2s . Finally, we calcu-
late the moiré unit cell area M as follows:

M ¼ kA0
1 ´A0

2k ¼ a1a2k sinðβÞk 1þ δð Þ2
kΔk c1cμ: (7)

The full calculation is provided in Supplementary Note 2.
We emphasize that all manifestations of 2D strain are covered

by these calculations and no approximations are made, in contrast
to previous descriptions that focus on hexagonal lattices only and
use approximations that only apply to specific strain configura-
tions30,32,33. Note that expression (5) defines the moiré lattice
vectors and can be employed for any homo- and heterobilayer
structure with a similarly shaped unit cell.
In the particular case of homostrain, expression (5) leads to

A0
i ¼ Iþ ϵð Þ � Ai which means that the strain is applied to the

moiré vectors as if the moiré lattice is strained itself. Even though
2D materials can withstand very high strain levels51, the maximum
applicable strain is ϵc, ϵs < < 1. Hence, the homostrain effect on the
moiré lattice is very small and can be neglected in comparison to
the effect of tuning the twist angle θ. However, in the case of
imperfect strain transduction between the layers (μ < 1) we find
that strain has a substantial effect on the moiré size and shape,
since the magnitude of the moiré vectors is dominated by the
denominator Δ in expression (5). For example, in the homobilayer
case, increasing biaxial strain ϵc decreases the moiré lattice
parameters with the approximate dependence of A0i / 1=kϵck. In
the context of the Hubbard model, the hopping parameter t
decreases exponentially with A0

i while U scales inversely with
A0
i
27,28 and, therefore, the ratio U/t can be modified by tuning ϵc. In

contrast to θ, in situ strain tuning is experimentally viable, which
allows direct tuning of U/t (see Supplementary Note 5).
In contrast to biaxial strain, shear strain can make the

denominator Δ identically zero, leading to the divergence of the
moiré vectors. This condition, referred to as a 1D moiré pattern33,

has already been experimentally observed52. This effect occurs
when the deformation of one layer due to shear strain aligns the
lattice sites in one direction while leaving a mismatch in the
perpendicular direction. We emphasize that this effect is not
dependent on the orientation of the lattice θ0, the shear angle ϕs

or the shape of the layer lattices.
In addition to the size of the moiré pattern, shear strain is also

able to change the moiré lattice geometry since ϵs changes the
shape of the individual lattice depending on the orientation of ϕs

and θ0. The main defining parameter for the geometry of the
moiré pattern is the angle α between the moiré vectors (see
Fig. 1b). This angle takes the form

sinðαÞ ¼ A0
1 ´A0

2

A0
1A0

2

����
����: (8)

In the case of zero shear strain (ϵs= 0), it can be shown that
a1
a2

¼ϵs¼0 A01
A02

and that α ¼ϵs¼0
β, proving that the shape of the moiré

lattice is equal to the shape of the underlying lattice defined by ai,
as presented in detail in Supplementary Note 3.
In contrast to in situ tuning of θ53–55, 2D strain has the potential

to tune the size and shape of the moiré pattern via the three
independent strain parameters ϵc, ϵs and ϕs. In the following
section, we will focus on the case of pure heterostrain (μ= 0) on
homo- and heterobilayer structures and show how the different
types of strain can affect the moiré lattice geometry.

Biaxial heterostrain on hexagonal homo- and heterobilayers
In this section, we center our analysis on moiré patterns generated
by monolayers with hexagonal lattices; in particular, we take WSe2
homobilayers and MoSe2-WSe2 heterobilayers as paradigmatic
cases. The lattice parameters used to perform the calculations are
aMoSe2 ¼ 0:329 nm for MoSe256 and 0.4% smaller for the
WSe256–58. As shown in Supplementary Note 6, strategies can
be proposed to avoid strain transfer for most bilayer structures. In
the following, we analyze the pure heterostrain case, in which the
deformation is applied to the lower layer, which, in our specific
heterobilayer example, corresponds to the WSe2 monolayer. The
Poisson ratios are νMoSe2 ¼ 0:23 and νWSe2 ¼ 0:19 for MoSe2 and
WSe2, respectively56.
Figure 2a shows a sketch of the bilayer formation in which ϵc

produces an in-plane elongation/contraction of the lower layer
unit cell and the upper layer is stacked at an angle θ. The effect
of ϵc and θ on the moiré pattern is depicted in Fig. 2b for
homobilayer (left) and heterobilayer (right) structures. The
vertical lines at ϵc = 0 correspond to the well-known behavior of
homo- and heterobilayers described in ref. 59, i.e., in the
homobilayer case, the structure presents a divergence of A0

1
and A02 at θ= 0 that evidences the absence of moiré patterns in
naturally stacked bilayers (2H and 3R stacking order). However,
the stacking of layers with θ ≠ 0 and/or ϵc ≠ 0 gives rise to moiré
patterns whose periodicity (A0

1 and A0
2) decreases by increasing

ϵc and/or θ. In the heterobilayer case, as the lattice parameter of
WSe2 is ~0.4% smaller than MoSe2, the stretching of the WSe2
layer by ~0.4% recovers the divergence observed at the point
ϵc = 0, θ= 0 for homobilayers. Therefore the use of biaxial
heterostrain in heterobilayers enables the formation of arbi-
trarily large moiré lattices as observed in homobilayer
structures. Another important point to note is that due to the
hexagonal symmetry of each layer, neither ϵc nor θ can modify
the moiré lattice geometry that is also hexagonal, i.e., A0

1 ¼ A0
2

and α= 60°, as demonstrated in Supplementary Note 3.
Consequently, different combinations of strain and stacking
angle can lead to the same moiré lattice (but with a relative
rotation). For instance, the dotted lines in both panels of Fig. 2b
describe a unique moiré lattice with A0

1 ¼ A0
2 ¼ 10 nm.

Supplementary Note 4 provides details regarding the direction
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of the moiré lattice with respect to the underlying lattice in the
absence of shear strain.

Uniaxial heterostrain on hexagonal homo- and heterobilayers
We continue by describing the effect of uniaxial heterostrain on
the moiré lattice generated in homo- and heterobilayers using the
same material parameters as in the previous section. Figure 3a
shows a sketch of this situation in which the lower layer is
stretched/contracted along the zigzag direction by applying a
uniaxial strain ϵu. Due to the Poisson effect, the direction
perpendicular to ϵu is deformed by −νϵu, where ν is the Poisson
ratio. In the case where the layer is stretched in the zigzag
direction, the armchair direction is contracted (stretched) if ν > 0
(ν < 0). The upper layer is stacked at an angle θ with respect to the
lower layer. Figure 3b depicts the moiré lattice parameters A0

1
(upper panels) and A0

2 (lower panels) for homobilayer- and
heterobilayer structures (left and right panels, respectively).
Uniaxial strain has a stronger influence on the moiré lattice than
biaxial strain: (i) For uniaxial strain, the moiré lattice parameters A0

1
and A0

2 diverge along curves in the θ− ϵu space instead of a single
point (see red curves in Fig. 3b). (ii) ϵu breaks the degeneracy
between A0

1 and A0
2. (iii) In heterobilayers, uniaxial strain cannot

retrieve the moiré lattice geometry found in homobilayers.
In homobilayers, A0

1 and A0
2 diverge along lines that intersect at

the origin (ϵu= 0, θ= 0). For heterobilayers, these curves do not
intersect but show an avoided crossing behavior instead with
vertices located on the axis θ= 0° (points marked as v1 and v2 on
Fig. 3b). The position of v2 is given by the mismatch of the lattice
parameters between the two layers, which in our case of a MoSe2/
WSe2 heterostructure, is ϵu= 0.4%. The position of v1 is weighted
by νWSe2 , as the deformation on the armchair axis is 19% of that of
the zigzag axis. Now, the vertex is located at −0.4/0.19≃−2.1%. It
can easily be seen that a vanishing Poisson ratio can eliminate
the divergence of the lattice parameters and lattice area in the
negative semi-space. Further information about the effect of the
Poisson ratio on the moiré lattice can be found in Supplementary
Note 7.
Further insight into how uniaxial strain can affect the moiré

lattice geometry can be observed in Fig. 4a, b. Figure 4a shows α
(upper panels) and M (lower panels) as function of ϵu and θ for

homo- and heterobilayers. α is a measure of the strong
geometrical deformation of the moiré lattice. For instance, by
combining θ and ϵu, it is possible to generate a rectangular lattice
(α= 90°), identified by gray dotted lines. On the other hand, for a
1D moiré lattice, indicated by diverging moiré lattice parameters
(red lines in Fig. 3b), A0

1 and A0
2 tend to be collinear, i.e., α→ 0° or

α→ 180°. Note that the divergence of A0
1 and A0

2 also causes a
divergence of the moiré unit cell area, even though these lattice
vectors tend to be collinear. Figure 4b depicts real space images of
some of the accessible moiré lattices by combining ϵu and θ. The
different geometries correspond to the three points marked as I, II,
and III in Figs. 3b and 4a. Point I describes a 1D moiré lattice, point
II a rectangular geometry, and III a hexagonal arrangement.

Shear heterostrain on hexagonal homo- and heterobilayers
We finish our discussion on the effect of heterostrain on moiré
lattices by presenting the case of shear strain (ϵs), once again
employing the same material parameters as in previous sections.
In Fig. 5a, we sketch the different layers and their deformation/
rotation under the influence of ϵs. The case presented corresponds
to a sideways load applied along the zigzag direction on the lower
layer (violet arrows) while the upper layer is stacked at an angle θ.
For simplicity, we will focus our analysis on α and M, shown in
Fig. 5b for homobilayer (left) and heterobilayer structures (right).
As in the case of uniaxial strain, the moiré lattice parameters and
the moiré area diverge along curves in the θ− ϵs space (red lines).
Once again, such divergence is accompanied by the formation of

Homobilayer Heterobilayer

a)

b)

Lower layer Upper layer

(%) (%)

Fig. 3 Deformation of the moiré lattice parameters in hexagonal
bilayers under uniaxial heterostrain. a Schematic of moiré lattice
formation under uniaxial heterostrain ϵu. The deformation of the
lower layer due to strain along a zigzag direction and Poisson ratio ν
are depicted by the arrows. The upper layer was stacked with an
angle θ respect to the lower layer. b Moiré lattice parameters A01
(upper panels) and A02 (lower panels) for the homobilayer- and
heterobilayer structures (left and right panels, respectively) as a
function of uniaxial strain and stacking angle. Spots labeled as I, II,
and III correspond to the different moiré lattices presented in real
space in Fig. 4b and those marked as v1 and v2 identify the vertexes
of the divergence curves in the heterobilayer case.

Fig. 2 Moiré lattice deformation in hexagonal bilayers under
biaxial heterostrain. a Sketch of the moiré lattice formation. To
perform the calculations, the biaxial strain ϵc, indicated through blue
arrows, is applied to the lower layer. The upper layer is stacked with
an angle θ respect to the lower one. b Moiré lattice parameters A01
and A02 as function of biaxial strain and stacking angle for homo-
(left) and heterobilayer (right) structures.
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1D moiré lattices, as the internal angle α tends to 0° or 180°. Again,
the main difference between homo- and heterobilayers is in the
vicinity of zero strain and θ= 0, where for heterostructures, the
divergence curves do not cross (see red lines in the moiré lattice
area). The positions of the vertexes of the curves are located at
±0.4%, since this strain is necessary to fulfill the mismatch
between the lattice parameters of the TMDs. As a confirmation of
the universality of our mathematical description of moiré lattices,
we show similar behavior for moiré patterns formed by
rectangular unit cells, such as a homobilayer of WTe2 in
Supplementary Note 8.
In summary, we have presented a general geometrical

description of the effect of strain in homo- and heterobilayer
systems. We show that heterostrain can be used to form a vast
variety of moiré lattice geometries, independent of the under-
lying lattice size and shape. We demonstrate how an initial moiré
lattice geometry can be tuned into a variety of particular moiré

patterns, e.g., a hexagonal lattice can be made rectangular or
even 1D.

Outlook
Our results are experimentally feasible and can be realized with state-
of-the-art strain tuning setups60–62 (see the Supplementary Material
for further details). Although heterostrain is beginning to be explored
experimentally17,63, most strain-tuning experiments focus on homo-
strain. However, most existing homostrain setups can also achieve
heterostrain by clamping one layer to the substrate while leaving the
other one mechanically decoupled from the substrate64,65. A
thorough presentation of the different experimental setups and
clamping configurations is given in Supplementary Note 5, where we
also display how to apply pure biaxial, uniaxial, or shear strain as well
as their possible combinations.
To verify the influence of strain on the moiré superlattice in a

physical experiment, we propose the use of piezo response force

Fig. 4 Effects of uniaxial heterostrain on the geometry and size of moiré lattices formed from hexagonal bilayers. a Relative angle α
(upper panels) and moiré lattice area M (lower panels) as function of ϵu and θ for the homobilayer (left panels) and heterobilayer structure
(right panels). Gray dotted lines denote configurations in which the moiré lattice is rectangular (α= 90°). The spots labeled as I, II, and III
correspond to the moiré lattices presented in panel b. b Illustration of moiré lattices corresponding to the points labeled as I, II, and III in panel
a and in Fig. 3b. The scale bar in II has a length of 30 nm and is valid for all real space moiré patterns I–III. Case I shows a 1D moiré lattice, II a
rectangular one, and III a hexagonal one.
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microscopy, which measures polarizations arising due to strain
gradients in the moiré52,66. The method is very well established
and allows the local visualization of the moiré lattice for a variety
of different 2D heterostructures. Since piezo response force
microscopy only measures the local moiré geometry, it is an ideal
tool to verify the deformation of the moiré pattern under strain, as
proposed in this paper. The information gained about the size and
shape of the moiré at different strain levels can then be used to
explain electronic and optical observables, like the change in the
photoluminescence emission of moiré excitons from circular
polarization in a hexagonal moiré to linear polarization in a 1D
moiré pattern35,52 or the change in carrier density for strongly
correlated states in the fractional filling of the moiré lattice5–11.
The combination of shear and biaxial strains can become powerful

knobs to modify, on demand, the moiré pattern size and shape. For
example, Fig. 6 presents the combined effect of biaxial and shear
strain in a generic hexagonal homobilayer stacked with θ= 1°. From
the condition ϵc= ϵs= 0, it is possible to change U/t, in situ, by
tuning the size of the moiré pattern through biaxial strain (point
ϵc= ϵs= 0 to point III or to point IV). On the other hand, light green
lines in the plot depict the condition A0

1 ¼ A0
2. Varying the shear

strain along the line that connects point I with II modifies the ratio
A0
1=A

0
2 which realizes a triangular Hubbard model with two tunable

hopping parameters t1 and t2. Finally, the point labeled as V in Fig. 6

presents a lattice in which the effect described in ϵc= ϵs= 0 can be
equivalently applied to a perfect square lattice. The fact that all these
moiré patterns are accessible within one experiment highlights the
potential of this novel approach. Moiré straintronics offers a powerful
new avenue to explore highly correlated quantum systems. As
commonly known, once the sample is fabricated, it is usually not
possible to tune the stacking angle. Furthermore, achieving precise
rotational alignment within the necessary accuracy required near
critical points, such as in magic-angle graphene, is very challenging
with state-of-the-art fabrication procedures41. In contrast to twist
angle tuning29, strain can be applied much more precisely with an
accuracy corresponding to 0.0001° in the twist angle (as shown in
Supplementary Note 5). In ref. 67, it is shown that flat bands in twisted
bilayer graphene can be achieved at an angle of 1.25° when a
compressive shear strain of 0.36% is applied to a single layer. Hence,
the twist angle set during the fabrication can provide a rough
alignment knob, while heterostrain can be used to fine-tune the
moiré lattice. Furthermore, heterostrain offers an additional mechan-
ism to generate flat bands in graphene31,38,63,67,68 or tune highly
correlated moiré quantum materials around critical points in the
phase diagram28. Especially in twisted bilayer graphene, shear
heterostrain not only alters the moiré miniband bandwidth but also
lifts the particle-hole symmetry and breaks the valley degeneracy of
the system32,67. A recent experiment in an ex-situ shear

Lower layer Upper layer

HeterobilayerHomobilayer
b)

a)

(%) (%)

Fig. 5 Moiré lattice deformation in hexagonal bilayers under shear heterostrain. a Scheme of the moiré lattice formation under shear
heterostrain ϵs. The deformation of the lower layer due to shear strain along the zigzag direction is depicted through arrows. The upper layer
was stacked with an angle θ respect to the lower one. b Relative angle α (upper panels) and moiré lattice area M (lower panels) as a function of
shear strain ϵs and stacking angle θ for homobilayer (left panels) and heterobilayer (right panels) systems. Gray dotted lines denote
configurations in which the moiré lattice is rectangular (α= 90°).
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heterostrained bilayer graphene near the magic angle showed a
zero-energy flat band indicating the possibilities of in situ tunable
heterostrained systems67,69.
On the other hand, our mathematical framework presents an

important starting point for exploring reconstructed moiré lat-
tices17–22. Finally, the capability to in situ tune the geometry and the
interaction strength in highly correlated moiré quantum systems is,
to the best of our knowledge, unprecedented. We, therefore, expect
strain tuning of moiré materials will have a major impact on the
exploration of highly interacting quantum systems, from fine-tuning
magic-angle graphene to the realization of moiré quantum
simulators for Luttinger liquids, the Hubbard model, and beyond.

DATA AVAILABILITY
The data presented were generated from the mathematical algorithm outlined in the
main text.

CODE AVAILABILITY
Code for geometrical illustrations of (hetero)strained moiré patterns with the
calculated moiré lattice as those presented in Fig. 6 can be found in https://
github.com/QuantumPhotonicsLab/Strained-Moire-Visualization.
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