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The importance of the image forces and dielectric environment
in modeling contacts to two-dimensional materials
Madhuchhanda Brahma1, Maarten L. Van de Put1, Edward Chen2, Massimo V. Fischetti 1 and William G. Vandenberghe 1✉

The performance of transistors based on two-dimensional (2D) materials is affected largely by the contact resistance due to high
Schottky barriers at the metal-2D-material interface. In this work, we incorporate the effect of surrounding dielectrics and image-
force barrier-lowering in calculating the resistance of Schottky edge-contacts between a metal and a transition-metal
dichalcogenide (TMD) thin layer. The electrostatic potential is computed by solving the Poisson equation numerically. The
transmission probability is computed using the Wentzel–Kramers–Brillouin (WKB) approximation using the full-band density of
states obtained from density functional theory (DFT). The effect of the image force is obtained analytically using the Coulomb
kernel of a point charge with boundary conditions appropriate to the geometry we have considered. We find that the image-force
barrier-lowering (IFBL) in edge-contacts is determined mainly by the dielectric permittivity of the surrounding oxide. We find that
low-κ surrounding dielectrics are crucial for obtaining low resistance monolayer-TMD edge-contacts. Our results show metal-to-
n(p)-type MoS2 (WSe2) edge-contacts with SiO2 as top and bottom insulators, a doping concentration > 1 × 1013cm−2 and a metal
work-function < 5.1 eV ( > 4.6 eV) result in a contact resistance as low as 50Ω ⋅ μm.
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INTRODUCTION
In scaled Si-based field-effect transistors (FETs), reducing the
thickness of the Si body is accompanied by severe short-channel
effects which degrade device performance. In order to extend the
complementary metal-oxide-semiconductor (CMOS) technology
road-map beyond Moore’s law, atomically thin 2D materials, such
as graphene, hexagonal boron nitride (h-BN), transition metal
dichalcogenides (TMDs), such as MoS2, WS2, MoSe2, WSe2, and
MoTe2, silicene, phosphorene1–5, are being studied extensively as
candidates for nanoelectronic and optoelectronic applications2,6–11.
A low contact resistance is essential for a high on-current in

FETs. However, metal-TMD contacts are characterized by high
Schottky barriers7,12–16 which make it difficult to achieve silicon-
like contact resistance (<0.2 kΩ ⋅ μm) and severely limit the drive
current in such devices. Semiconducting MoS2, one of the widely
studied TMDs considered as channels in 2D FETs, shows contact
resistance values usually higher than 1 kΩ ⋅ μm12–15. One of the
lowest contact resistance values reported for multilayer MoS2 FETs
is 0.54 kΩ ⋅ μm with an on-current of 830 μA/μm at 300 K17. Phase-
engineered metallic 1T MoS2, when used as electrode, demon-
strated significantly low contact resistance such as
0.2− 0.3 kΩ ⋅ μm with an on-current of 100 μA/μm for multilayer,
and 0.2 kΩ ⋅ μm with on current of 110 μA/μm for monolayer MoS2
channel18,19. n-doping of MoS2 by AlOx has also resulted in FETs
with Au contacts and monolayer MoS2 as channel, exhibiting a
resistance as low as 0.48 kΩ ⋅ μm with an on-current 700 μA/μm 20.
To date, the lowest contact resistance reported is 0.13 kΩ ⋅ μm,
which was obtained by using semi-metal contact (semi-metallic
bismuth on MoS2)21. However, low melting temperature (250°C)
limits its application. Another TMD that has been of interest due to
its p-type behavior is WSe2 which has been shown to exhibit
contact resistance as low as 0.3 kΩ ⋅ μm with an on-current of
300 μA/μm 22. In these studies, the top-contact configuration had
been used where a 3D bulk metal sits directly on top of the TMD

semiconducting layer. Apart from top contacts, edge-contact
TMDs are also being studied. Cui et al. demonstrated h-BN
encapsulated MoS2 thin layers in contact with graphene-metal
edge contacts23. Choi et al. studied a multilayer hBN-encapsulated
MoS2 edge-contact on a SiO2/Si substrate24, whereas Yang et al.
showed fermi-level depinning in plasma-etched MoS2 metal edge-
contacts25. Cheng et al. demonstrated how they utilized in-situ
etching for contact metal deposition and obtained a contact
resistance of 30 kΩ ⋅ μm at a channel electron density of
1.2 × 1012 cm−226. Recently, a contact resistance as low as
27.8 kΩ ⋅ μm has been reported for edge-contacts with contact
metal Ti-Au and monolayers of MoS2 encapsulated by h-BN, while
retaining an on-current comparable to what is obtained using top-
contacts (>50 μA/μm)27.
Although there has been an extensive experimental investiga-

tion of the contact geometry in 2D FETs, theoretical studies are
limited. Some of the studies have employed first-principles and
transport calculations using non-equilibrium Green’s functions, to
investigate the electronic structure at the interface of both top
and edge-contacts and to extract the Schottky barrier heights28–30,
whereas other study investigated dominant current mechanisms
in vertical transport through TMD hetero-structures31. A study
incorporating ab initio quantum-transport simulations to predict
the influence of transfer length and interfacial oxide on the carrier
injection process through metal-TMD contacts has also been
recently reported32. Other theoretical studies on the resistance of
metal-TMD contacts calculate the electrical resistance for a
simplified problem without incorporating the effect of the
Schottky barrier33,34. However, all these studies exclude the effect
of the surrounding dielectrics, an effect which is shown to be
important in such 2D geometry35,36. Another critical effect that
controls the properties of contacts is the barrier lowering caused
by the image force which has not received any attention for 2D
materials.
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In this work, we intend to focus on the importance of the
surrounding dielectric and image-force barrier-lowering on the
contact resistance of metal-TMD edge-contacts. Our model
assumes an ideal Schottky interface ignoring a possible change
of the atomic morphology of the interface and treats the injection
mechanism in a simplified way. We have preferred this geometry
for the computational simplicity it affords and for its presumable
advantage of not involving tunneling across a van der Waals gap.
Despite this restriction, our results regarding the beneficial role of
high doping and low-κ insulators should apply to more general
contact geometries, such as top-contacts. We use the full-band
density of states of the TMDs obtained from density functional
theory (DFT), and the WKB approximation to calculate the
transmission probability through the Schottky barrier at the
metal-TMD interface, including also the important effect of image-
force barrier-lowering on the TMD potential. However, our
ultimate goal consists in emphasizing the major effects played
by the Schottky barrier, by its reduction due to the image
potential and, most notably, by the surrounding dielectrics (due to
the monolayer nature of the semiconductor), effects that remain
important, if not even dominant, regardless of the models
employed to treat the interface. Specifically, as a simple
consequence of the Poisson equation, our results emphasize the
role of a high doping concentration and a low surrounding
dielectric permittivity to obtain the best contact resistance.
We organize the paper as follows: We first show our results,

discussing the values of the contact resistance we have obtained,
and the role played by the different choices of the parameters we
have used. Next, we describe the numerical and mathematical
approach we have used. Finally, we draw our conclusions.

RESULTS AND DISCUSSION
Edge-contact geometry and calculation of contact resistance
In Fig. 1a, b, we illustrate the geometry we consider: A semi-
infinite TMD monolayer “sandwiched” between very thick top and
bottom dielectrics (tdielectric >> t2D), with a metal contact on the
side. We consider two types of monolayer TMDs namely MoS2 and
WSe2 as the channel material. We first present n-type monolayer
MoS2 to shed light on our main findings. We consider an infinitely
wide device and assume translational invariance along the y
direction. The transport is along the x direction. We consider the
same dielectric material as top and bottom insulators, either SiO2

or HfO2. We use anisotropic dielectric permittivity for the TMDs37.
We consider a piece-wise homogeneous isotropic dielectric
permittivity for the top and bottom insulators, 3.9ϵ0 and 25ϵ0
for SiO2 and HfO2, respectively.
We have calculated the transmission probability through the

Schottky barrier invoking the WKB approximation with an
electrostatic potential calculated accounting also for the effect
of the image-force barrier-lowering. To obtain the electrostatic
potential in the TMD, we solve self-consistently the Poisson
equation using the finite elements-based package, FEniCS38,39

over the 2D cross-section shown in Fig. 1b. We assume that the
contact clamps the potential at the metal-TMD/metal-oxide
interface; that is, the metal is assumed to be a region of constant
potential. More details on the computational approach for
calculating the contact resistance is available in the “Methods”
section.

Importance of the surrounding dielectric
Figure 2 shows our main result, the calculated contact resistance
as a function of doping concentration, in bulk MoS2 and edge-
contact geometry of MoS2 monolayers (n-doped) with either SiO2

(MoS2/SiO2) or HfO2 (MoS2/HfO2) as top and bottom insulators. We
see that increasing the doping concentration reduces the contact
resistance, a trend that is consistent with what is observed in

metal-bulk-semiconductor contacts. Interestingly, we find that in
the presence of a low-κ surrounding dielectric, such as SiO2,
monolayer MoS2 presents a lower contact resistance than its bulk
counterpart. Contact resistances calculated excluding the effect of
IFBL are shown for each case of the surrounding dielectric in
Supplementary Fig. 1 of the Supplementary Information. We show

a

b

Fig. 1 Schematic of an edge-contact. a Edge-contact geometry
considered in our model. b 2D cross-section of the edge-contact
geometry (metal not shown). The middle layer is monolayer MoS2
“sandwiched” between infinitely-thick top and bottom oxides
(tdielectric >> t2D, where t2D and tdielectric denote the thickness of the
TMD and oxide layers, the values of which are 0.62 nm and 50 nm,
respectively). The Poisson equation is solved over this 2D cross-
section.

Fig. 2 Contact resistance of monolayer MoS2 edge-contact.
Calculated contact resistance vs. doping concentration for bulk
and monolayer MoS2 edge contacts at a Schottky barrier height of
0.3 eV. MoS2 monolayers “sandwiched” between SiO2 or HfO2 are
labeled as MoS2/SiO2 and MoS2/HfO2, respectively. The bottom and
top x axes denote the 2D and bulk doping concentration in MoS2,
respectively. The lowest contact resistance is achieved for MoS2 with
top and bottom insulators as SiO2.
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a similar plot with the contact resistance of p-WSe2 in
Supplementary Fig. 2 of the Supplementary Information. However,
it should be noted that barrier-lowering due to image force, is a
physical phenomenon, arising when a metal encounters a
semiconductor, an effect that is always present in metal contacts.
The improvement in contact resistance in monolayer MoS2 (and
WSe2) due to barrier-lowering is the largest, ~40 times (~30 times),
when the surrounding dielectric is SiO2 compared to HfO2, which
gives ~5 times improvement, as illustrated in Supplementary Figs.
1 and 2 of the Supplementary Information. We also find that to
achieve a contact resistance of 50Ω ⋅ μm, monolayer MoS2 and
WSe2 require to be doped at a concentration >1 × 1013 cm−2.
Thus, from Fig. 2 it is apparent that the surrounding dielectrics
affect very strongly the electrostatic behavior of such 2D
geometries.
While a direct comparison of our results to experiments is beyond

the scope of this work, below we discuss some of the experimental
studies. Values of the contact resistances reported below were
extracted and reported by Parto et al.30. A multilayer hBN-
encapsulated MoS2 edge contact on a SiO2/Si substrate39 was
studied by Choi et al. where a contact resistance of 6 × 102 kΩ ⋅ μm
was obtained at a channel electron density of 2 × 1012 cm−2 with
Mn as contact metal30. Chai et al. studied a monolayer MoS2 edge-
contact (encapsulated by hBN and SiO2 as gate dielectric)40,
obtaining a contact resistance of 3 × 103 kΩ ⋅ μm at a channel
electronic density of 4 × 1012 cm−2 and Sc/Ni contact metal30. h-BN
encapsulated monolayer MoS2 edge-contact on Si/SiO2 substrate
studied by Moon et al.41 had a contact resistance of 103 kΩ ⋅ μm at
an electron density of 4 × 1012 cm−230. Furthermore, from Fig. 2 in
ref. 30, we find that the values of the edge-contact resistance in
monolayer MoS2 range from 40 kΩ ⋅ μm to 4 × 103 kΩ ⋅ μm as the
electron density spans the range 1012 cm−2 to 2 × 1013 cm−2. These
values are larger than our calculated values. Note that in our model
we ignore the complexities of the interface between the metal and
TMD, neglecting, for example, the nature of the chemical bond, the
effects of disorder, of interface polarization, of changes in the band
offset, of Fermi-pinning, and of phonon scattering. This allows us to
treat the contact as an abrupt heterostructure and adopt the

idealized mesoscopic approximation of assuming that the band
structure of the bulk metal changes to the TMD band-structure at
the point of contact. More advanced calculations are therefore
needed to predict accurately the absolute contact resistance.
Despite these limitations, our work highlights the importance of
the image-force barrier lowering and the surrounding dielectric,
effects that are largely ignored in more advanced calculations. We
will show that these electrostatic effects, which rely only on the
Coulomb interaction and geometry, have a surprisingly strong
influence on the contact resistance and even drive the design of the
dielectric layers around the metal-TMD contact.
Considering the physics that governs the contact, the dielectric

response of the surrounding material enters in two ways. First, the
length of the depletion region in the 2D material is affected by the
surrounding dielectric. Second, the image-force barrier-lowering
effect, resulting from the attractive force emerging from the metal,
becomes stronger with a surrounding dielectric material having a
lower dielectric constant. The first effect is illustrated in Fig. 3 and
the second in Fig. 4.

Depletion width
Figure 3a–c shows the contour maps of the 2D potential energy
with electric field lines whereas Fig. 3d shows the potential
energy, obtained as 1D cut of the 2D potential energy, along the
center of the MoS2 channel. From Fig. 3a–c, we find that the
electric field is screened more effectively in bulk, compared to 2D
MoS2 monolayers. Monolayer TMDs are subject to strong fringing
fields permeating the surrounding dielectric. As a result, a high-κ
dielectric such as HfO2 reduces screening. A direct consequence of
weaker screening is a larger depletion width as shown in Fig. 3d.
The potential energy in bulk MoS2 falls sharply with the smallest
depletion width. 2D MoS2 surrounded by HfO2 exhibits a larger
depletion width in contrast to SiO2. A larger depletion width
results in a thicker tunneling barrier and, therefore reduces the
transmission probability through the Schottky barrier at the metal-
TMD interface. This is one of the reasons that we see higher
contact resistance in MoS2 surrounded by high-κ dielectric such as
HfO2.

Fig. 3 Potential energy. Contour plots of potential energy with electric field lines for a bulk MoS2, monolayer MoS2 surrounded by b SiO2 and
c HfO2, and d potential energies obtained from 1D cuts of the 2D potential energy along the center (z= 0) of the monolayer, at a Schottky
barrier height of 0.3 eV and doping concentration of 1 × 1012 cm−2.
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Image-force barrier lowering
The second effect, the image-force barrier-lowering (IFBL), consists
in the reduction of the effective barrier height due to the presence
of image charges inside the metal contact. The metal region must
maintain a constant potential as an electron tunnels through the
Schottky barrier. The role played by the IFBL is illustrated in Fig. 4
which shows the potential energy as in Fig. 3, but now accounting
for the IFBL at a fixed doping concentration in the two extreme
cases of SiO2 (Fig. 4a) and HfO2 (Fig. 4b). The magnitude of barrier
lowering is the difference between the peak of the no-IFBL and
IFBL potential energies (shown by the arrow in Fig. 4). We observe
that at a low doping concentration (ND= 1 × 1012 cm−2), the
conventional (as used in bulk semiconductor contacts) barrier-
lowered potential, 1/(16πϵx) 42, ϵ being the permittivity of the
surrounding dielectric, describes the barrier lowering in the
contact quite well (it only underestimates the barrier by
0.0039 eV and 0.0005 eV in MoS2/SiO2 and MoS2/HfO2, respec-
tively.) However, as the doping concentration increases and
tunneling occurs closer to the contact, the conventional bulk

model fails to capture the barrier lowering accurately (see “Image
potential” in “Methods” section for more details). The thickness of
the barrier plays a particularly strong role, and it is also strongly
modulated by the dielectric constant of the surrounding insulator.
In Fig. 4, we observe that barrier narrowing is larger in MoS2/SiO2

than MoS2/HfO2, in addition to barrier lowering. These improve
the tunneling and thermionic emission, respectively, and overall
lead to a decrease in contact resistance.

Monolayer n-MoS2 and p-WSe2 edge-contact
In, Fig. 5a, b, we show the map of contact resistance as a function
of metal work-function, Schottky barrier-height and doping
concentration, for n-type MoS2 and p-type WSe2 with SiO2 as
top and bottom insulators. The x axis denotes the doping
concentration whereas the left and right y axes denote the metal
work-function and the Schottky barrier-height, respectively. The
electron affinities (χ) of MoS2 and WSe2, determined from DFT
calculations are 3.96 eV and 3.36 eV, respectively. Schottky barrier-
height in n-type semiconductor is calculated as ϕBn= ϕM− χ and
in p-type as ϕBp ¼ χ þ Eg

e � ϕM, where ϕM is the metal work-
function and Eg is the energy band-gap which is found to be
1.76 eV in monolayer WSe2 from DFT calculation. Therefore, as the
metal work-function increases, the Schottky barrier-height
increases in n-type and decreases in p-type materials.
In order to obtain a contact resistance as low as 50Ω μm, both

structures require a doping concentration > 1 × 1013 cm−2. How-
ever, n-type MoS2 and p-type WSe2 require metals with work-
function < 5.1 eV and > 4.6 eV, respectively. These contour plots
can be viewed as a guideline for the selection of contact metal
and doping concentration for various edge-contact 2D materials,

Fig. 4 Image-force barrier-lowered potential energy. Potential
energy along the center of the monolayer calculated ignoring
image-force barrier-lowering (black solid line), the “correct” 2D
solution (red dashed line) using our model, and the bulk model for
the barrier lowering (blue dashed-dot and green dotted lines, using
TMD and insulator permittivity, respectively), at a Schottky-barrier
height of 0.3 eV and a doping concentration ND= 1 × 1012 cm−2,
assuming the same top and bottom dielectric materials which are
a SiO2 and b HfO2. ΔϕB denotes the barrier lowering.

Fig. 5 Contact resistance map. Contour plot of contact resistance
as function of metal work function and Schottky barrier-height in
a n-type MoS2 and b p-type WSe2, with top and bottom insulator as
SiO2.
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thereby narrowing down the material and design selection space
for expensive experimental device fabrication.

WKB vs. NEGF
We use a finite elements solver to solve the Poisson equation and
the WKB approximation to calculate the contact resistance. To
understand why we opt for the Poisson-WKB approach instead of
the atomistic Non-Equilibrium Green’s function (NEGF) approach
used by other recent studies on contacts30, we provide an estimate
of the depletion length that needs to be considered. For the lowest
doping concentration, 1012 cm−2, the highest dielectric constant
dielectric, HfO2, and the highest Schottky barrier ϕSB= 0.7 V, the
2D depletion width is estimated as ϕSBπϵ=ðð4ÞeNDÞ ¼ 219nm36.
Even at high doping concentration, a relatively large simulation
domain, much larger than typically used in DFT, is still required.
Dealing with simulation domains on this order of magnitude
makes the use of atomistic NEGF codes43–45 computationally
prohibitive whereas solving the Poisson equation and using the
WKB approximation can yield an accurate value of the contact
resistance. Moreover, to match our results, one must employ
hybrid DFT functionals and include spin-orbit coupling. The large
number of k-points required to reach convergence for the
calculation of the current adds to the computational expense.
Moreover, only results obtained ignoring image-force barrier
lowering could be compared with the DFT+NEGF code.
To assess the accuracy of the WKB approximation, we

implement an effective mass NEGF calculation46 and compare
with the WKB. In Fig. 6, we show the plot of the contact resistances
calculated using both the WKB approximation and the NEGF, at a
Schottky barrier height of 0.3 eV for MoS2 surrounded by SiO2 or
HfO2. It should be noted, that the NEGF calculations use a full
effective-mass Hamiltonian whereas the WKB calculations are
done using the band structure from DFT. We treat both ‘ideal’ and

‘metal’ contact in our NEGF model. The details of the calculation
are discussed in the ‘Methods’ section. If we compare the contact
resistances obtained from the WKB approximation with those
from the ‘ideal’ contact-NEGF formalism, we see that the values
are very close, with the WKB approximation resulting in a slight
overestimation of the conductance with respect to the NEGF.
Moreover, we find that the contact resistances calculated by the
‘metal’ contact-NEGF formalism depends on the self-energy or the
coupling strength. The stronger the coupling, the better the
contact resistance. However, based on this NEGF estimate, it
appears that by using SiO2 rather than HfO2 results in a more
noticeable improvement of the contact resistance than what is
obtained by increasing the bond strength by a factor 20.
Therefore, the main conclusion of our work (namely: low-κ
dielectrics are better candidates to obtain low resistance contacts
in 2D materials), still holds.
In summary, we have simulated the transmission through

metal-2D-materials edge-contacts with Schottky barrier at their
interface, using the WKB approximation, and DFT density of states,
and obtained the contact resistance. We have shown how the
Schottky barrier height, the doping concentration, and the
surrounding dielectric environment largely control the electro-
statics in 2D devices by considering cases with both low and high-
κ oxides.
The primary finding of our study is that low-κ top and bottom

insulators surrounding monolayer TMDs result in a low contact
resisitance, outperforming bulk TMD contacts, thanks to a smaller
depletion length and a higher image-force barrier-lowering. We
find that, contrary to the bulk case, image-force barrier-lowering in
edge-contact 2D devices is determined by the dielectric
permittivity of both the surrounding oxide and the TMD. We
have also compared the contour plots of contact resistance in two
of the most widely studied TMD materials, n-type MoS2 and p-type
WSe2 as a function of metal work-function and Schottky barrier-
height, which can be considered as guidelines for the fabrication
of realistic edge-contact 2D devices.

METHODS
DFT calculation
We performed DFT calculations for bulk MoS2, monolayer MoS2
and monolayer WSe2, using the Vienna Ab initio Simulation
Package (VASP)47–50. We first ran geometry optimization until the
maximum force on every atom dropped below 0.01 eV/Å. We
employed the generalized gradient approximation (GGA) with the
projector-augmented wave (PAW) method51 using the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional52. A large
vacuum space of 30Å was used along the z direction to avoid
interaction between successive layers. We used the DFT-D3
dispersion correction of Grimme53 to describe van der Waals
interactions and accurately calculate the interlayer distance.
Thereafter, we used the relaxed structure to perform electronic
calculations.
For monolayer TMDs, we first calculated the band structure on a

coarse mesh followed by interpolation on a finer mesh by using
Maximally Localized Wannier Functions (MLWF) generated by the
Wannier90 code54. The interpolation preserves the accuracy of the
DFT calculations at a lower computational cost. We used the Heyd-
Scuseria-Ernzerhof (HSE06) hybrid functional55 with spin-orbit
coupling and an electronic convergence of 10−6 eV. To compute
the band structure we sampled the Brillouin zone with a Γ-
centered 8 × 8 × 1 and 8 × 8 × 4 k-mesh in monolayer and bulk
TMDs respectively. We used the d and p orbitals of the metal and
chalcogenide atoms as Wannier projectors to interpolate the DFT
band structure on a denser 100 × 100 × 1 k-mesh in monolayer
TMDs, which was then utilized in calculating the transmission
probability.

Fig. 6 Contact resistance with WKB and NEGF. Contact resistance
vs. doping concentration for MoS2 edge-contacts at a Schottky
barrier height of 0.3 eV using WKB and NEGF. Values obtained with
WKB approximation show a good match with those calculated by
NEGF with “ideal” contacts.
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The Poisson equation
We obtained the potential inside the TMD layer by solving the 2D
Poisson equation (in the (x, z) plane) self consistently with the
charge determined from the full-band density of states. The 2D
Poisson equation in a metal-n type semiconductor contact is:

∇ � ½ϵðx; zÞ∇Vdepðx; zÞ� ¼ e½NDðx; zÞ � n0ðx; zÞ� (1)

where ND(x, z) and n0(x, z) are the n-type doping concentration
and electron carrier density, respectively, Vdep(x, z) is the 2D
depletion potential, and ϵðx; zÞ is the dielectric permittivity tensor.
The in-plane dielectric constant values used for monolayer MoS2,
WSe2 and bulk MoS2 are 15.5ϵ0,15.6ϵ0 and 15.9ϵ037, whereas the
out-of plane values are 6.2ϵ0, 7.4ϵ0 and 6.9ϵ0, respectively, with ϵ0
being the vacuum permittivity. We calculated the electron density
from the DFT band structure as:

n0 ¼ 2
X
n

Z
f ½EnðkÞ� dk

2πð Þ2 :
(2)

where, En(k) denotes the full-band dispersion obtained from DFT,
n is the band index for the monolayer TMD, and k is the two-
dimensional wave-vector.
The simulation domain for solving the 2D Poisson equation is a

rectangle (see Fig. 1) with a TMD layer “sandwiched” between
50 nm-thick oxide layers. The thickness of the TMD layer was
determined from the relaxed geometry obtained with DFT, and was
found to be 0.62 nm and 0.65 nm for monolayer MoS2 and
monolayer WSe2, respectively. We used Dirichlet boundary condi-
tions at the metal contact and Neumann boundary conditions on
the other sides (thus ignoring any effect of a gate bias). The size of
the simulation domain is 100.62 nm× 400 nm. The top and bottom
oxide thickness is substantially greater than the thickness of the 2D
layer to ensure minimal impact of the Neumann boundary
conditions on the electrostatics of the 2D layer36,56.
We solved Eq. (1) numerically by finite-elements in FEniCS38,39. We

used the built-in mesh generator of FEniCS to generate a structured
mesh of 1000 × 250 elements throughout the computational
domain and further refined it at the metal-semiconductor interface
to accurately capture the high electric fields near the metal.

Contact resistance
Owing to the very high density of states in the metal and high
Schottky barrier-height, we assumed that the transmission
probability is governed only by the states in the semiconducting
monolayer TMD. We also conserve parallel momentum, which
results from our assumption of translational invariance along the y
direction. We calculated the contact resistance for edge-contact
2D monolayers as the inverse of ballistic conductance modulated
by the probability of the carriers injected through a Schottky
barrier57, using the following:

1
ρc

¼
Z 1

�1

2e2

h

Z X
n

Z
δ½E � EnðkyÞ�dEnðkyÞ

� �
Tnðky; EÞ

" #
dky
ð2πÞ

( )
�∂f ðEÞ
∂E

����
����dE

(3)

¼
Z 1

�1

2e2

h

Z X
n

Mnðky; EÞTnðky ; EÞ
" #

dky
2π

( )
∂f ðEÞ
∂E

����
����dE (4)

where ρc denotes the contact resistance, e is the electronic charge,
h is Planck’s constant, n is the band index for the monolayer TMD,
ky is the parallel wave-vector, and f(E) is the Fermi-Dirac
distribution function. En(ky) was calculated from the full band
DFT energy band-dispersion. T(ky, E) is the transmission probability
as a function of energy E and ky. M(ky, E) denotes the number of
conducting channels at the energy of interest, and would result in
the ballistic conductance if the WKB integral was not present. We
calculated Eq. (4) numerically from the energy band dispersion
obtained with DFT.

Following the WKB approximation, we have the transmission
probability, T(ky, E) < 1, for carriers tunneling through the Schottky
barrier, and T(ky, E)= 1, for carriers injected over the top of the
barrier. The transmission probability was calculated as:

Tnðky; EÞ ¼ exp �2
Z xmax

xmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�

nðkyÞ
_2

E � UðxÞ � En;minðkyÞ
� �

s
dx

0
@

1
A

(5)

where m�
nðkyÞ is the tunneling effective-mass computed numeri-

cally using finite difference from the DFT energy band structure,
xmin and xmax denote the start and end of the depletion region, E is
the energy of the carriers, and En;minðkyÞ is the band-edge
obtained from the DFT energy band structure. U(x) is the barrier-
lowered potential energy where U(x)= Udep(x)+ Uimage(x). Udep(x)
is the Schottky depletion potential energy which was obtained
from the 1D cut of the 2D depletion potential at the center of the
monolayer TMD along the transport direction. Uimage(x) is image-
force potential energy. The potential energy is related to the
electrostatic potential by the relation Udep(image)=− eVdep(image).

Image potential
In order to calculate how the image force lowers the height of the
Schottky barrier in our 2D geometry, we first computed the
Coulomb kernel for a charged particle somewhere in the middle of
the monolayer shown in Fig. 7. The effect of the metal was
ignored in this first step and accounted for next by the method of
images. The equation for the Green’s function of the Poisson
equation in our geometry is:

∇ � ½ϵðrÞ∇V imageðrÞ� ¼ δðrÞ: (6)

where r is the three-dimensional position vector, Vimage(r) stands
for the image potential, ϵ(r) is the dielectric permittivity, and δ(r) is
the point charge source.
We considered circular symmetry and applied the Hankel or

Fourier-Bessel transform of zeroth order on Eq. (6). We used the
relation, V̂ imageðQÞ ¼

R1
0 rV imageðrÞJ0ðQrÞdr, (where, Q is the

Fig. 7 Dielectric environment for the image force. Schematic of
the structure where we compute the Coulomb kernel with a point
charge located at z= 0. The top and bottom oxides have a
homogeneous isotropic permittivity, whereas the middle (2D)
semiconductor has an anisotropic permittivity.
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transformed Hankel coordinate and is reciprocal to r, and J0 is the
Bessel function of the first kind of order zero), to derive the
following partial differential equation:

ϵ?
∂2V̂ imageðQ; zÞ

∂z2
þ ϵkQ2V̂ imageðQ; zÞ ¼ δðzÞ (7)

where ϵ⊥ is the out-of plane dielectric permittivity and ϵ∥ is the in-
plane dielectric permittivity of the 2D layer.
The boundary conditions for the potential are continuity of

V̂ imageðQ; zÞ and electric displacement ðϵ? dV̂ imageðQ; zÞ
dz Þ at z= 0, and

z ¼ ± a ¼ t2D
2 , V̂ imageðQ; zÞ ¼ 0 at z= ±∞ and a discontinuity due

to the source at z= 0 for V̂
0
imageð0þÞ � V̂

0
imageð0�Þ ¼ 1

ϵ2DQ
. Using

these boundary conditions we obtained six linear equations with
six unknown coefficients, whose solution is:

V̂ imageðQ; z ¼ 0Þ ¼ � 2e2aβQ ϵ2D coshðaβQÞ þ ϵbot sinhðaβQÞ½ � ϵ2D coshðaβQÞ þ ϵtop sinhðaβQÞ
� �

ϵ2DQ ðϵ2D � ϵtopÞðϵbot � ϵ2DÞ þ ðϵ2D þ ϵtopÞðϵ2D þ ϵbotÞe4aβQ
� �

(8)

where, ϵtop and ϵbot are the top (z > a) and bottom (z < a) oxide
dielectric permittivity, the thickness of the middle 2D layer

(−a < z < a) is 2a, ϵ2D ¼ ffiffiffiffiffiffiffiffiffiffi
ϵkϵ?

p and β ¼
ffiffiffiffi
ϵk
ϵ?

q
.

Finally, the real space potential Vimage(x) at (x, 0) due to the
point charge at (x, z= 0) was obtained numerically58 as the 2D
Fourier-Bessel or Hankel transform of Eq. (8) and calculated as:

V imageðx; 0Þ ¼ e
2π

Z 1

0
V̂ imageðQ; z ¼ 0ÞJ0ðxQÞQdQ (9)

where, J0 is the Bessel function of the first kind of order zero.
We then used the method of images to account for the metal

contact and to evaluate the image potential energy. It is defined
as the (negative) work done to bring a charge e from infinity to a
distance x from the metal-2D interface (at a distance 2x from the
image charge) and is given by:

UimageðxÞ ¼ e
Z x

1
dx0

dV imageð2x0; 0Þ
dx0

(10)

which equals e
2 V imageð2xÞ.

Finally, we show in Fig. 8, the plot of j4πxV imageðxÞj�1 with
respect to x. Here, x denotes the distance of the point charge from
the metal-TMD interface, and Vimage(x) is the calculated image
potential for a point charge located in the middle of the MoS2

monolayer in the presence of different surrounding dielectrics.
Asymptotically, we see that at distances much larger than the
layer thickness (x >> t2D), the quantity j4πxV imageðxÞj�1 matches
the dielectric constant of the surrounding oxide, which implies
that the barrier-lowered potential behaves as 1/(ϵdielectricx). On the
other hand, when x << t2D, the 2D-material dielectric constant
dominates, as in the bulk case, and the barrier-lowered potential
behaves as 1/(ϵ2Dx). When x ≈ t2D, a numerical evaluation is
required to obtain the correct result. For x >> t2D, the conventional
bulk model42 (using oxide permittivity) matches the correct
solution but fails when x << t2D.

Calculation of contact resistance using NEGF
We used an effective-mass Hamiltonian to compute the transmis-
sion with NEGF formalism. We calculated the effective mass of
monolayer MoS2 along the transport direction x from the DFT band
structure using finite differences. We solved the retarded Green’s
function as a function of ky and discretized using Δky= 2πn/
(150 nm). We used the same electrostatic potential as in the WKB
calculations. The barrier lowered potential needs to be truncated to
avoid the singularity at x= 0 that occurs when ignoring the self-
consistent many-body effects considered in ref. 59. For simplicity,
we just truncated the potential at U=− 1 eV. We chose a spacing
of 0.4 nm to discretize the effective-mass Hamiltonian and 0.003 eV
to discretize the energy range. In the WKB approximation, we
assumed ideal metal contacts and ignored any band-structure
mismatch. However, under the NEGF formalism, we calculated the
transmission by considering both ‘ideal’ and ‘metal’ contacts. In
case of ‘ideal’ contacts, the contacts were considered as an
extension of the device, and the surface Green’s function was used
to compute the self-energy46. On the contrary, the ‘metal’ contacts
were treated using the wide-band limit60–63, and the contact self-
energy was represented as purely imaginary and energy-indepen-
dent, Σ(E)=− it061,64,65, and related to the coupling of the active
region (the 2D TMD channel) to the metal via chemical bonds. A
stronger coupling strength between the metal and the semicon-
ductor was captured by a higher value of t0. To illustrate this effect
on the contact resistance, we had chosen two values of Σ
(Σ(E)=− i0.03 and Σ(E)=− i0.1), to capture a bond that is ~20
times weaker and a bond that is ~6 times weaker than the bond in
the TMD.
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