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Exploration of two-dimensional molybdenum-borides
and potential applications
Junjie Jin1 and Udo Schwingenschlögl 1✉

The recent discovery of MBenes has generated interest in two-dimensional metal-borides, which are expected to show rich
electrochemical properties. Using evolutionary search combined with ab initio calculations, we discover that the MoBx (x= 1, 3, and
4) monolayers, two-dimensional metal-borides, are dynamically, mechanically, and thermally stable. Due to their metallic characters,
we investigate the potential of application as anode materials of Li-ion batteries. The MoB and MoB3 monolayers are found to
provide excellent properties, combining high Li-specific capacities of 670 and 418mA h g−1 with low Li diffusion barriers of 0.10
and 0.13 eV, respectively.
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INTRODUCTION
Rechargeable Li-ion batteries (LIBs), are widely used for energy
storage in portable electronic devices and electric vehicles1–6.
Improving the performance of the electrode materials is key for
enhancing the energy density and extending the endurance. As
compared to the rapid development of the cathode materials,
the anode materials are still limited in their performance,
particularly in their Li capacity7. Two-dimensional materials are
promising options for battery anodes, enabling high energy
density and ion mobility8,9, and therefore are the subject of
tremendous research efforts10–13. Recently, a class of two-
dimensional metal-borides (MBenes) became experimentally
accessible14. Theoretical analyses point at excellent electro-
chemical, catalytic, thermoelectric, and optical properties15–17.
For example, the Fe2B2 monolayer exhibits an almost ideal
Gibbs free energy for hydrogen evolution and a specific
capacity of 665 mA h g−1 for LIBs18. The specific capacities of
the Mo2B2 and Ti2B2 monolayers for LIBs are 444 and 558 mA h
g−1, respectively18,19.
Considering that boron forms with metals a multitude of

compounds with different stoichiometries20, we were wonder-
ing whether there exit two-dimensional metal-borides that are
suitable for application in LIBs. To answer this question, we
execute in the present work an ab initio evolutionary search for
new monolayer structures of metal-borides. In contrast to
refs. 14,17, we aim for two-dimensional materials without
dangling bonds saturated by termination groups. Such materi-
als may be synthesized by a bottom-up approach (chemical
vapor deposition or epitaxial growth, similar to borophene21

and a variety of transition metal dichalcogenides22) rather than
by a top-down approach. We discover the MoBx (x= 1, 3, and 4)
monolayers, which turn out to be metallic as required for fast
electron transport and battery charging. The MoB and MoB3
monolayers emerge as promising candidates for the anode of
LIBs, combining the advantages of multilayer ion intercalation
with high specific capacity, fast ion diffusion, and suitable
open-circuit voltage.

RESULTS AND DISCUSSION
Our comprehensive structure search reveals four monolayers that
have very low formation energy, see Fig. 1b, and thus are
expected to be accessible experimentally. Their relaxed structures
are shown in Fig. 1a. A summary of the structural information of
the MoBx (x= 1, 2, 3, and 4) monolayers is given in Table 1. The
formation energy of the MoB monolayer (space group P‒1) turns
out to be 0.22 eV per atom lower than that of the recently
reported tetragonal Mo2B2 monolayer23. We find optimized lattice
parameters of a= b= 3.10 Å, a total thickness of 4.74 Å, and Mo-B
bond lengths in the range of 2.09–2.37 Å. The tetragonal
sandwich structure resembles that of the Ti3C3 monolayer24.
The MoB2 monolayer (space group C2/m) is dynamically instable,
compare Fig. 2a. Complementary structure searches with fixed
composition and maxima of 3, 6, 9, and 15 atoms in the unit cell
do not result in an alternative structure with lower formation
energy. Therefore, the MoB2 monolayer is of no further interest.
The MoB3 monolayer (space group Pmmm) consists of a network
of three-membered B rings with B-B bond lengths of 1.66 and
1.71 Å. The Mo atoms connect these rings with Mo–B bond
lengths of 2.24 and 2.38 Å. We obtain optimized lattice
parameters of a= 4.64 Å and b= 2.97 Å, and a total thickness
of 3.01 Å. Finally, the MoB4 monolayer (space group C2/m)
features a hexagonal structure with optimized lattice parameters
of a= b= 2.97 Å and a total thickness of 3.29 Å. We obtain for the
cohesive energy Ecoh= (EMo+ xEB – EMoBx)/(x+ 1), where EMo, EB,
and EMoBx are the total energies of Mo, B, and the MoBx
monolayer, respectively, values of 6.37, 6.38, and 6.33 eV per atom
for the MoB, MoB3, and MoB4 monolayers, which are close to that
of the TiB3 monolayer (6.35 eV per atom)25 but higher than that of
the Cr2B2 monolayer (5.87 eV per atom)26.
The absence of negative phonon frequencies in Fig. 2a

demonstrates dynamic stability of the MoBx (x= 1, 3, and 4)
monolayers. Notably, the highest phonon frequencies of the MoB
(740 cm−1), MoB3 (1091 cm−1), and MoB4 (904 cm−1) monolayers
exceed those of experimentally demonstrated materials such as
germanene (286 cm−1)27, black phosphorene (470 cm−1)28, MoS2
(491 cm−1)29, and silicene (554 cm−1)28. Our AIMD simulations, see
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Fig. 2b–d, exhibit no signs of structural disruption at 300 and
1000 K. The calculated elastic constants of the MoBx (x= 1, 3, and
4) monolayers, listed in Table 2, show that the mechanical stability
criteria C11C22–C122 > 0 and C66 > 0 are satisfied in each case. We
derive the direction dependences (θ= angle with respect to the
x-axis) of Young’s modulus

EðθÞ ¼ C11C22 � C2
12

C11sin4θþ C11C22 � C2
12ð Þ=C66 � 2C12½ �sin2θcos2θþ C22cos4θ

;

(1)

which characterizes the stiffness of a material, and Poisson’s ratio

vðθÞ ¼ C12sin4θ� C11 þ C22 � C11C22 � C2
12

� �
=C66

� �
sin2θcos2θþ C12cos4θ

C11sin4θþ C11C22 � C2
12ð Þ=C66 � 2C12½ �sin2θcos2θþ C22cos4θ

;

(2)

which characterizes the response of a material to external load, from
the elastic constants. According to Fig. 3a, Young’s modulus of the
MoB monolayer is 297 Nm−1 at θ = 0° and θ = 90°, reaching at θ =
45° a maximum of 478 Nm−1 in excess of that of graphene
(334 Nm−1)24. Young’s modulus of the MoB3 monolayer is 160 Nm−1

at θ= 0° and 301 Nm−1 at θ= 90° with a maximum of 370Nm−1 at
θ = 57°. Finally, Young’s modulus of the MoB4 monolayer is
387 Nm−1 independent of θ. According to Fig. 3b, Poisson’ ratio
varies between 0.10 and 0.44 for the MoB monolayer, varies between
0.03 and 0.59 for the MoB3 monolayer, and amounts to 0.16 for the
MoB4 monolayer. The electronic band structures in Fig. 3c–e show
several bands crossing the Fermi energy, indicating excellent metallic
behavior of the MoBx (x = 1, 3, and 4) monolayers.
We use 2 × 2 × 1 supercells to determine the energetically

favorable adsorption sites of Li on the MoBx (x = 1, 3, and 4)

Fig. 1 Structure. a Top and side views of the MoBx (x = 1, 2, 3, and 4)
monolayers (pink balls= B atoms, blue balls=Mo atoms). b Formation
energy per atom of MoBx as a function of the B concentration x/(x+ 1).
The black circles mark the MoBx (x = 1, 2, 3, and 4) monolayers.

Table 1. Structural information of the MoBx (x = 1, 2, 3, and 4) monolayers.

Lattice parameters Space group Atom Wyckoff position x y z

MoB a = b = 3.10 Å P‒1 B1 2i 0.53686 0.41030 0.49017

B2 2i 0.03568 0.90982 0.39531

B3 2i 0.54455 0.40934 0.30047

Mo1 2i 0.53573 0.40983 0.39533

Mo2 2i 0.03665 0.91022 0.47903

Mo3 2i 0.03469 0.90940 0.31162

MoB2 a = 4.64 Å, b = 2.97 Å C2/m B1 8j 0.07076 0.62245 0.44162

B2 8j 0.37164 0.03656 0.56812

B3 8j 0.64909 0.46459 0.43297

B4 8j 0.95003 0.87861 0.55971

Mo1 8j 0.36130 0.04289 0.45398

Mo2 8j 0.65942 0.45829 0.54711

MoB3 a = 3.02 Å, b = 4.23 Å Pmmm B1 8a 0.08844 0.38825 0.35418

B2 8a 0.26741 0.88827 0.34829

B3 8a 0.90937 0.88826 0.34830

B4 8a 0.40955 0.38843 0.47363

B5 8a 0.58860 0.88844 0.46773

B6 8a 0.76760 0.38842 0.47366

Mo1 8a 0.08854 0.88835 0.44140

Mo2 8a 0.58839 0.38834 0.38053

MoB4 a = b = 2.97 Å C2/m B1 8j 0.94153 0.48602 0.46369

B2 8j 0.94123 0.48576 0.33216

B3 8j 0.27458 0.15244 0.33218

B4 8j 0.27488 0.15269 0.46371

Mo1 8j 0.60804 0.81922 0.39795
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monolayers, considering the sites marked in Fig. 4a. The
adsorption energy is given by Ead = EMoBx+Li – EMoBx – ELi,
where EMoBx+Li is the total energy when one Li atom is absorbed
on the MoBx monolayer. Any anode material for LIBs must
spontaneously adsorb Li, implying that Ead must be negative.
According to results in Fig. 4a, stable adsorption on the MoB
monolayer is possible on top of the center of the Mo2B2 ring
(S1), on the top of B (S2), and on top of Mo (S3). Stable
adsorption on the MoB3 monolayer is possible on top of the
center of the Mo2B2 ring (S1), on top of the B–B bond (S2), on
top of Mo (S3), and on top of the center of the Mo2B4 ring (S4),
whereas a Li atom adsorbed on top of B (S5) shifts to the S2 site
during the structure optimization. Stable adsorption on the
MoB4 monolayer is possible on top of Mo (S1), whereas a Li
atom adsorbed on top of B (S2) shifts to the S1 site during
structure optimization. In each case, the S1 site turns out to be
energetically favorable for Li adsorption. The obtained values of
Ead and corresponding adsorption heights are reported in
Table 3. Furthermore, the charge redistributions between Li and

the MoBx (x = 1, 3, and 4) monolayers are presented in Fig. 4b–i
for the different adsorption sites, showing that Li acts as a
charge donor. Bader charge analysis results in charge transfers
of 0.85–0.88 electrons, see Table 3.
The Li-specific capacity is a key performance indicator of a

LIB. To determine its value, we employ 2 × 2 × 1 supercells of
the MoBx (x = 1, 3, and 4) monolayers and consider potential
multilayer adsorption on both sides of the monolayers. The
average Li adsorption energy of the nth Li layer is given by
Eave = (EMoBx+nLi − EMoBx+(n−1)Li − λELi)/λ, where EMoBx+nLi and
EMoBx+(n−1)Li are the total energies of the MoBx monolayer with
n and n–1 layers of adsorbed Li atoms, respectively, and λ is the
number of atoms in the nth Li layer. In the case of the MoB

Fig. 2 Stability. a Phonon spectra of the MoBx (x = 1, 2, 3, and 4)
monolayers. Total energies during the AIMD simulations of the
b MoB, c MoB3, and d MoB4 monolayers at 300 and 1000 K with top
and side views of the final structures.

Table 2. In-plane elastic constants (N m−1), Young’s modulus (N m−1),
and Poisson’s ratio.

Monolayer C11 C22 C12 C66 E(θ = 0°) E(θ= 90°) v(θ= 0°) v(θ= 90°)

MoB 369 369 163 217 297 297 0.44 0.44

MoB3 191 365 110 160 160 301 0.30 0.59

MoB4 397 397 62 168 387 387 0.16 0.16

Fig. 3 Structural and electronic properties. a Young’s moduli,
b Poisson’s ratios, and c–e electronic band structures of the MoBx
(x = 1, 3, and 4) monolayers.

Fig. 4 Li adsorption. a Adsorption energies of Li on the MoBx (x = 1,
3, and 4) monolayers. The insets show the considered adsorption
sites. Top and side views of the charge redistributions induced by
the interaction of Li at the b S1, c S2, and d S3 sites with the MoB
monolayer, by the interaction of Li at the e S1, f S2, g S3, and
h S4 sites with the MoB3 monolayer, and by the interaction of Li at
the i S1 site with the MoB4 monolayer. Green and yellow isosurfaces
(isovalue: 0.01 electrons/Å3) represent charge depletion and
accumulation, respectively.
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monolayer we obtain Eave = −0.42, −0.36, and −0.01 eV for the
first (located at the S1 sites, see Fig. 5a), second (located at the
S3 sites, see Fig. 5b), and third (located at the S2 sites, see
Fig. 5c) Li layer, respectively. In the case of the MoB3 monolayer
the atoms in the first Li layer are located at the S1 and S4 sites
(see Fig. 5d) and we obtain Eave = −0.73 eV. However, already
for the first Li atom in the second layer the adsorption energy is
positive for all possible adsorption sites, i.e., it is not adsorbed
but Li dendrite growth is to be expected. Similarly, in the case
of the MoB4 monolayer only one Li layer is formed (located at
the S1 sites, see Fig. 5e) and we find Eave = –1.55 eV. Overall,
the 2 × 2 × 1 supercells of the MoBx (x = 1, 3, and 4)
monolayers can accommodate xmax = 32, 16, and 8 Li atoms,
respectively. Figure 5f–h shows the formation energy of
MoBxLim relative to the MoBx monolayer and bulk Li. Location
of MoBLi2.67, MoB3Li2, and MoB4Li2 on the convex hull

demonstrates stability at full Li loading. The Li specific capacity
is given by C = xmaxF/M, where F is the Faraday constant
(26801 mA h mol‒1) and M is the relative molecular mass of the
MoBx monolayer. We obtain C = 670 mA h g−1 for MoBLi2.67,
C = 418 mA h g‒1 for MoB3Li2, and C = 385 mA h g‒1 for
MoB4Li2 in excess of the Li-specific capacity of graphite
(372 mA h g‒1)30. The MoB monolayer additionally outperforms
the potential 2D anode materials Ti2NS2 (308 mA h g‒1)31,
Ti3C2S2 (463 mA h g‒1)32, Mo2C (526 mA h g‒1)33, and V3C2

(606 mA h g‒1)34. We also find that the lattice constants of the
MoBx (x = 1, 3, and 4) monolayers increase at most by 2.1, 1.7,
and 1.0% during the lithiation process, respectively, and that
the metallicity is maintained, see Fig. 5, which is a prerequisite
of the anode operation.
We next study the open-circuit voltage as another important

performance indicator of a LIB, given by VOCV ~ (EMoBx + zELi −
EMoBx+zLi)/ze, where EMoBx+zLi is the total energy when z Li
atoms are absorbed on the MoBx monolayer. We observe a
decrease from 0.88 V at z = 8 to 0.31 V at z = 32 for the MoB
monolayer, a decrease from 0.77 V at z = 1 to 0.73 V at z = 16
for the MoB3 monolayer (<1 V, implying that Li dendrite growth
can be avoided), and a decrease from 2.45 V at z = 1 to 1.55 V
at z = 8 for the MoB4 monolayer (pointing to Li dendrite
growth, i.e., the MoB4 monolayer is of no further interest in the
following). The electron localization functions given in Fig. 6
show for the MoB monolayer that electrons are shifted towards
to surface, which stabilizes the Li adsorption by reducing the
repulsion. Specifically, Bader charge analysis indicates that
each atom in the outer Li layer obtains 0.3 electrons from the
inner Li layers. Finally, AIMD simulations of MoBLi2.67 and
MoB3Li2, see Fig. 7, exhibit no sign of structural disruption
during battery operation at 300 K.
The Li diffusion determines the critical charging and discharging

rates of the battery. Figure 8 presents the Li diffusion pathways on
the MoB and MoB3 monolayers. In the case of the MoB monolayer

Table 3. Adsorption energies (eV), adsorption heights (Å), and charge
transfers (electrons) of Li on the MoBx (x = 1, 3, and 4) monolayers.

Monolayer Site Ead h Δq

MoB S1 –0.82 2.15 0.85

S2 –0.71 2.16 0.85

S3 –0.37 2.40 0.86

MoB3 S1 –0.77 1.71 0.86

S2 –0.22 1.98 0.88

S3 –0.61 1.72 0.88

S4 –0.65 1.74 0.87

S5 Converges to the S2 site

MoB4 S1 –2.45 1.56 0.85

S2 Converges to the S1 site

Fig. 5 Li adsorption. Top and side views as well as electronic band structures of the MoB monolayer with a one, b two, and c three layers of
adsorbed Li atoms and d of the MoB3 monolayer with one layer of adsorbed Li atoms, and e of the MoB4 monolayer with one layer of
adsorbed Li atoms. f–h Formation energy per atom of MoBxLim (x = 1, 3, and 4) as function of the Li concentration m/(m+ 1).
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there are three diffusion pathways between neighboring S1 sites.
We obtain for path 1 (S1→ S2→ S1) a diffusion length of 3.14 Å
and a diffusion barrier of 0.11 eV, for path 2 (S1→ S1) a diffusion
length of 2.37 Å and a diffusion barrier of 0.10 eV, and for path 3
(S1→ S3→ S1) a diffusion length of 3.41 Å and a diffusion barrier
of 0.45 eV. In the case of the MoB3 monolayer there are only two
diffusion pathways between neighboring S1 sites. For path 1
(S1→ S3→ S1) the diffusion length is 2.93 Å and the diffusion
barrier is 0.16 eV, while for path 2 (S1→ S4→ S1) the diffusion
length is 5.49 Å and the diffusion barrier is 0.13 eV. Therefore, path

2 is energetically favorable for both the MoB and MoB3
monolayers. Importantly, the obtained Li diffusion barriers are
significantly lower than those reported for the potential 2D anode
materials Ti2CS2 (0.22 eV)35, silicene (0.24 eV)36, and Cr2B2
(0.28 eV)26, and much lower than that of graphite as the
commercial anode material of LIBs (0.48 eV)37. A low Li diffusion
barrier ensures high Li mobility and, consequently, high charging
and discharging rates.
Ab initio evolutionary search points to the existence of three

2D molybdenum-borides that are highly stable according to the
calculated phonon spectra, cohesive energies, and elastic
constants as well as the results of AIMD simulations at room
and elevated temperatures. Systematic investigation of the
application potential of the monolayers as anode materials for
LIBs shows that the MoB4 monolayer is not suitable. On the
other hand, the properties obtained for the MoB and MoB3
monolayers are very promising. In particular, the high Li specific
capacity (670 mA h g‒1) and low Li diffusion barrier (0.10 eV) of
the MoB monolayer clearly surpass the key performance
indicators of graphite.

METHODS
We employ the USPEX38–40 code to perform a global structure search for
different Mo:B ratios and a maximum of 16 atoms in the primitive unit
cell. The population size is set to 100 and the number of generations is
set to 50. We adopt density functional theory (Vienna Ab-initio
Simulation Package41) to perform structural relaxations (in which the
atomic positions, unit cell volume, and unit cell shape are considered as
free parameters) and electronic structure calculations with the
exchange-correlation functionals of Perdew–Burke–Ernzerhof and
Heyd–Scuseria–Ernzerhof, respectively. A semi-empirical correction is
used to account for the van der Waals interaction42. The plane wave
cutoff energy is set to 500 eV, and the total energy and atomic forces are
converged to 10−6 eV and 0.01 eV/Å, respectively. A Monkhorst–Pack
k-sampling with 0.015 Å−1 spacing is used. Addition of a 20 Å thick
vacuum slab to each simulation cell ensures two-dimensional geome-
tries. The PHONOPY code is used to calculate the phonon band
structures43. Ab initio molecular dynamics (AIMD) simulations are carried
out using a canonical ensemble and a Nosé–Hoover temperature

Fig. 6 Li adsorption. Electron localization functions of the MoB monolayer with a one, b two, and c three layers of adsorbed Li atoms [(110)
plane], and d of the MoB3 monolayer with one layer of adsorbed Li atoms [(010) plane].

Fig. 7 Li adsorption. Top and side views of the a MoB and b MoB3
monolayers with maximal Li adsorption after the AIMD simulations
at 300 K.
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control44. They are conducted at 300 and 1000 K for 5 ps with a time step
of 1 fs for 6 × 6 × 1, 5 × 5 × 1, and 6 × 6 × 1 supercells of
the MoB, MoB3, and MoB4 monolayers, respectively. The Li diffusion
barrier and pathway are derived by the climbing-image nudged elastic
band method45.
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