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Symmetry-dependent exciton-exciton interaction and
intervalley biexciton in monolayer transition metal
dichalcogenides
Hoang Ngoc Cam 1,2✉, Nguyen Thanh Phuc 3 and Vladimir A. Osipov 2

The multivalley band structure of monolayer transition metal dichalcogenides (TMDs) gives rise to intravalley and intervalley
excitons. Much knowledge of these excitons has been gained, but fundamental questions remain, such as how to describe them all
in a unified picture with their correlations, how are those from different valleys coupled to form the intervalley biexciton? To
address the issues, we derive an exciton Hamiltonian from interpair correlations between the constituent carriers-fermions of two
excitons. Identifying excitons by irreducible representations of their point symmetry group, we find their pairwise interaction
depending on interacting excitons’ symmetry. It is generally repulsive, except for the case excitons from different valleys, which
attract each other to form the intervalley biexciton. We establish a semianalytical relationship between the biexciton binding
energy with exciton mass and dielectric characteristics of the material and surroundings. Overall, by providing insight into the
nature of diverse excitons and their correlations, our theoretical model captures the exciton interaction properties permitting an
inclusive description of the structure and energy features of the intervalley biexciton in monolayer TMDs.
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INTRODUCTION
Monolayer (ML) group-VI transition metal dichalcogenides
(TMDs), such as MoS2, MoSe2, WS2, and WSe2, are two-
dimensional (2D) semiconductors with direct band gaps at the
edges K and K 0 of the hexagonal Brillouin zone (BZ)1,2. The
reduced dielectric screening of the Coulomb interaction3 results
in the formation of tightly bound excitons at the K and K 0 valleys,
dominating the optical response of the materials4,5. Besides the
optically accessible bright excitons, the electronic structure of ML
TMDs gives rice to inaccessible dark excitons, affecting different
optical processes near the exciton resonance6–8. Despite
numerous works on exciton physics, a unified picture of diverse
excitons with their quantum correlations is still lacking. Thus the
understanding of such an exciton fundamental feature as the
exciton–exciton interaction remains limited. Scarce theoretical
studies consider only the intravalley interaction between
identical bright excitons, showing that it is repulsive in the
exciton ground state9,10. Meanwhile, experiments report signa-
tures of the intervalley biexciton in various ML TMDs11–18

indicating an intervalley attractive exciton–exciton interaction.
The attraction between excitons from opposite valleys certainly
has a connection with the intervalley coupling between their
constituent charge carriers via the Coulomb interaction. Several
authors groups have attempted to model the intervalley
biexciton19–23. However, without the intervalley carrier–carrier
interaction taken into consideration, they have not succeeded. In
particular, their calculations give for the biexciton binding
energy in different freestanding ML TMDs comparable values
around 20 meV, whereas experimental reports are markedly
diverse. Experiments show that the exciton–exciton interaction
in ML TMDs is enhanced, offering perspectives for engineering
exciton-mediated optical nonlinearities24. It qualitatively changes

the physical picture of the coherent light-matter interaction in
the optical Stark effect25–27. Especially, involvement of the
intervalley biexciton makes this effect valley-dependent, giving
a possibility for coherent manipulation of the exciton valley
degree of freedom in quantum information28,29. Thus a
comprehensive study of the exciton–exciton interaction and
the intervalley biexciton is of necessity not only for fundamentals
of many-body physics but also for promising quantum technol-
ogies applications.
To address the elusive issue, we derive an exciton Hamiltonian

from correlations between the constituent charge carriers-fermions
of two excitons, mediated by the electrostatic carrier–carrier
interaction and the Pauli exclusion principle. Identifying each
exciton by an irreducible representation of their point symmetry
group, we find the exciton–exciton interaction depending on the
interacting excitons’ symmetry. It is generally repulsive, except for
the case excitons from different valleys, which attract each other.
We elucidate the microscopic mechanism underlying the inter-
valley exciton–exciton attraction. We ascertain a substantial
dependence of the intervalley interaction on the exciton radius,
determining the overlap degree of the wave functions of distant
excitons in the momentum space. Adopting the Kedysh potential
for the carrier–carrier interaction3, we have the exciton radius as
the variational parameter30,31. We find it from a function
established between the exciton binding energy with its mass
and the material and environment dielectric characteristics. With
values of the latter as input variables taken from experimental
measures32,33, we find the intervalley interaction potential
sufficiently weak to be considered a perturbation. As a result, the
estimated biexciton binding energy has the form of an exponential
function of the exciton mass and intervalley interaction energy34.
Its sensitivity to every input variable can help understanding
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discrepancies between different experimental measurements11–18.
In freestanding tungsten-based MLs with light excitons, the
estimated binding energy is under 20meV, while in ML MoSe2
and MoS2 with heavier excitons, it is about 65meV and 53meV,
respectively. The last number is near the appropriate experimental
measurement of Sie et al.12. Studying the reduction of the
biexciton binding energy with increasing environment screening,
we find, e.g. that the biexciton binding energy in hBN
encapsulated ML MoSe2 falls to the range of 24meV, going along
with recent experimental findings27. The obtained dependence of
the biexciton binding energy in ML TMDs on the average dielectric
constant of their immediate surroundings might serve as guide-
lines for future experiments to study the biexciton feature in
various dielectric environments. On the other hand, our symmetry-
dependent exciton Hamiltonian would form a baseline for
theoretical research on valley selective nonlinear effects in a
coherently driven ML TMD.

RESULTS
Valley single-particle states and their interaction
We consider an ML TMD having direct band gaps with the
conduction and valence band extrema at the K and K 0 valleys. The
point symmetry group of the material is D3h, but at the valleys
the wave vector group is C3h. To exploit the group theoretical
algebra elaborated for the point group, we classify the valley Bloch
states by one-dimensional spinor (double-valued) representations
of the C3h double group in Koster et al. notations35. Each spinor
representation corresponds to a definite half-integral angular
momentum value including the momentum j and its projection jz
on the z-axis. Thus the valley states can be alternatively identified
by those of their angular momentum j; jzj i, which we will refer to
shortly as spin and spin projection. Thanks to large valence band
splittings36,37, we can exclude the lower spin-orbit split valence
band from consideration by considering the selective excitation of
the ground state A exciton. Under this condition, we sketch the
band structure of ML TMDs at the K and K 0 valleys in Fig. 1, where
we take the tungsten-based (WX2) subgroup with the order of
conduction bands reverse to that in molybdenum-based (MoX2)
subgroup, X = S, Se38.
A resonant light field applied to a direct-gap semiconductor

raises electrons from the filled valence band into the empty
conduction band. The promotion of an electron creates a pair of
electronic states, including the conduction band electron and the
empty state that it leaves in the valence band, as schematically

shown in Fig. 1. The electric dipole interaction of a polarized light
field propagating along axis z with the system of created pair
states is defined by the product Eλd with d the system electric
dipole momentum and Eλ the electric field of photons with spin
projection λ on the z-axis. The field Eλ∝ ελ, where ελ is the
polarization vector orthogonal to the direction of the light
propagation. For the circularly polarized σ+ and σ− light with
λ= 1 and λ=− 1 respectively, the polarization vector ελ∝ (1+
λi)39. Thus at normal incidence, the coupling of the optical field to
the electronic system is determined by the matrix element of the
dipole momentum d±= (dx ± idy) between the valence and
conduction bands. Composing of components of a polar vector,
d+ and d− are transformed according to the representation
Γ2 and Γ3 of the C3h group, respectively35. According to the group
theory selection rules40 and multiplication table of irreducible
representations of the C3h double group, one has interband
matrix elements Γ11jdþjΓ7h i≠ 0 and Γ12jd�jΓ8h i≠ 0, and
Γ9jdþjΓ7h i ¼ Γ10jd�jΓ8h i ¼ 0. In this way, direct transitions to the
Γ11 (Γ9) conduction band at the K valley and to Γ12 (Γ10) one at the
K 0 valley from the respective valence band are dipole allowed
(forbidden). The light of σ+ circular polarization can create pair
states exclusively at K valley, while that of σ− polarization can do
this only at K 0 valley. This is the valley-dependent optical selection
rule36,41,42. To focus on the intervalley interaction between
excitons, hereafter we will leave aside the split-off conduction
bands that are connected with the intravalley dipole forbidden
excitons (the lower bands in Fig. 1). Thus, we limit ourselves in this
paper to a simplified model with two-band schemes at the K and
K 0 valleys. Because excitons are Coulomb-bound electron-hole
pairs, we begin by considering the pairwise interaction among
carriers. In the second quantization representation, the system of
these single-particle states is described by Heisenberg creation
and annihilation field operators Φ†(r) and Φ(r). The operator of any
macroscopic physical quantity of the many-electron system, in
particular the number of pair states and Hamiltonian, is presented
in terms of Φ†(r) and Φ(r)43,

N ¼
Z

d2r ΦyðrÞΦðrÞ (1)

H ¼
Z

d2rΦyðrÞHc ΦðrÞ þ 1
2

Z Z
d2r1 d

2r2 Φ
yðr1ÞΦyðr2Þ VKðjr1 � r2jÞΦðr2ÞΦðr1Þ

(2)

where Hc is the Hamiltonian of a single crystal electron in the
periodic lattice potential and V(r)—nonlocally screened Coulomb
potential describing the symmetric pairwise interaction between
in-plain carriers. We adopt the Keldysh potential3, which can be
presented in the form

VKðrÞ ’ e2

ε0r0

π

2
H0

κr
r0

� �
� Y0

κr
r0

� �� �
(3)

where e is the electron charge, ε0—the vacuum permittivity,
r0—the effective screening length characterizing dielectric
properties of an ML TMD, κ ¼ εt þ εbð Þ=2 with εt and εb the
dielectric constants of the encapsulating materials above and
below the ML, respectively, and H0 and Y0—Struve and Bessel
functions of the second kind. The screening length of an ML
having width d and dielectric constant ε is defined as r0 ¼
dε= εt þ εbð Þ with εt = εb= 1 (vacuum). In the strictly 2D limit
r0= 2πχ2D, where χ2D is the 2D polarizability of the planar
material44. An inspection of Eq. 3 shows that the carrier–carrier
interaction in ML TMDs weakens with increasing screening,
either the ML screening (r0) or that from the environment (κ).
Thus the interaction can be ’tuned’ by selecting different
immediate surroundings for the ML.
We expand field operators into the complete set of

orthonormal Bloch functions—the eigenstates of Hc
45, ϕΓ;kðrÞ ¼

uΓ;kðrÞ exp½ikr�=
ffiffiffi
S

p
with S the sample area and Γ the band

Fig. 1 Band structure of ML tungsten dichalcogenides at the K
and K 0 valleys and related excitons. Valley states and excitons are
denoted by irreducible representations of the C3h double group
with the corresponding spin states shown beside. Blue, white, and
dark red balls depict conduction electrons, missing valence band
electrons, and holes, respectively. Bright and dark excitons are
represented by orange and green dashed ovals, respectively,
incorporating corresponding electrons and holes.
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states symmetry. With the assumption that under resonant
excitation crystal electrons are accummulated primarily near K
and K 0 valleys, we can limit the expansion to the wave vectors
around the valleys,

ΦðrÞ ’
X

Γ ¼ Γ11; Γ7

p

eΓ;p ϕΓ;pðrÞ þ
X

Γ ¼ Γ12; Γ8

p0

eΓ;p0 ϕΓ;p0 ðrÞ
(4)

where the sums are running over p= k− K and p0 ¼ k � K0,
p; p0 � jKj; jK0j, with K and K0 the positions of the BZ corner
points in the k-space,

K ¼ 2π
3a

1;
1ffiffiffi
3

p
� �

; K0 ¼ 2π
3a

1;� 1ffiffiffi
3

p
� �

(5)

(a is the lattice constant)46. Putting �h= 1, we call vectors p and p0
and also any their linear combination the valley momenta of
quasiparticles distinguising them from their crystal momenta. In
Eq. 4 eΓ,p is the annihilation operator for an electronic state with
symmetry Γ and valley momentum p obeing fermionic antic-
ommutation relations. By inserting Eq. 4 to Eqs. 1 and 2 we obtain
the number operator and Hamiltonian in terms of creation and
annihilation operators of electronic states. It is conventional to
describe an empty electron state in valence bands as a hole
related to the state by the time-reversal transformation. The hole
charge is− e, its wave vector is opposite to that of the missing
valence band electron, and its symmetry notation is complex
conjugate to that of the last. In this way, the hole going in pair
with a conduction electron at the K valley has wave vector kh=−
K− p and notated by Γ�7 ¼ Γ8. In Fig. 1 and others, we mark the
hole symmetry notations by dark red color. Further, as p and p0
are running vector-index over valence bands, which are assumed
isotropic, we can write the hole’s wave vector in the form kh=−
K+ ph at K and kh ¼ �K0 þ p0

h at K 0.
As a result, we obtain the Hamiltonian of the system of electron-

hole pairs in the form

H ! Heh ¼
P
p

EeðpÞeþΓ11;peΓ11;p þ EhðpÞhþΓ8;phΓ8;p
h i

þ P
p0

Eeðp0ÞeþΓ12 ;p0eΓ12;p0 þ EhðpÞhþΓ7 ;p0hΓ7 ;p0
h i

þ 1
2

P
q≠0

Vq
P
p1 ;p2

eþΓ11 ;p1þqe
þ
Γ11 ;p2�qeΓ11 ;p2

eΓ11 ;p1

h(

þ hþΓ8 ;p1þqh
þ
Γ8 ;p2�qhΓ8 ;p2

hΓ8 ;p1
� 2 eþΓ11;p1þqh

þ
Γ8 ;p2�qhΓ8 ;p2

eΓ11 ;p1

i
þ P

p0
1 ;p

0
2

eþΓ12;p0
1þqe

þ
Γ12;p0

2�qeΓ12;p0
2
eΓ12;p0

1
þ hþΓ7 ;p0

1þqh
þ
Γ7 ;p0

2�qhΓ7 ;p0
2
hΓ7;p0

1

h

� 2 eþΓ12 ;p0
1þqh

þ
Γ7 ;p0

2�qhΓ7 ;p0
2
eΓ12;p0

1

i
þ 2

P
p;p0

eþΓ11 ;pþqe
þ
Γ12;p0�qeΓ12 ;p0eΓ11;p þ hþΓ8 ;pþqh

þ
Γ7 ;p0�qhΓ7 ;p0hΓ8 ;p

h

� eþΓ11 ;pþqh
þ
Γ7 ;p0�qhΓ7 ;p0eΓ11;p þ eþΓ12 ;p0þqh

þ
Γ8;p�qhΓ8 ;peΓ12;p0

� �i
þ h:c:

o
;

(6)

where Vq is the Fourier transform of the Keldysh potential, and
Ee(p) and Eh(p)—the single-particle electron and hole energies,
which are renormalized due to the interaction with the valence
band electrons. In the effective mass approximation and with
the energy zero chosen at the top of the valence bands, Ee(p)=
Eg+ p2/2μe (Eg is the band gap) and Eh(p)= p2/2μh, where μe (μh)
is the electron (hole) effective mass. To arrive at Eq. 6, the
Wannier simplifying assumptions justified for pair states with
small relative momenta and large space extent47 have been
used, along with the orthonormal properties of the Bloch
functions and periodicity of its amplitudes. Yet, we restrict
ourselves to the pairwise interaction processes, which conserve
the number of electron-hole pairs. As expected, the electrostatic
interaction among valley carriers includes their intravalley and
intervalley interactions.

Diverse excitons and their pairwise interaction
Assuming that the main contribution to excitons is from the band
states in the vicinity of the K and K 0 points, we have four symmetry
types of the ground state exciton in the model under considera-
tion according to the multiplication table of irreducible represen-
tations of the C3h double group35. That is two intravalley excitons,
Γ2= Γ11⊗ Γ8 at the K valley and Γ3= Γ12⊗ Γ7 at the K 0 valley, and
two intervalley excitons, Γ6= Γ11⊗ Γ7 and Γ5= Γ12⊗ Γ8, depicted
respectively by orange and green dashed ovals in Fig. 1. An
exciton with symmetry Γx= Γe⊗ Γh and center-of-mass (total)
valley momentum K is defined as a superposition of the pair
states having the same total valley momentum with electrons and
holes from the band of symmetry Γe and Γh, respectively. From the
relationship between basis functions of relevant irreducible
representations, we have the relation between exciton symmetry
states and those of corresponding electron-hole pairs,

AþΓ2;K 0j Þ ¼ 1ffiffi
S

p
P
pe;ph

δðpe þ ph;KÞ ϝðαph � βpeÞ eþΓ11;pe
hþΓ8;ph

0j i;

Aþ
Γ3;K 0j Þ ¼ 1ffiffi

S
p
P
p0
e;p

0
h

δðp0
e þ p0

h;KÞ ϝðαp0
e � βp0

hÞ eþΓ12 ;p0
e
hþΓ7;p0

h
0j i;

Aþ
Γ6;K 0j Þ ¼ 1ffiffi

S
p
P
p;p0

δðpþ p0;KÞ ϝðαp0 � βpÞ eþΓ11;phþΓ7;p0 0j i;

Aþ
Γ5;K 0j Þ ¼ � 1ffiffi

S
p
P
p;p0

δðp0 þ p;KÞ ϝðαp� βp0Þ eþΓ12;p0hþΓ8;p 0j i:

(7)

Here 0j i denotes the semiconductor ground state in the electron-
hole presentation with the valence bands filled and the
conduction bands empty, 0j Þ – that of the exciton space, Aþ

Γ;K –
the creation operator for the exciton with symmetry Γ and valley
total momentum K, ϝ(p)—the momentum space wave function of
the electron-hole relative motion in the ground state exciton, and
α= μe/μx (β= μh/μx) – the electron-to-exciton (hole-to-exciton)
mass ratio (μx= μe+ μh). We see that the relation of the exciton
valley total momentum, K ¼ pe þ ph, and relative one, αph− βpe,
to their crystal counterparts depends on the symmetry type. The
valley relative momentum differs from its crystal counterpart by
vector K, K0, αK þ βK0, and αK0 þ βK for the symmetry Γ2, Γ3, Γ5,
and Γ6, respectively. Regarding the total momentum, the valley
and crystal counterparts are the same for the intravalley excitons,
while for the intervalley Γ5 and Γ6 ones they differ from each other
by vector K � K0and K0 � K, respectively. With such large crystal
momenta, the intervalley excitons cannot be optically accessible,
referred to as momentum-dark excitons. By symmetry, they are
not dipole allowed either. In fact, in line with the group theory
selection rules, under excitation by the σ+ (σ−) light, the transition
from the ground state 0j Þ (described by the unit representation) is
possible only to the exciton state with the symmetry as that of the
dipole momentum d+ (d−). Thus, under the σ+ light, only the Γ2
exciton at the K valley is dipole active (bright), while under the σ−
light such is the Γ3 exciton at the K 0 valley. In this way, the
symmetry notation of a bright exciton incorporates both its spin
and valley index: the Γ2 (Γ3) exciton is the K (K 0) valley exciton with
spin projection 1 (−1) as that of the photon with whom it
interacts. We note that excitons, consisting of two half-integral
spin carriers, are characterized by single-valued representations of
the C3h group corresponding to integral spin states J; Jzj Þ. Thus,
the bright Γ2 and Γ3 (dark Γ6 and Γ5) excitons are the spin 1 (2)
ones with spin projection 1 and −1 (2 and− 2), respectively (see
Fig. 1). The heavy hole exciton in III–V quantum wells has the same
spin states48,49. In conventional 2D and 3D direct gap semicon-
ductors with two simple (only twofold spin-degenerate) bands,
there are four states of spin 1 and spin 0 excitons50–52. The last can
be well separated in energy, e.g. in bulk Cu2O, then they are called
ortho- and paraexciton, respectively. With the dipole allowed, or
quadrupole allowed in Cu2O, interband transition, states 1; 1j Þ and
1;�1j Þ are bright and 1; 0j Þ and 0; 0j Þ are dark. The difference is,
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in conventional semiconductors, excitons are all intravalley with
comparable crystal momenta near the BZ center. While keeping
symmetry notations for consistency, we will refer to excitons in ML
TMDs by their spin as the need arises for drawing an analogy with
their traditional counterparts.
It is straightforward to obtain the reverse to relations of Eq. 7 by

the use of the orthonormalization and completeness of the system
of the exciton envelope functions. In the case of selective
excitation of the lowest exciton under consideration, to each pair
state there corresponds an exciton in the following way,

eþΓ11;p1
hþΓ8;p2

0j i ¼ 1ffiffi
S

p ϝðαp2 � βp1ÞAþ
Γ2;p1þp2

0j Þ;
eþΓ12;p0

1
hþΓ7;p0

2
0j i ¼ 1ffiffi

S
p ϝ αp0

2 � βp0
1

	 

AþΓ3;p0

1þp0
2
0j Þ;

eþΓ11;p h
þ
Γ7;p0 0j i ¼ 1ffiffi

S
p ϝ αp0 � βpð Þ Aþ

Γ6 ;pþp0 0j Þ;
eþΓ12;p0 hþΓ8;p 0j i ¼ � 1ffiffi

S
p ϝ αp� βp0ð ÞAþ

Γ5 ;pþp0 0j Þ:

(8)

Let us consider an ML TMD excited at the lowest exciton
energy by an ultrashort σ+ circularly polarized laser pulse. The
pulse excitation generates coherent superpositions of electron-
hole pairs corresponding to the Γ2 exciton with their population
described by function ϝ pð Þj j2 (Eq. 7). The excitation is assumed to
be sufficiently weak that pairs density n remains low, na2x � 1
(ax is the exciton radius). As extended quasiparticles, the carriers
created predominantly in the K valley undergo rapid scattering
among themselves via the carrier–carrier interaction spreading in
the k space53. In a time of tens to hundreds of femtoseconds,
which is typical for the carrier-carrier scattering54, carrier
populations in nonequivalent valleys might be equalized. In
parallel with the carriers’ pairwise scattering, the exciton
formation takes place. Strong Coulomb correlations among
carriers due to reduced screening leading to stable excitons in
ML TMDs must also result in their mutual interaction already at
low density. Strictly speaking, the exciton–exciton interaction
arises when there are two electron-hole pairs in the system
because of interpair correlations. These correlations produce two
qualitative changes to excitons system, considered noninteract-
ing bosons in the linear approximation. First, one can check by
the use of Eq. 7 that they give rise to a non-bosonic correction of
order na2x to the commutator of exciton operators. Secondly, they
produce an effective exciton–exciton interaction of the order
Ebna2x , Eb is the exciton binding energy9. In the first nonlinear
approximation in na2x relevant to the low-density limit under
consideration, one can still treat excitons as bosons interacting
via the effective two-body interaction48,52.
To formulate an exciton Hamiltonian, we start from the fermionic

electron-hole HamiltonianHeh. We adopt here the method of Haug
and Schmitt-Rink that consists in a low-density expansion of the
electron and hole density and pair operators into products of
exciton operators55. We begin with the linear approximation, which
is justified for infinitesimally small na2x . Accurately, excitons are ideal
quasiparticles only in the hypothetical case when there is one
electron-hole pair in the system,

N ¼
X
p

eþΓ11;peΓ11;p þ hþΓ8;phΓ8;p
� �

þ
X
p0

eþΓ12;p0eΓ12 ;p0 þ hþΓ7;p0hΓ7;p0
� �

¼ 1:

(9)

Under such a condition, Heh is reduced to a Hamiltonian
obtained from Eq. 6 by dropping the terms presenting the
electron-electron and hole–hole interactions, which can take
place only when N ≥ 2. By inserting the unit operator from Eq. 9
into the kinetic energy terms and then applying Eq. 8 and their
hermitic conjugates to the obtained product of four operators and
also to the electron–hole interaction terms, we recast Hamiltonian
Heh of the electron-hole system in the linear approximation into
the exciton representation, H0 ¼

P
Γ;KExðΓ;KÞAþ

Γ;K AΓ;K. Here and
in the following the sum variable Γ runs over four exciton

symmetry states Γ2, Γ3, Γ5, Γ6, unless noted otherwise. To obtain H0
in the form of the sum of energies of four excitons, we have
passed from the electron and hole momenta to the exciton
center-of-mass (total) and relative momenta, then used the
completeness property of the system of the exciton envelope
functions. The symmetry dependence of the exciton energy
ExðΓ;KÞ ¼ Eg � Eb þK2=2μx is connected with that of K, defining
the kinetic energy of the exciton center-of-mass free motion.
Meanwhile, energy− Eb of the internal relative electron-hole
motion in the exciton, which is the solution of the effective mass
approximation equation,

p2

2μr
ϝðpÞ �

X
q≠0

Vq ϝðp� qÞ ¼ �EbϝðpÞ (10)

is the same for all exciton symmetry types (μr is the exciton
reduced mass). The modification of the Coulomb interaction to
the Keldysh form results in the deviation of the exciton spectrum
from the usual hydrogenic one30,31. Presenting the real space
variational exciton envelope function in the conventional form
f ðrÞ ¼ 2=ðπa2xÞ

� �1=2
exp½�r=ax �, we obtain the kinetic and interac-

tion energies of the relative electron-hole motion in the exciton,
and with them the exciton binding energy, in an analytical form,

EbðaxÞ ¼ � 1
2μra

2
x
þ e2

ε0r0
2r0
κax

1�2r0=κaxð Þ
1þ 2r0=κaxð Þ2½ �



þ 2r0=κaxð Þ2
1þ 2r0=κaxð Þ2½ �3=2 ln 1þ κax

2r0

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r0

κax

� �2r !
þ 2r0

κax

" #)
:

(11)

From here, one can find the exciton radius as the variational
parameter and the corresponding exciton binding energy for any
set of input variables, including exciton mass μr and dielectric
characteristics r0 and κ. Unlike μr and r0 as inherent features of an
ML TMD, the environment average dielectric constant can be
tuned by changing encapsulating materials above and below the
ML. Thus Eq. 11 provides the possibility to adjust exciton binding
energy and space extent, which is an advantage of ML TMDs
compared to conventional 2D semiconductors. In the last, with the
regular Coulomb carrier–carrier interaction, the exciton binding
energy and radius are related to each other as Eb ax= e2/ε0ε56, and
the kinetic and electron–hole interaction energies equal Eb and−
2Eb, respectively, independent of the material. With the Keldysh
potential, the electron–hole interaction energy can be regulated
by tuning the potential strength, ceasing to be commensurate
with Eb. The ratio between its absolute quantity and the kinetic
energy considerably increases, depending on the mass and
dielectric screening parameters. For freestanding ML TMDs, the
ratio varies in the interval 4–5 in different ML TMDs, indicating the
exciton robustness due to reduced screening. Naturally, excitons
are stronger bound in a sample with shorter r0 and an
environment with smaller κ, wherein the Keldysh potential is
more effective. As Eq. 11 shows, in the same dielectric screening
conditions, heavier excitons with lesser kinetic energy are more
robust with more binding energy and correspondingly smaller
radius. We put in Fig. 2 the variation of these exciton features with
κ in four ML TMDs, whose inherent chracteristics μr and r0 are
taken from experiments32,33. Experimentally, the reduction of the
exciton size with environment screening is reported in ref. 57 and
the increase of the exciton binding energy—ref. 58. Moreover, Hsu
et al. observe a close agreement of their findings with the
description of the Keldysh potential58. As one sees from Fig. 2b,
the Keldysh potential also gives for Eb in hBN encapsulated ML
TMDs the amounts close to experimental ones, though with slight
underestimates32,33.
In the first nonlinear approximation, two-pair correlations give

rise to the exciton–exciton interaction. They are mediated by the
interaction terms in Hamiltonian (6) with interacting carriers
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belonging to two different electron-hole pairs. We show these
correlations in detail in the Supplementary Note, where one can
see the mechanism of various components of the exciton–exciton
interaction. In particular, the interaction between identical bright
excitons and between those from opposite valleys. As expected,
the carrier–carrier interaction within a single valley mediates
the correlations leading to the interaction between excitons in
this valley. Meanwhile, as one can see from Supplementary
Fig. 2, the intervalley exciton–exciton coupling is induced not
only by the intervalley carrier–carrier interactions of all types, but
also by the intravalley electron–hole interactions. As a result, we
obtain a Hamiltonian of the effective exciton–exciton interaction
in the form,

Hx�x ¼ 1
2S

P
K1;K2;Q

P
Γ

UdðQÞ þ UexðK;QÞ� �
Aþ
Γ;K1þQA

þ
Γ;K2�QAΓ;K2AΓ;K1



þ 2
P

Γ ¼ Γ2; Γ3

Γ0 ¼ Γ5; Γ6

UdðQÞ þ UexðK;QÞ� �
AþΓ;K1þQA

þ
Γ0 ;K2�QAΓ0;K2

AΓ;K1

þ 2UdðQÞ Aþ
Γ2 ;K1þQA

þ
Γ3;K2�QAΓ3;K2AΓ2;K1 þ AþΓ5;K1þQA

þ
Γ6 ;K2�QAΓ6;K2AΓ5 ;K1

h i
� 2UexðK;QÞ AþΓ2;K1þQA

þ
Γ3;K2�QAΓ6 ;K2AΓ5;K1 þ Aþ

Γ5 ;K1þQA
þ
Γ6;K2�QAΓ3;K2AΓ2 ;K1

h io
;

(12)

where Ud(Q) and UexðK;QÞ (K ¼ K1 �K2) denote the direct and
exchange interaction energy densities. They are functions of the
Keldysh potential and four envelope functions of two interacting
excitons before and after the interaction,

Ud Qð Þ ¼ VQ

S2
P
p1

ϝ p1 þ αQð Þϝðp1Þ�
P
p2

ϝ p2 � αQð Þϝ p2ð Þ�
(

þ P
p1

ϝ p1 � βQð Þϝðp1Þ�
P
p2

ϝ p2 þ βQð Þϝ p2ð Þ�

� 2
P
p1

ϝ p1 þ αQð Þϝðp1Þ�
P
p2

ϝ p2 þ βQð Þϝ p2ð Þ�
)
;

(13)

Uex K;Qð Þ ¼ � 1
S2
P

p1 ;p2

Vp1 ϝ p2 þ αQð Þϝ p2ð Þ�f

´ ϝ p2 � p1 þ βKþ βQð Þ ϝ p2 � p1 þ βKþ Qð Þ�
þ ϝ p2 � βQð Þϝ p2ð Þ�ϝ p2 � p1 � αK� αQð Þϝ p2 � p1 � αK� Qð Þ�
� 2ϝ p2 � p1 þ αQð Þϝ p2ð Þ�
´ ϝ p2 � p1 þ βKþ βQð Þ ϝ p2 � p1 þ βKþ Qð Þ�g:

(14)

The first, second, and last terms in braces on the right hand side
(rhs) of these equations stand for the energy density of the direct
(Eq. 13) and exchange (Eq. 14) exciton–exciton interaction induced
by the electron–electron, hole–hole, and electron–hole interac-
tion, respectively. The opposite sign of Uex is caused by the

exchange of two carriers-fermions belonging to two interacting
excitons. In the case of the intervalley interaction between the
bright excitons, the respective terms are visualized in Supplemen-
tary Fig. 2. Equation 12 formulates the whole picture of the pairwise
interaction between diverse excitons in the model under con-
sideration, including three types. That is the interaction between
identical excitons, between bright and dark excitons, and between
bright excitons from opposite valleys, presented respectively by the
first sum, second sum, and the last two terms in the braces in rhs of
the equation. It is worth noting that only in terms of excitons valley
momentaHx�x has such a relatively compact form as Eqs. 12–14. In
terms of their crystal momenta, each term of Hx�x has its
respective form with the corresponding Ud(Q) and UexðK;QÞ
(Supplementary Eqs. 6–10). Equation 13 shows that the direct
interaction disappears in the limit of small momentum transfer and
the case of equal electron and hole masses. Therefore this part
matters only at relatively far distances and when one of the exciton
constituents is much heavier than the other. In ML TMDs, the
electron and hole masses are comparable19,30,36,37, so we will put
α≃ β≃ 1/2 and consider the exciton–exciton interaction exclusively
of the exchange nature. Description of the exchange
exciton–exciton interaction is a problematic issue because of its
nonlocality52. We will draw the interaction’s qualitative features
from basic symmetry principles and perform an approximate
quantitative analysis relying on calculations for limiting cases.
As a result of the Pauli exclusion principle, the exchange
exciton–exciton interaction is short-range, repulsive between
identical excitons and between bright and dark ones. We see from
Supplementary Fig. 1 that a correlated structure of two identical (or
one bright and one dark) excitons incorporate two (or one) couples
of indistinguishable carriers-fermions. The last repel each other at
distances, where their wave functions overlap59, resulting in a
repulsive interaction between excitons. Meantime, Supplementary
Fig. 2 shows that all carriers are distinguishable in a two-exciton
structure incorporating different bright excitons, which can be on
equal terms presented as a pair of dark ones. As Γ2⊗ Γ3= Γ5⊗
Γ6= Γ1, such a structure is symmetric corresponding to the zero
spin. Symmetric configurations are known to produce attractive
forces59. Identical carriers in these structures have opposite spins
compensating each other to the total spin 0, so the attraction is
analogous to a chemical valence bond34.
Thus, the exciton-exciton interaction in ML TMDs shares the

same dependence on the interacting excitons’ symmetry, or spin,
as in 2D or 3D conventional semiconductors with two simple
bands and dipole allowed interband transition49–51. It is repulsive
in all symmetry combinations of interacting excitons except for
the case they together form a fully symmetric two-exciton
structure (with total spin 0) when the interaction is attractive. As
to the bright excitons, their interaction is repulsive for parallel
spins and attractive for opposite ones49.

Fig. 2 Dependence of exciton characteristics on the dielectric environment. a Variation of the exciton radius and b of the binding energy
with the surroundings average dielectric constant. The orange lines are for ML WSe2 (μr= 0.2 m0, r0= 45 Å), green lines—for ML WS2 (μr=
0.175 m0, r0= 34 Å), blue lines—for ML MoS2 (μr= 0.275 m0, r0= 34 Å), and purple lines—for ML MoSe2 (μr= 0.35 m0, r0= 39 Å). The small
stars with the respective colors depict the corresponding experimental amounts for Eb33.

H.N. Cam et al.

5

Published in partnership with FCT NOVA with the support of E-MRS npj 2D Materials and Applications (2022)    22 



Intravalley and intervalley exciton interaction potentials
Let us take a closer look at the intravalley and intervalley interaction
energy. Consider first energy Exx Γ2;K1;K2ð Þ of two correlated
bright Γ2 excitons with momenta K1 and K2 in a structure of the
type depicted in Supplementary Fig. 1a, d. Presenting the structure
in the zeroth order approximation simply as AþΓ2;K1

Aþ
Γ2;K2

0j Þ= ffiffiffi
2

p
,

we get the average of the exciton Hamiltonian Hx ¼P
Γ;KExðΓ;KÞAþ

Γ;K AΓ;K þHx�x over it in the form of the sum of
energies of two excitons and of their interaction,

Ex Γ2;K1ð Þ þ Ex Γ2;K2ð Þ þ Uex
Γ2�Γ2

ðK; 0Þ þ Uex
Γ2�Γ2

ðK;�KÞ
h i

=2S. In

the expression for Uex
Γ2�Γ2

ðK; 0Þ and Uex
Γ2�Γ2

ðK;�KÞ in terms of
excitons’ crystal momenta (Supplementary Eq. 7), in the place of
Fourier images Vk of the Keldysh potential and of exciton wave
functions we insert their Fourier transformations by definition. After
some elementary transfigurations, we get the integral representa-
tion of the intravalley interaction energy of two excitons with
crystal momenta k1 and k2,

2
S

R
d2r exp½iαkr� R d2r1 f ðr1Þ f r1 þ rj jð Þ

´
R
d2r2 f ðr2Þ f r2 � rj jð Þ VK r2 � rj jð Þ � VK rð Þf g

� 1
S

R
d2r exp½ikr� UΓ�ΓðrÞ

(15)

where k ≡ k1 − k2. Function of distance UΓ�ΓðrÞ (Γ= Γ2, Γ3)
defines the intravalley interaction potential between identical
bright excitons in the limit of vanishing momentum transfer.
For k= 0, the integral of UΓ�ΓðrÞ over 2D space gives us the
intravalley interaction energy in the limit of equal momenta of
interacting excitons, Uex

Γ�Γ
ð0; 0Þ � Uex

Γ�Γ
(Γ= Γ2, Γ3). Independent of

the valley position, UΓ�ΓðrÞ is closely similar to its counterpart in
conventional semiconductors: each of its terms is a product of
two two-center integrals met in theory of diatomic mole-
cules52,60. The difference is, the carrier–carrier interaction has
the form of the Keldysh potential and the consequent exciton
wave function is a variational one instead of the hydrogenic
function.
As to the intervalley interaction energy of different bright excitons,

let us present a symmetric two-exciton structure of the type in
Supplementary Fig. 2 in the form ½Aþ

Γ2;K1
Aþ
Γ3;K2

þ Aþ
Γ5;K1

Aþ
Γ6;K2

� 0j Þ= ffiffiffi
2

p
,

which diagonalizes the exciton Hamiltonian average. In terms of
excitons’ crystal momenta (Supplementary Eqs. 9 and 10), the
structure energy has the form

Ex k1ð Þ þ Ex k2ð Þ � 2
S U

ex
Γ2�Γ3

ðk; 0Þ þ Ex k1 þ K � K0ð Þ
þ Ex k2 þ K0 � Kð Þ � 2

S U
ex
Γ5�Γ6

ðk þ 2K � 2K0; 0Þ (16)

where the excitons intervalley interaction energy reads
1
S U

ex
Γ2�Γ3

ðk; 0Þ ¼ 1
S U

ex
Γ5�Γ6

ðk; 0Þ�

¼ 2
S

R
d2r exp½iαkr� R R d2r1d

2r2 exp iα K � K0ð Þ r1 � r2ð Þ½ �
´ f ðr1Þ f ðjr1 þ rjÞ f ðr2Þ f ðjr2 � rjÞ VK jr2 � rjð Þ � VK ðrÞ½ �

� � 1
S

R
d2r exp½ikr� UΓ2�Γ3ðrÞ

(17)

Here UΓ2�Γ3ðrÞ is an attractive interaction potential that outlines the
interaction potential between Γ2 and Γ3 excitons in the limit of
vanishing momentum transfer. Similarly to Uex

Γ�Γ
(Γ= Γ2, Γ3), we

quantify the intervalley interaction potential by the value of the
integral of UΓ2�Γ3ðrÞj j over 2D space that we denote by Uex

Γ2�Γ3
.

We will refer to the quantity as the intervalley interaction energy
(in the limit of equal momenta). Comparing Eqs. 17 and 15 we see
that the interaction between distant Γ2 and Γ3 excitons in the
momentum space is described by an oscillating exponent in
the inner two-center integrals (over r1 and r2). From Eq. 5 and the
form of the exciton wave function, we have the oscillation frequency
2π=ð3 ffiffiffi

3
p Þax=a, which roughly varies between 3.5 and 6.5 for a ~

3Å and ax in the range 9− 17Å (Fig. 2a). Consequently, the

intervalley interaction potential is much weaker compared to its
intravalley counterpart. Essentially, the potential depends substan-
tially on the exciton extent defining the overlap degree of the wave
functions of interacting excitons from K and K 0 valleys in the
momentum space. As expected, the smaller the exciton radius
(the more extended the exciton wave function ϝ(k)) is, the stronger
the intervalley interaction potential.
With the particular experimental value of μr and r0 for different

ML TMDs33, the exciton radius, binding energy, and interaction
energies Uex

Γ�Γ and Uex
Γ2�Γ3

obtained for freestanding ML TMDs are
shown in the upper part of Table 1, and potentials UΓ�ΓðrÞ and
UΓ2�Γ3ðrÞ as functions of relative distance r/ax – in Fig. 3. The
interaction potentials (energies) computed for a ML TMD are
expressed in the unit of Eb (Eba2x ) found for the material. As
the electron–hole interaction energy (Eq. 11), the intravalley
interaction potential in its absolute quantity weakens with

Table 1. Input parameters and calculated characteristics of excitons,
their interactions, and the biexciton.

MoSe2 MoS2 WS2 WSe2

μr (m0)
33 0.350 0.275 0.175 0.200

r0 (Å)33 39 34 34 45

Freestanding MLs

Eb (meV) 620 644 566 481

ax (Å) 8.38 8.96 11.48 12.11

Uex
Γ�Γ (Eba

2
x ) 2.043 2.173 2.341 2.187

Uex
Γ2�Γ3

(Eba2x ) 0.952 0.863 0.602 0.539

E0 (meV) 64.9 53.4 (6012) 18.5 12.9

hBN encapsulated MLs

κ33 4.4 4.45 4.35 4.5

Eb (meV) 226 (23133) 215 (22133) 174 (18033) 157 (16732)

ax (Å) 10.38 11.53 15.39 15.69

E0 (meV) 24.0 (2127) 13.2 1.5 1.4 (16–1718)

Available appropriate experimental measurements of the exciton and
biexciton binding energies are shown in parentheses.

Fig. 3 Intravalley and intervalley exciton interaction potential in
the limit of vanishing momentum transfer in freestanding ML
TMDs. The dashed line inside the intervalley potential in ML WSe2
depicts the approximate position of the intervalley biexciton energy.
We put lattice constant a= 3.3Å for ML MoSe2 and WSe2, and a=
3.2Å for ML MoS2 and WS2

37. Inset: The intervalley interaction
potential in ML MoSe2 and WSe2 in vacuum (solid lines) and hBN
encapsulation (dashed lines) in the unit of millielectronvolt.
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increasing ratio r0/κax. For κ= 1 this trend is seen from amounts of
r0, ax and Uex

Γ�Γ
in the upper part of Table 1 and Fig. 3. Meanwhile,

the potential shape remains the same for all ML TMDs with a
repulsive wall at small distances and an exponential fall at larger
ones. These features are characteristic of the interaction between
excitons52,60, resembling that between atoms in diatomic
molecules34. Further, for freestanding ML TMDs, the intravalley
interaction strength is somewhat above 2Eb a2x . On the scale �
2Eb a2x it has been guesstimated in ref. 9 for ML WS2. If in Eq. 15
replace VK(r) by the Coulomb potential, the integral gives the
known result Uex jC ¼ 8πEb a2x 1� 315π2=212

	 
 � 6Eb a2x
48,51. Thus,

reduced screening makes the relative exciton–exciton interaction
energy nearly thrice less compared to its amount in the limit of
Coulomb potential VC(r). The exciton–exciton interaction terms
mediated respectively by the electron–hole, electron–electron,
and hole–hole interactions become more with the reduced
screening. However, their magnitudes are closer to each other,
so their difference decreases, involving lesser exciton–exciton
interaction relative to the exciton binding energy. The result
means high stability of valley excitons relative to their pairwise
interaction and a wide valid range of the low-density limit. We
should note that as Eb in ML TMDs is by orders more than in
conventional semiconductors, in its absolute quantity, the
exciton–exciton interaction in the former is enhanced, compared
to that in the latter9,24.
As to the intervalley interaction, the weakening with increas-

ing exciton size can be seen from Table 1 and Fig. 3. The
intervalley interaction energy Uex

Γ2�Γ3
is one-half of the intravalley

counterpart Uex
Γ�Γ in freestanding ML MoSe2 with the smallest

exciton, but just a fourth of Uex
Γ�Γ in ML WSe2 with the largest

one. Figure 3 shows that UΓ2�Γ3ðrÞ is very short-range with its
depth increasing with the decrease of ax. Meantime, the
potential width aw (width at half minimum) decreases in
absolute quantity remaining in a narrow interval 0.65ax−
0.67ax in freestanding ML TMDs. In the presence of environment
dielectric screening, the potential width increases with ax in
absolute quantity though it slightly decreases in the unit of ax.
Examinations show that even for the most strong potential
Um
Γ2�Γ3

ðrÞ in freestanding ML MoSe2, its average value (the value

at half minimum) meets the inequality Um
Γ2�Γ3

ðrÞ
��� ���� 2=μxa

2
w .

Thus for any possible value of the input variables, the intervalley
interaction potential can be considered as a perturbation34 to
the free relative motion of Γ2 and Γ3 excitons in their correlated
symmetric structures. Clearly, the shallower the potential is, the
better the perturbation criterion is fulfilled. To the detail, the
criterion inequality corresponds to the ratio of 1–5, 1–6, and 1–9
for freestanding ML MoSe2, MoS2, and both members of MoX2
subgroup, respectively, while in an hBN encapsulation it is
correspondingly 1–7, 1–8, and 1–14.

Intervalley biexciton
Let us consider a superposition of correlated symmetric structures
of two bright excitons from opposite valleys having a definite
valley momentum P
Γ1;Pj Þ ¼ 1ffiffiffiffi

2S
p
P
K
ΨðKÞ Aþ

Γ2;KþP=2 A
þ
Γ3;�KþP=2 þ Aþ

Γ5;KþP=2 A
þ
Γ6;�KþP=2

h i
0j Þ

� BþP 0j Þ
(18)

It is straightforward to examine, that this two-exciton entity,
whose valley momentum equals its crystal momentum, is an
eigenstate of Hamiltonian Hx of the exciton system with effective
exciton–exciton interaction,

Hx Γ1;Pj Þ ¼ ExxðPÞ Γ1;Pj Þ (19)

with energy ExxðPÞ ¼ 2Ex þ P2=4μx þ Exx and the envelope
function ΨðKÞ obeying the equation

K2

μx
ΨðKÞ � 2

S

X
Q

Uex
Γ2�Γ3

ð2K;QÞΨðK þ QÞ ¼ ExxΨðKÞ (20)

We see, that Γ1;Pj Þ is a correlated two-exciton entity with total
mass 2μx and reduced mass μx/2, whose energy includes the
kinetic energy of its free motion as a whole and internal energy
Exx of the excitons relative motion in the field of their mutual
attractive interaction. The internal energy is positive for the
scattering states and negative for bound states with binding
energy Eb ¼ �Eb;xx > 0. We call Γ1;Pj Þ the intervalley biexciton in
the broad sense of the word though conventionally it is used to
refer to the bound state only. As a nonlocal function of two
vectors-variables, Uex

Γ2�Γ3
ð2K;QÞ is presented in the real space by a

nonlocal potential UΓ2�Γ3ðr; r0Þ60 and Eq. 20 is therefore an
integrodifferential equation. It cannot be analyzed with usual
methods of nonlinear dynamics and bound to be reduced by
approximations. The approach proposed in ref. 52, which consists
in expanding the exchange interaction energy density into a series
of powers of α, can be applied. However, with α ≈ β ≈ 1/2, one has
to retain a large number of the series terms yielding a high order
differential equation. Dealing with such an approximate solution
of Eq. 20 is itself a demanding issue that is beyond the scope of
this paper. We note only that (i) UΓ2�Γ3ðrÞ comes from the main
zero-order term of the mentioned series, (ii) the intervalley
interaction energy is that of the real nonlocal potential,
Uex
Γ2�Γ3

¼ R d2r UΓ2�Γ3ðrÞj j ¼ R d2r d2r0 UΓ2�Γ3ðr; r0Þj j, and (iii)
UΓ2�Γ3ðrÞ in combination with the first and second-order terms
of the series corresponds to an equivalent energy-dependent local
potential of the same range (aw), which is slightly deeper with
minimum shifted towards a larger distance. Therefore binding
energy E0 of the bound state supported by UΓ2�Γ3ðrÞ can be
considered a lower bound for the biexciton binding energy, i.e.
the minimal amount Eb can have for a set of input variables
values, E0tEb . Because we can acquire E0 just approximately as
one can see later, it indicates a narrow range, wherein the
biexciton binding energy might be. Thus we will refer to this
quantity approximately as biexciton binding energy. Presenting
the envelope function of the bound state as ψðrÞ ¼
RðrÞ exp½imφ�=2π with m an integer, we have the equation for
its radial part,

� 1
μx

1
r
d
dr

r
d
dr

RðrÞ
� �

þ UΓ2�Γ3ðrÞ þ
m2

μxr2

� �
RðrÞ ¼ �E0 RðrÞ (21)

Detailed checking shows that already for m= 1 the centrifugal
term predominates in strength over Um

Γ2�Γ3
ðrÞ. Hence for any

realistic amount of input parameters, Eq. 21 with a repulsive
effective potential has no negative solution. Thus the intervalley
interaction potential can support only bound states with m= 0.
Moreover, our calculations using Eq. 30 in ref. 61 for the number of
such bound states in a 2D potential show that for realistic
amounts of the input parameters, UΓ2�Γ3ðrÞ can host only one
bound state. Its binding energy can be estimated in a perturbation
theory manner as shown by Landau and Lifshitz34,

E0 � 2
μxa2w

exp � 2
μx

2π
Uex
Γ2�Γ3

( )
(22)

We see an exponential increase of the biexciton binding energy
with the exciton mass and intervalley interaction energy Uex

Γ2�Γ3
that itself rises with increasing mass and decreasing screening.
Consequently, E0 is sensitive to any variation of the input
variables, which might help explaining disagreement between
the reported experimental measurements11–18. The sensitivity is
most relevant to the exciton mass, which enters the exponent’s
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degree in Eq. 22, and is one of the variables determining Uex
Γ2�Γ3

.
Therefore the biexciton binding energy in ML MoX2 with heavier
excitons is much more than in ML WX2. One can see from Table 1
that the ratio between the amounts of E0 in two groups is several
times in freestanding samples. We note that the number we
obtain for freestanding ML MoS2 is near the measurement of Sie
et al.12. To our knowledge, experimental data of the biexciton
binding energy in remaining ML TMDs in a vacuum is not
available. As to the other inherent parameter, the dependence of
E0 on r0 is through ax, whereon Uex

Γ2�Γ3
strongly depends. We see

from Fig. 2a that in any environment, the exciton is largest in ML
WSe2 with longest r0, though μr in ML WS2 is a little lighter. The
exciton extent determines the intervalley interaction strength, so
the biexciton binding energy in ML WSe2 is the least, as seen from
Fig. 4, where we put the variation of E0 with κ in all four ML TMDs.
In light of our results for ML WS2 and WSe2 shown in the figure, it
is unlikely the intervalley biexciton binding energy in the range of
45–65meV, which has been deduced from observed resonances
in early experiments on SiO2 substrated ML WSe2 and WS213–15.
Doubts have been raised recently about the nature of those
resonances with different mechanisms suggested for their
origin8,62. As one can see from Fig. 1, in ML WX2 the energy of
the spin-dark excitons is below that of the bright ones. Therefore
the part of their optical spectra below the exciton resonance is
much richer than in ML MoX2. The physical origin of different
experimentally observed peaks in the low-energy part of spectra
of ML WX2 is still not clear8, so their misinterpretation seems a
common practice. Encapsulation by hBN flakes often used
lately7,27,32,33 considerably improves the spectra by reducing
excitonic linewidths to ~2–4meV at 4 K7. The marked increase
of ax at κ ~ 4.5 (see Table 1) leads to a sharp decline of the
intervalley interaction (see Fig. 3, the Inset) involving a striking
decrease of the biexciton binding energy. We find that E0 goes
down to the range of 24 meV in hBN encapsulated ML MoSe2,
which agrees with the recent measurement of Yong et al.27. In
hBN encapsulated ML WX2, the exciton radius becomes about five
times larger than the lattice constant. The oscillating factor with a
frequency of about six in rhs of Eq. 17 severely diminishes the
intervalley interaction potential. Quantum mechanically speaking,
the exciton wave functions at the K and K 0 valleys become so
small and localized in the momentum space that they can hardly
overlap. As a result, E0 dramatically falls off to values less than
excitonic linewidths. In this connection, an amount in the range
16–17meV reported for the biexciton binding energy in hBN

encapsulated ML WSe218 appears to be a misinterpretation. It is
not convincing that the authors claim about the agreement of
their measurement with those of refs. 16,17, and also with
theoretical results of refs. 19–22. First, experiments in refs. 16,17

are on sapphire substrates, and in the latter, the sample is ML
MoSe2. Taking high-frequency dielectric constant of sapphire
substrates εb= 9.363, we get numbers about 19 meV and 0.4 meV
for E0 in ML MoSe2 and WSe2, respectively. The former agrees with
the experimental measurement of Hao et al.16, giving another
example, that Eq. 22 provides reasonable judgment of E0 in ML
MoX2. Meantime, the obtained number for ML WSe2 is even
smaller than the smallest (3 ± 0.5 meV), not mentioning the
largest (18 ± 0.5 meV), among three values for E0 the authors of
ref. 17 infer from their time-resolved differential absorption data.
For κ ≈ 5.15, potential UΓ2�Γ3ðrÞ is still shallower than it is in the
case of κ= 4.5 shown in the Inset of Fig. 3, with an average value
of about −15meV. The potential fine meets the perturbation
criterion, so estimation by Eq. 22 is credible.
Concerning theoretical works on the biexciton19–23, we should

note the following. The starting intervalley biexciton model in
these works is the same as ours. That is a 2D two-pair structure
with identical carriers having opposite spins and the Keldysh
carrier–carrier interaction. However, the fact that the two electron-
hole pairs forming the intervalley biexciton come from different
edges of BZ has not been taken into consideration. Besides, the
exchange interaction that is the primary part of the interaction
between excitons has been coped with inadequately. Further, with
the Keldysh carrier–carrier interaction, the relationship between
the exciton binding energy and radius is determined by its
reduced mass and dielectric parameters, as described by Eq. 11. By
assuming the hydrogenic model relationship Ebax= e2/ε0ε, the
authors exclude the exciton mass from their examinations. As a
result, their biexciton binding energy depends only on the
screening length and electron-hole mass ratio. With values of
the last differing not much, the obtained amounts for E0 in
different ML TMDs are close to each other19–22. Overall, that seems
the biexciton model considered in those works has little in
common with the intervalley biexciton in a real ML TMD.
Undoubtedly, our theoretical model involving approximations

contains inaccuracies, and the used experimental measurements
of input parameters entail uncertainties. In connection with the
sensitivity of the biexciton binding energy to the input variables,
they might bring about considerable uncertainty of the result for
E0. This concerns first the perturbation theory estimate in the form
of Eq. 22. The better potential UΓ2�Γ3ðrÞ fulfills the perturbation
criterion, the closer E0 is to the exact value. Details on the
fulfillment in different ML TMDs listed earlier show that the
approximation is good for the ML WX2 in any environment and ML
MoX2 in the presence of environment screening. For freestanding
ML MoSe2, it is a rather crude approximation needing further
improvement. Secondly, our model relies on the exciton effective
mass description and Keldysh form of the carrier–carrier interac-
tion leading to Eq. 11. By comparing the amount of Eb following
from the equation and its experimental value in hBN encapsulated
ML TMDs (see Fig. 2b and Table 1, the lower part), we see that
Eq. 11 slightly underestimates Eb, by 5–10meV. The difference
between the two amounts is most (about six percent) for ML
WSe2. By fitting Eq. 11 to 167 meV, we get either μr= 0.21m0,
taking into account the experimental uncertainty pointed out in
ref. 32, and r0= 42 Å, or μr= 0.22m0, as suggested by the authors’
group earlier in ref. 57, and r0= 44 Å. The two alternatives yield
E0 ~ 19 meV in a vacuum and 2.5 meV in an hBN encapsulation.
The relative change in both cases is sizeable, but in the latter, it
does not change the fact that the biexciton is hard to observe in
hBN encapsulated ML WSe2, and in general, in an environment
with κ > 3 as one can see from Fig. 4. Thirdly, from Eq. 15 on, our
computations are carried out for α= β yielding Ud= 0. With the
difference between electron and hole masses taken into

1 2 3 4 5

0

10

20

30

40

50

60

Environment dielectric constant

B
ie

x
ci

to
n
 b

in
d
in

g
 e

n
er

g
y
 (

m
eV

)

Fig. 4 Variation of the intervalley biexciton binding energy with
environment screening. The lines come from the interpolation
between multiple points calculated with the use of Eqs. 22 and 17.
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consideration, the upper line in (16) gains an additional term
Ud(k1− k2), which corresponds to a local potential Ud

Γ2�Γ3
ðrÞ in the

coordinate space. The direct exciton interaction potential has a
considerable positive value near r ~ 0 60, then takes minor
negative values adding an insignificant amount to potential
UΓ2�Γ3ðrÞ. As

R
d2rUd

Γ2�Γ3
ðrÞ ¼ Ud

Γ2�Γ3
ð0Þ ¼ 0, it makes no contribu-

tion to intervalley interaction energy Uex
Γ2�Γ3

. In this way, with the
little difference between μe and μh in ML TMDs19,30,36,37,
neglecting the direct part of the exciton–exciton interaction is
acceptable.

DISCUSSION
We have presented a theoretical model for the system of diverse
ground state excitons in ML TMDs with their effective pairwise
interaction in the low-density limit. We make use of a group
theoretical classification scheme for the band states and related
excitons, where each of them is notated by a one-dimensional
irreducible representation of the Abelian group C3h, the wave vector
group at the K and K 0 valleys. We limit ourselves to a simplified
band structure of ML TMDs with a direct two-band scheme at each
valley, yielding four exciton symmetry states, two bright and two
dark ones. Analogous states the exciton has in conventional 2D and
3D semiconductors with twofold spin-degenerate bands and
dipole-allowed interband transition. We find that qualitatively,
excitons in ML TMDs interact with each other in the same way as
their conventional counterparts. That is, the character of the
interaction between excitons with Γ and Γ0 notations is defined by
the product Γ	 Γ0 representing the two-exciton correlated
structure they together form. It is repulsive for Γ	 Γ0 ≠ Γ1,
corresponding to a nonzero excitons total spin, and attractive in
the only symmetric one, Γ	 Γ0 ¼ Γ1, corresponding to the spin 0.
Concerning the bright excitons, their mutual interaction is repulsive
for parallel spins and attractive for opposite ones. The distinction of
excitons and their pairwise interaction in ML TMDs is due to the
materials’ particular band structure and reduced screening in the
form of the Keldysh carrier–carrier interaction. The former drives
excitons with opposite spins residing at inequivalent valleys distant
in the momentum space. In this way, we find in ML TMDs the
repulsive intravalley and attractive intervalley exciton–exciton
interaction. The latter, naturally depending on the overlap degree
of the exciton wave functions at two valleys, supports the
intervalley biexciton formation. With the Keldysh form of the
carrier–carrier interaction, the exciton radius determining the wave
function extent is the variational parameter.
Quantitatively, we have established an analytical relationship of

variational parameter ax, and the corresponding exciton binding
energy, with the exciton reduced mass and the sample and
environment dielectric characteristics. The latter are thereby the
input variables determining the former as primary features of
the exciton, and also the exciton–exciton interaction and the
intervalley biexciton binding energy. We have acquired the
intervalley interaction potential as a function of the interexciton
distance, showing its explicit dependence on the exciton radius.
We find that for realistic values of the input variables, the
intervalley interaction potential turns out to be sufficiently weak,
permitting us to estimate biexciton binding energy E0 in a
perturbation theory manner. In this way, we obtain its semiana-
lytical dependence on the exciton mass and the sample and
environment dielectric parameters. We notice that E0 is sensitive
to every input variable, especially the exciton mass. We find that in
a vacuum, E0 in molybdenum-based MLs with heavier excitons is
several times larger than in tungsten-based ones, and the ratio
rises to about an order in the presence of environment screening.
The amounts of E0 we estimate for freestanding ML MoS2, and
also sapphire substrated and hBN encapsulated ML MoSe2, well
agree with available relevant experimental measurements. Mean-
time, our estimation for ML WSe2 in those conditions gives values

very small compared to two appropriate experimental reports.
From our perspective, this might be connected with misclassifica-
tions of the observed experimental spectra.
The semianalytical relationship established between the exciton

and biexciton binding energy with environment dielectric
constant might be used for adjusting the exciton and biexciton
feature of different ML TMDs in future optoelectronic applications.
Further, from our symmetry-dependent exciton Hamiltonian, a
system of Heisenberg equations of motion can be derived. Such a
system would be a baseline for research on valley selective
nonlinear effects in an ML TMD coherently driven near the exciton
resonance. In this connection, it is worthwhile pointing out the
applicability of the presented model. It describes the coherent
dynamics dominating the initial stages of optical experiments64 in
the first nonlinear regime. Created exciton polarization has the
phase of the exciting field, and its inherent part has not appeared
yet. The interaction with the carriers, phonons, etc., available in
the sample, whose concentration is assumed small, causes a weak
dephasing of the exciton polarization resulting in a slight
reduction of its coupling with field and an energy shift of the
exciton resonance49. The model is inapplicable to conditions when
the created exciton polarization becomes incoherent, or under an
above gap excitation, when the resulting excited state population
is a mixture of bound excitons and electron-hole plasma. The
presence of excess carriers at a moderate density can considerably
affect the exciton, its interaction with the light and each other65.
At an intermediate density, the interaction of excitons with bound
and unbound charged excitons (trions) can dress them into
exciton-polarons66. However, the description of such effects is
beyond the scope of the paper.
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