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Dirac fermion metagratings in graphene
Pengcheng Wan1, Yinghui Ren1, Qianjing Wang1, Di Huang1, Ling Zhou1, Haiqin Guo1 and Junjie Du 1✉

We theoretically demonstrate a Dirac fermion metagrating which is an artificially engineered material in graphene. Although its
physics mechanism is different from that of optical metagrating, both of them can deliver waves to one desired diffraction order.
Here we design the metagrating as a linear array of bias-tunable quantum dots to engineer electron beams to travel along the -1st-
order transmission direction with unity efficiency. Equivalently, electron waves are deflected by an arbitrary large-angle ranging
from 90° to 180° by controlling the bias. The propagation direction changes abruptly without the necessity of a large transition
distance. This effect is irrelevant to complete band gaps and thus the advantages of graphene with high mobility are not destroyed.
This can be attributed to the whispering-gallery modes, which evolve with the angle of incidence to completely suppress the other
diffraction orders supported by the metagrating and produce unity-efficiency beam deflection by enhancing the -1st transmitted
diffraction order. The concept of Dirac fermion metagratings opens up a new paradigm in electron beam steering and could be
applied to achieve two-dimensional electronic holography.
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INTRODUCTION
Graphene has emerged as a promising platform for developing
alternative electronic devices with higher performance and even
microelectronics because of its exceptional properties such as
high intrinsic mobility, high electrical conductivity, and ballistic
transport at micron scales under ambient temperatures1. Great
progress has been made in developing functional devices such as
Dirac fermion microscopes, electron waveguides, splitters and
inductors both theoretically2,3, and experimentally4–9. Graphene
ballistic electrons bear a close analogy to light since they share a
linear dispersion relation. This similarity has inspired the develop-
ment of quantum electron optics in graphene by applying
enlightening ideas in optics to two-dimensional materials. The
behaviours of graphene electrons and light can be understood
within the same theoretical framework10–12, and similar phenom-
ena13,14 can be observed experimentally. Over the past decades,
metaoptics has attracted tremendous interest owing to the
extraordinary phenomena that are not available in naturally
occurring materials15–19. Extending these manipulation methods
to graphene is natural because it is a promising candidate for
breaking the limitation of conventional electron manipulation
methods, as has been done in optics. Negative refraction, a
peculiar behaviour in optical metamaterials, has been reported in
graphene theoretically20 and experimentally21,22 with the demon-
stration of a Dirac fermion Veselago lens. However, metagratings
for Dirac fermions have not yet been studied. Metagratings have
exhibited great application potential in beam steering23–27 and
metaholography28,29 by guiding light to the desired diffraction
order. In this paper a Dirac fermion metagrating is illustrated with
the extraordinary wave beam manipulation abilities, theoretically
realized by a linear array of gate-bias-controlled quantum dots
(QDs).
The metagrating channels electron waves into the -1st-order

transmission direction and thus enables the arbitrary large-angle
beam deflection. Steering electron beams to an arbitrary large
deflection angle remains a challenge in graphene. This can
be partly attributed to the Klein tunnelling which is one of the

characteristic features of ballistic electrons in graphene30. Near-
normal-incidence electrons can pass through arbitrarily high
potential barriers with no damping by undergoing a transition
between electron-like and hole-like states. This rules out all
possibilities of reflecting electron waves at the near-normal
incidence and hence hinders the large-angle deflection of
reflected electron beams. Opening a complete bandgap, explored
both in theory31–34 and experiments35, is one of the options to
break this limitation. However, one has to take on the risk of loss
of high intrinsic mobility of electrons, which is an advantage of
graphene over conventional semiconductor materials. Another
option demonstrated experimentally is to manipulate electron
waves at the neutrality point where the conductivity drops with a
power-law temperature dependence36. However, the operating
bandwidth is restricted to only the Dirac point with the
requirement of extremely low temperatures. In addition, a bent
waveguide was proposed theoretically. Only when the deflection
angle is below 120° can high-efficiency deflection be attainable37.
In addition to the limited deflection angle, a smooth and
sufficiently long transition region is required in such a waveguide
to ensure high transmission through the bends, which prevents
downsizing of electron units. In contrast to these approaches, the
metagrating steers electron beams without the requirement of
opening a complete bandgap or extremely low temperatures and
simultaneously caters to the desire for miniaturization.
The metagrating eliminates the dependency on reflection and

produces abrupt changes in the electron propagation direction by
transmission at a negative angle. This means that the transmitted
wave lies on the same side of the normal as the incident wave.
Compared with conventional reflection, negative transmission
avoids the Klein tunnelling, which comes into play for reflection.
This is achieved when the induced particular electron whispering-
gallery modes (WGM) within the QDs under the strong inter-QD
interaction focus the scattering fields of the QDs into the negative-
transmission direction. Recently, electron WGMs in graphene has
received special attention in experimental research38–42 on quasi-
bound states where the electrons are predicted to be able to be
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trapped for a finite time43–46. Unlike these works, we focus on their
radiative properties. These WGMs do not radiate electrons in the
ordinary and -1st-order reflection directions at the arbitrary
incidence and thus enable perfect large-angle beam deflection
along the -1st-order transmission direction.

RESULTS AND DISCUSSION
Perfect large-angle beam deflection
QDs are circular potential steps that can be tuned by applying a
desired bias. The steps are smooth on the scale of the lattice
constant of graphene such that the intervalley scattering is
neglected and the low-energy electron dynamics can be
described by the single-valley Hamiltonian46–52

H ¼ �i∇σ þ VΘðRs � rÞ; (1)

where Θ(Rs− r) is the Heaviside step function, Rs is the radius of
the circular QD, V is the bias and σ= (σx, σy) are Pauli matrices. We
use reduced units with ℏ= 1 and a Fermi velocity vF= 1. At the
same time, the steps are sharp on the scale of the de Broglie
wavelength. The transition of potentials from the background to
the QDs occurs over a distance ΔRs. This distance should be
smaller than 0.5Rs to ensure that the scattering behaviour can be
well approximated by the step function53. The electron scattering
problem of such a single QD can be rigorously calculated by the
Mie scattering method46,51,52 which helps predict the excited
WGMs in experiments54. Strong inter-QD interactions may occur in
a linear QD array and dramatically alter the WGMs and thus
electron scattering behaviour of QDs. Consequently, the array
produces negative transmission with the distribution probability
of the scattered electrons concentrated primarily in the -1st-order
transmission direction. The configuration of the linear array and
the propagation of the electron wave are schematically shown in
Fig. 1a, where the blue circular dots represent the QDs and the
angle θWA is the angle made by the incident wave with the linear
array. Figure 1b shows the phase diagram of the -1st-order
transmittance versus the bias V applied on the QDs and the angle
θWA in reduced units with fixed incident-electron energy E= 0.8.
The QD radius is Rs= 1 and the quantities with dimensions of
length, including the lattice constant and wavelength, are in units
of Rs, namely, wavelength λ= 2πRs/0.8 and lattice constant
d ¼ λ=ð2 cos θWAÞ. Note that the lattice constant varies with θWA

(as in Figs. 1b and 2) such that the metagratings only support the
zeroth and -1st diffraction orders, and simultaneously, the angle of
transmission into the -1st diffraction order equals the angle of
incidence. Thus once Rs is known in real units, the incident-
electron energy in real units can be achieved by E= 0.8ℏvF/Rs.

Moreover, according to the definition of “refractive index” N= (V−
E)/E, the bias is V= (1+ N)E. Our calculation for multiple QD
systems exploits rigorous multiple-scattering theory12,55 (“Meth-
ods”), which takes into account the interaction between all the
QDs, not just the neighbour interactions. By controlling the QD
bias V, negative transmission with unity efficiency can be achieved
for θWA ranging from 0° to 45°, which corresponds to a perfect
wide-angle deflection from 90° to nearly 180°. Figure 2 presents
the bending of Gaussian beams at three different angles θWA,
simulated by using nanoscale QDs. Very recently, such nanoscale
QDs with atomically sharp boundaries have been obtained in
experiments56–58. The fabrication techniques of high-precision
QDs54,56–58 make it possible to demonstrate negative transmission
in experiments.

The role of WGM in beam deflection
Obviously, the theory for bulk materials is not appropriate for a
linear QD array. We thus have to turn our attention to individual
QDs, which play a crucial role in negative transmission. To this
end, we investigate the modes excited in a QD in the presence of
other QDs. Due to the inter-QD coupling interaction, this case
differs significantly from the case of an isolated QD. We use Mie
scattering theory to analyse the modes because its expansion
terms correspond one-to-one with the various modes. The
scattered field is expressed as

ψs ¼
ψA
s

ψB
s

 !

¼ 1ffiffi
2

p
Pþ1

n¼�1
inþ1an

�iHð1Þ
n ðk0rÞeinϕ

αHð1Þ
nþ1ðk0rÞeiðnþ1Þϕ

 ! (2)

where an is the scattering-field coefficient in the nth angular-
momentum channel, α is the “band index”, and Jn and Hð1Þ

n are the
nth order Bessel function and Hankel function of the first kind,
respectively. The band index in the background is α= sgn(E) and
in the QD region is α0 = sgn(E− V). Applying the reduced units,
the wavenumbers in the two regions are k0= αE and ks=
α0ðE � VÞ. In this work, the QD radius is much less than the
electron wavelength. The dominant scattering contributions come
from the isotropic monopole, dipole, and quadrupole modes,
corresponding to the terms n= 0, n= ± 1 and n= ± 2,
respectively.
For an isolated QD, the scattering coefficients follow a−n= an−1

and a−n ≠ an. This is different from an isolated isotropic
homogeneous dielectric rod in electromagnetism, for which a−n=
an. a−1 and a1 correspond to clockwise and counterclockwise

(a) (b)

Fig. 1 The -1st-order transmittance. a Schematic view of the abrupt change in the propagation direction of the electron beam by a
metagrating realized by a one-dimensional array of quantum dots on graphene. b Phase diagram of the -1st-order transmittance as a function
of the bias applied on the QDs and angle θWA between the incident wave and the array. The calculation assumes QDs with radius Rs= 1 and
incident energy E= 0.8, in reduced units. The bias V is controllable in practical applications. The black dotted line indicates unity efficiency.
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circular dipole modes, respectively, and their interaction in a
dielectric rod leads to a linear-oscillating dipole mode due to a−1=
a1. Clearly, a linear dipole mode cannot be induced in an isolated
QD. However, the inter-QD coupling significantly alters the
symmetry of the scattering coefficients, with the relation a−n ≠
an−1. Figure 3 illustrates ∣an∣ for a QD in an array for unity
efficiency cases [black dotted line in Fig. 1b] at a deflection angle
ranging from 90° to 180°. We can see that a1= a−1 when 0° < θWA<
20°. Thus, the output will be a standard dipole mode. Meanwhile,
the impact of the isotropic mode related to a0 gradually increases
with increasing θWA, although, its contribution is much less than
that of the dipole mode for θWA < 20°. The coefficient a−2, which
represents a quadrupole mode, is nearly zero for θWA < 20°. As a
result, the total scattering field from a QD in the linear QD array,
calculated on a circle of radius ρ= 60 and in a square region at
θWA= 5° (20°), exhibits clear linear-oscillating dipolar character-
istics [see Fig. 4a, b (Fig. 4c, d), respectively].
However, even though the linear dipole mode excited at θWA=

5° is nearly standard, with a−1= a1, its radiation is not ordinary.
First, it propagates transversely to the incident wave. However, in
electromagnetism, it generally propagates parallel to the incident
direction. Second, its radiation field has a definite and interesting
phase relation with the radiation field obtained from the isotropic
mode. The comparison between Fig. 5a, b shows that the
scattering components of both modes are in phase and
strengthen each other on the transmission side, whereas they
are out of phase and interfere destructively on the reflection side.
Accordingly, the total scattering probability is enhanced and
spans the entire transmission region. However, it becomes weaker
and more confined to the centre of the reflection region as θWA

increases. Although the radiation from the isotropic mode is much

weaker than that from the linear dipole mode, the superposition
of them makes the total scattering probability zero, especially in
the directions of the ordinary and -1st-order reflection indicated in
Fig. 4a, c by arrows R0 and R−1, respectively. The null scattering
probability in the two directions at θWA= 5° is also explicitly
illustrated in Supplementary Fig. 1 in Supplementary Note 1. As a
result, the ordinary and -1st-order reflections do not appear

Fig. 2 Simulation of negative transmission. Negative-transmission-based deflection of electron beams at (a) θWA= 5°, (b) θWA= 20°, and (c)
θWA= 45°. The bias and the lattice spacing are (a) V= 977meV and d= 14 nm, (b) V= 970meV and d= 15 nm, and (c) V= 940meV and d=
20 nm. In all the cases, the QD radius is Rs= 3.5 nm and the incident electrons have a fixed energy E= 148meV. The Gaussian beam has a
waist radius w= 3λ.

Fig. 3 Contribution from different multipole modes. Scattering
coefficients of a QD for the four dominant angular-momentum
channels as a function of θWA. The contribution from other angular
momentum channels is negligible. The channels n=−2, n=− 1
(n= 1) and n= 0 correspond to circular quadrupole, circular dipole,
and isotropic modes, respectively. The QD is located in a linear array
and inter-QD coupling is considered.
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because they arise from the interference between scattering from
all QDs.
When θWA > 20°, a0 and a−2 begin to play more important roles.

At θWA= 45°, the scattering on the reflection side remains well
suppressed, and the scattering probability nearly vanishes, as
shown in Fig. 4e, f. This can be understood as resulting from the
interaction between the four modes. Considering that ∣a−2∣ is
nearly equal to ∣a−1∣, as are ∣a0∣ and ∣a1∣, at θWA= 45°, as shown in
Fig. 3, we give the scattering contributed by a−2 and a−1 in Fig. 5c
and that by a0 and a1 in Fig. 5d. The phases of the fields in Fig. 5c,
d are compared at two points selected arbitrarily in the ordinary
and -1st-order reflection directions. This figure shows that they are
always out of phase and have nearly the same amplitude and thus
will interfere destructively with each other, which means that the
ordinary and -1st-order reflections are not supported by the linear
array. Consequently, the metagrating does not support the
ordinary and -1st-order reflection for arbitrary θWA between 0°
and 45°.
Moreover, the propagation probabilities in the ordinary

transmission direction are also inhibited in this range of incident
angles. The ordinary transmission is the superposition of the
incident wave and the total scattered wave and differs from the
diffraction in all the other diffraction orders, which are only
determined by the total scattered wave. The null propagation
probability in this direction arises from the destructive inter-
ference owing to the opposite phases of the incident and
scattered waves (see Supplementary Fig. 2 in Supplementary Note
2). Consequently, neither ordinary reflection and transmission nor
-1st-order reflection are supported by the metagrating. Therefore,
the unique nonzero propagation probability appears in the -1st-

order transmission direction. This leads to negative transmission
and large-angle deflection of the incident electron beam.
Despite the details of the interaction between the four

scattering coefficients, direct and deep insight into the beam
deflection can be gained from the resultant WGMs within the QDs.
As shown in Fig. 4b, d, f, the WGM is similar to a standard dipole
when θWA approaches zero, then becomes asymmetric with
increasing θWA, and finally turns into a rainbow-like mode near 45°.
For the cases of near-zero θWA, the standard dipole mode in Fig.
4b does not radiate electrons into the ordinary and -1st-order
reflection directions which are nearly parallel to the linear array.
The WGM evolves into a rainbow-like mode on the transmission
side, completely suppressing the radiation on the reflection side,
near 45°, although the two reflected diffraction orders are very
close to the vertical line of the particle array. Meanwhile, the
WGMs can always give rise to radiation into the ordinary
transmitted order, which is out of phase with the incident wave
and these waves cancel each other at arbitrary incidence. The
WGMs produce full inhibition of the other diffraction orders and
enable the metagratings to realize perfect negative transmission
into the -1st transmitted diffraction order. This implies that the
WGMs, the localized nature of the metagrating, are the underlying
physics behind the negative transmission. In addition, what WGMs
are excited in the scattering process depends on the dimension of
the QDs, the applied bias, the spacing and the wavelength, not on
the shape of the QDs. Therefore it is not necessary to fabricate
circular QDs in experiments. A striking example is that negative
transmission has been obtained not only by circular rods but also
by square rods in optics17. Negative transmission is also to some
extent robust against the structure disorder (see Supplementary
Fig. 3 in Supplementary Note 3).

Fig. 4 Scattering from a QD in a linear array. a ∣RefψA
s gj around a circle with radius ρ= 60, and (b) RefψA

s g in a square region for θWA= 5°. Re
fψA

s g is the real part of the first spinor component [see Eq. (2)] of the field scattered by a QD located in the linear array. c, d [(e) and (f)]
correspond to θWA= 20° (θWA= 45°). In the ordinary and -1st-order reflection directions, RefψA

s g is zero, which leads to the disappearance of
the two diffraction orders. This is also the case at θWA= 5° (see Supplementary Fig. 1). The scattered fields are calculated for the QD located at
the origin of the coordinates. The presence of many QDs in (b), (d) and (f) implies that inter-QD coupling has been considered.
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Merits of metagrating-based beam deflection
Note that we actually obtain sharp changes in the direction of
electron propagation by using the metagrating. First, the linear QD
array is only one-QD-diameter thick, which is less than the
electron wavelength. In Fig. 2, the wavelength of electrons
(27.9 nm) is nearly four times the diameter (2Rs= 7 nm) of the
QDs. Second, the transition distance necessary for high transmis-
sion (a larger bend radius than the wavelength) in bent
waveguides becomes dispensable since the electron beam is
bent immediately after passing through the QD array. In addition,
the opening of a bandgap in graphene requires a structure thicker
than the wavelength. Therefore, we use a subwavelength
structure to realize the bending of electron waves. The electron
beam indeed undergoes a drastic change in the propagation
direction, namely, a sharp bend.
In the simulation, we assumed that graphene is suspended in a

vacuum or air. In actual experiments, graphene is usually
supported on a substrate, and the impacts of the substrate on
the electrical properties of graphene must be considered. There-
fore, we should give preference to the substrate that has as little
impact as possible on graphene mobility. To this end, a substrate
with a larger dielectric constant, such as HfO2, is preferred.
In summary, we illustrate a Dirac fermion metagrating that

enables the deflection of electron beams in graphene at a near-
180° angle with unity efficiency by engineering the incident
electrons into the -1st-order transmission direction. The mechan-
ism based on transmission rather than reflection breaks the
restriction of Klein tunnelling and avoids the possible loss of
the high intrinsic mobility of electrons in graphene due to the
opening of a complete bandgap. The extraordinary capabilities of

the linear arrays benefit from the excitation of various whispering
gallery modes. The deflection occurs over a distance much smaller
than electron wavelengths and no transition distance is required.
Such an approach may be used to fabricate compact graphene
devices with dramatically improved integration based on the
abrupt change in the propagation direction. The one-dimensional
design also allows precise control over the performance of
individual QDs and the spacing between them. Finally, by
controlling the bias applied to the QDs, unity efficiency can be
ensured for a wide range of deflection angles.

METHODS
Mie scattering method
Firstly, we solve the scattering problem of a single gate-controlled QD
based on Mie scattering method in graphene46,51,52. The incident and
scattered waves are expanded as follows:

ψin ¼ 1ffiffiffi
2

p
Xþ1

m¼�1
imþ1 �ipAmJmðk0rÞeimϕ

αpBmJmþ1ðk0rÞeiðmþ1Þϕ

 !
; (3)

ψs ¼
1ffiffiffi
2

p
Xþ1

m¼�1
ami

mþ1 �iHð1Þ
m ðk0rÞeimϕ

αHð1Þ
mþ1ðk0rÞeiðmþ1Þϕ

 !
; (4)

where m is an integer angular momentum quantum number,
pAm ¼ e�iðmþ1

2Þϕinc , pBm ¼ e�iðm�1
2Þϕinc , Jm and Hð1Þ

m are, respectively, the mth
order Bessel function and Hankel function of the first kind, ϕinc is the
incident angle. Similarly, the inner field inside the dot can be written as

ψins ¼ 1ffiffiffi
2

p
Xþ1

m¼�1
dmi

mþ1 �iJmðksrÞeimϕ

α0Jmþ1ðksrÞeiðmþ1Þϕ

� �
; (5)

Fig. 5 Elimination of the ordinary and -1st-order reflections at θWA= 5° and 45°. The scattered field distribution contributed (a) by the
channel n= 0 correspondings to an isotropic mode and (b) by the channels n=− 1 and 1 corresponding to a standard dipole mode at θWA=
5°. The scattered field distribution contributed (c) by the channels n=−2 and −1 and (d) by the channels n= 0 and 1 at θWA= 45°. The
calculation is performed for the same QD with the inter-QD interaction considered as in Fig. 4. Ki and R0 denote the incident and ordinary
reflection directions, respectively.
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where k0 and ks are respectively the wave vector in the background region
and the QD, the index α= 1 represents the conduction band and α0 ¼ �1
represents the valence band, and ks=Nk0 with the refractive index N= ∣V−
E∣/E. After imposing the boundary condition at the surface of the QD with
its radius Rs, the size parameter ρ= k0Rs is introduced and the scattering
coefficient am is given

am ¼ � JmðρÞJmþ1ðNρÞpAm � αα0Jmþ1ðρÞJmðNρÞpBm
Jmþ1ðNρÞHð1Þ

m ðρÞ � αα0JmðNρÞHð1Þ
mþ1ðρÞ

; (6)

a�m ¼ � JmðρÞJm�1ðNρÞpA�m � αα0Jm�1ðρÞJmðNρÞpB�m

Jm�1ðNρÞHð1Þ
m ðρÞ � αα0JmðNρÞHð1Þ

m�1ðρÞ
: (7)

The relation between the scattering coefficients a and the incident

coefficients pA

pB

� �
in Eqs. (6) and (7) can also be expressed as a= Sp by a

scattering matrix S.

Multiple scattering method
In a linear QD array, the incident wave that strikes the surface of QD j
consists of two parts: (1) the initial incident wave ψ0

incðjÞ and (2) the
scattered waves of all other QDs according to multiple scattering
theory12,55 (also known in solid-state physics as the K.K.R. method59,60).
Thus it can be written as

ψincðjÞ ¼ ψ0
incðjÞ þ

X
l≠j

ψsðlÞ: (8)

By the translational addition theorem, the scattered wave from any other
potential l (with l ≠ j) can be expanded as follows,

ψsðlÞ ¼ 1ffiffi
2

p
Pþ1

n¼�1
aðlÞn inþ1 �iHð1Þ

n ðk0rÞeinϕ
αHð1Þ

nþ1ðk0rÞeiðnþ1Þϕ

 !

¼ 1ffiffi
2

p
Pþ1

m¼�1
imþ1 �ipðl;jÞm Jmðk0rÞeimϕ

αpðl;jÞm Jmþ1ðk0rÞeiðmþ1Þϕ

 !
;

(9)

where

pðl;jÞm ¼
X
n

iðm�nÞHð1Þ
m�nðkdljÞe�iðm�nÞϕlj aðlÞn ; (10)

and dlj= dljcosϕlj êx+dljsinϕlj êy is the vector extending from the centre of
QD l to that of QD j. In the main text, the linear QD array is placed along the
x axis, so the angle θWA between the incident wave and the array equals
the angle of incidence ϕinc.
Substituting (9) into Eq. (6) and a(j)= Sp(j), one will yield a set of linear

equations that contains the iterative scattering coefficients. In our practical
numerical calculation, the series expansion was truncated at some n= nc.
With the equations, we can compute the scattering field at any position
and the transmittance(reflectivity) of any order diffraction wave. To ensure
the accuracy of the results in our paper, the minimum nc should be larger
than 2. Physically, the minimum nc is determined by the wavelength, the
radius of the QD and the bias voltage applied to the QD. The larger
the ratio of the radius to wavelength or the bias voltage is, the larger the
minimum nc is.
In a linear QD array placed along the x direction, the transmittance in the

vth transmitted order can be expressed as

Tv ¼ jtv j2 ¼ j 2a
ð0Þ
m

dkyv

Xþ1

m¼�1

ðkxv þ ikyvÞmþ1
2

kmþ1
2

þ δv0j2 (11)

where d is the separation between adjacent QDs, kxv and kyv respectively
denote the propagation constants in the x and y directions with kxv= kx+

2πv/d, kyv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2xv

q
for k2 � k2xv .
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