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Dominant role of two-photon vertex in nonlinear response in
two-dimensional Dirac systems
Habib Rostami 1✉ and Emmanuele Cappelluti 2

We show that the standard concepts of nonlinear response to electromagnetic fields break down in two-dimensional Dirac systems,
like graphene, in the quantum regime close to the Dirac point. We present a compelling many-body theory for nonlinear transport
focusing on disorder scattering as a benchmark example. We show that, although the diamagnetic two-photon vertex is absent at
the non-interacting level, disorder effects give rise to a self-generation of such two-photon vertex surviving even in the clean limit.
We predict that the two-photon vertex self-generation is present only in two dimensions. The impact of such a striking scenario on
the nonlinear quantum transport is discussed, predicting a huge enhancement of third-order dc conductivity comparing to the
common models.
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INTRODUCTION
Due to their linear dispersion and the underlying chiral structure,
Dirac materials (DMs) show a variety of exotic features that makes
them a versatile platform for new physics and application
purposes. Despite the complex physics, many properties of these
materials are often rationalized using non-interacting or semi-
classical models1–4. For instance, standard transport models are
conventionally applied for the dc transport in highly doped DMs
(Boltzmann regime), where the mobility is evaluated at the non-
interacting level, and the interactions enter only through the
effective transport scattering rate Γtr

5. At odds with such scenario,
there is a wide consensus that the quantum regime (low-energy
transitions in undoped Dirac model) is much more complex and
significantly affected by many-body effects6.
The nonlinear response of DMs has attracted recently a

considerable interest in two7–14 and three dimensions15–21. Widely
investigated are the nonlinear optical properties such as four-wave
mixing, nonlinear Kerr effect, high-harmonic-generations in single-
layer graphene, with remarkable technological interests22–32.
Peculiar of DM is, due to the linear dispersion, the absence of
bare two-photon-electron coupling, which should rule the so-called
diamagnetic term33. The lack of such a term prompts several widely
debated issues, as the validity of optical sum rules34–36. Most of the
theoretical descriptions of nonlinear effects rely currently upon
non-interacting or semiclassical approaches24–26,37–44 where, similar
to the linear Boltzmann theory, the relaxation processes are
accounted through effective scattering rates Γ (equivalently
mean-free-paths, ℓ, or lifetimes, τ).
In this work, we show that a compelling analysis of many-body

physics, beyond the semiclassical approaches, can drastically
change the above scenario, pointing out that different physical
processes can be responsible for the relevant properties of the
nonlinear dc transport. Analyzing disorder scattering case as a
benchmark example, we show how non-conserving phenomen-
ological models of scattering intrinsically fail and high-order vertex
processes must be properly taken into account. Moreover, in
particular, we show that despite the bare diamagnetic two-photon
vertex (TPV) being null in DMs, the many-body renormalized TPV

is finite and it plays a dominant role. Our results, besides providing
a consistent framework for a proper analysis of nonlinear transport
and optics in interacting DMs, open different perspectives for
understanding and predicting new functional properties of these
promising systems.

RESULTS
Two-dimensional DMs model
We consider two-dimensional (2D) Dirac Hamiltonian
Ĥk ¼ _vσ̂ � k � μ0̂I, where μ0 is the bare chemical potential. For
realistic purposes, we consider the paradigmatic case of graphene,
σ̂ ¼ ðτσ̂x ; σ̂yÞ, where σ̂i stands for the Pauli matrices in the spinor
space, and τ= ± stands for the time-reversal counterparts, valley
index. Light–matter interaction in the dipole approximation is
modeled by applying the minimal coupling transformation ħk→
ħk+ eA(t) with A(t) as an external vector potential. The
corresponding electric field follows E(t)=− ∂tA(t). Due to the
linear dispersion, the electron-photon coupling presents no
diamagnetic (two-photon) bare term but only the linear coupling:

Hlight�matter ¼ _ev
Z

dr ψ̂
yðrÞσ̂ � AðtÞψ̂ðrÞ : (1)

Without loss of generality, we assume an electric field along y.
As a scattering source, we consider long-range impurities within the
context of the self-consistent Born approximation45–47. Such a
scattering model, although not exhaustive5,48 and neglecting
relevant sources of interaction as the electron–electron cou-
pling49–52, is particular useful since it represents the simplest context
pointing out how a conserving approach is needed and how multi-
photon vertices play a crucial role in nonlinear transport. In this
context, we focus on the intra-valley long-range impurity scattering
in this study since for the inter-valley short-range Born impurity
scattering it was shown that the vertex correction average to
zero45,46.
Within this framework we write the impurity self-energy in the

absence of external field in the complex frequency space:
Σ̂ðzÞ ¼ γimp

P
kĜðk; zÞ where the Green’s function follows
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Ĝðk; zÞ ¼ ½z � Ĥk � Σ̂ðzÞ��1
. For isotropic scattering we get a

diagonal self-energy in the spinor basis: Σ̂ðzÞ ¼ ΣðzÞ̂I. Under these
conditions, the impurity self-energy, as well as the Coulomb and
other scattering ones, depends intrinsically on the ultraviolet
energy cut-off W representing the range of validity of the Dirac
model. To provide a conserving approach, as detailed in
Supplementary Note 1, we employ standard dimensional regular-
ization53,54 leading to:

ΣðzÞ ¼ �USðzÞln ½�W2=SðzÞ2�; (2)

where S(z)= z+ μ0− Σ(z), and U is a dimensionless parameter
characterizing scattering strength (see Eq. (7) of Supplementary
Information).

Interacting nonlinear response theory
Conserving approaches, based for instance on a Baym–Kadanoff
derivation55,56, are fundamental in theoretical physics to enforce
the validity of the conservation laws (i.e., the continuity equation)
and to ensure compelling results. This aim is particularly important
in nonlinear response since an arbitrary selection of diagrams can
easily lead to spurious conclusions. The choice of the vector-
potential gauge, within the paradigmatic Born impurity scattering
here consider, permits an exact derivation of self-consistent
equations (see Supplementary Note 2) for all high-order processes
relevant in the third-order response function which is the leading
nonlinear term in centrosymmetric DMs. The diagrammatic
expression of the third-order response is provided in Fig. 1a
where empty symbols represent the unrenormalized n-photon
vertices, whereas filled symbols represent the solution of a
Bethe–Salpeter (BS) self-consistent resummation for a given
n-photon vertex (Fig. 1b–d). The bare multi-photon vertices are
expressed in terms of the renormalized lower-order vertices
(Fig. 1e, f). The TPV function is defined in terms second derivative
of field-dependent Green’s function inverse Ĝ

�1 ¼ Ĝ
�1
0 � Σ̂A:

Λ̂2ð1; 2Þ ¼ δ2Ĝ
�1

δAð1ÞδAð2Þ
���
A!0

; (3)

where Σ̂Að1; 2Þ ¼ Σ̂ð1; 2;AÞ is the self-energy in the presence of
the external field A (see Supplementary Note 2). Note that
1 stands for space-time coordinate (r1, t1) and external vector
potential is assumed to be along a particular direction with
magnitude A(1). The second derivative of the bare Green’s
function Ĝ0 vanishes in Dirac systems which implies the absence
of bare TPV. However, an interaction-induced TPV function is
obtained owing to the field-dependent self-energy. In the Born
approximation, the self-energy is linear in the Green’s function
Σ̂ ¼ VĜ with V being the inter-particle interaction potential. Since
the self-energy depends on the external field only through the
dependence on the Green’s function, we have

Λ̂2ð1; 2Þ ¼ �V
δ2Ĝ

δAð1ÞδAð2Þ
���
A!0

: (4)

It is straightforward to evaluate the second derivative of the
Green’s function and obtain the following relation in terms of the
zero-field Green’s function (see Supplementary Note 2)

Λ̂2ð1; 2Þ ¼ Λ̂
ð0Þ
2 ð1; 2Þ þ VĜΛ̂2ð1; 2ÞĜ ; (5)

where the interaction-induced bare two-photon vertex coupling
reads

Λ̂
ð0Þ
2 ð1; 2Þ ¼ �

X
Pð1;2Þ

VĜΛ̂1ð1ÞĜΛ̂1ð2ÞĜ : (6)

Note that Λ̂1ð1Þ ¼ δĜ=δAð1ÞjA!0 stands for the renormalized
one-photon vertex coupling and Pð1; 2Þ indicates the permuta-
tion between 1 and 2 labels. The self-consistent BS relation given
in Eq. (5) and bare TPV Eq. (6) are diagrammatically illustrated in
Fig. 1c and Fig. 1e, respectively. Using a similar functional
derivative technique one can algebraically prove all diagrammatic
relations represented in Fig. 1.
Few relevant things are worth to be underlined here. First of all,

we notice that an effective multi-photon coupling is induced by
the disorder scattering even if absent in the bare Hamiltonian
(Fig. 1e, f). Second, that the relevance of each n-photon vertex is
largely governed by the BS resummation as depicted in Fig. 1b–d.

Fig. 1 Diagrammatic representation of nonlinear e.m. response in Dirac materials. a nonlinear response expressed in terms of renormalized
n-photon vertices; b–d self-consistent Bethe–Salpeter equations for one-, two- and three-photon vertices; e–f many-body definition of
unrenormalized two- and three-photon vertices in terms of lower-order vertices. Solid and wavy lines stand for fermion propagator and
external photons, respectively. Dashed lines indicate impurity interaction. Empty/filled circles stand for bare/renormalized one-photon vertex,
respectively. Empty/filled squares stand for unrenormalized/renormalized two and three-photon vertices.
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This might lead to a reduction (screening) or enhancement of
different multi-photon scattering depending on the Pauli structure
of the corresponding vertex, as discussed extensively later. We
highlight that the Green’s function method based on the
Baym–Kadanoff framework55 is constructed in such a way that it
automatically satisfies particle conservation law (known as the
continuity relation) as well as the momentum, energy and angular
momentum conservations are fulfilled.

Universal scaling of nonlinear conductivity
The diagrammatic expressions in Fig. 1 represent in full generality
the third-order response function in DMs, including third-
harmonic generation, four-wave mixing, etc. For generic interac-
tion, the solution of such coupled equations on the real-frequency
axis is a formidable task. The focus on isotropic disorder scattering
is particularly suitable to investigate many-body effects in the
nonlinear response since it allows for a set of equations in
Matsubara space which can be generalized in a rigorous way on
the real axis, using the standard procedure of multiple branch cuts
in the complex frequency space. The derivation (lengthly and
cumbersome but compelling) is summarized in Supplementary
Notes 3 and 4. We consider first the dc transport limit. Without loss
of generality, we can express the linear and third-order dc
conductivities in terms of dimensionless quantities:

σ
ð1Þ
dc ¼ σ0f 1

μ

ΓðμÞ ;U
� �

; (7)

σ
ð3Þ
dc ¼ σ0

E20

t0
ΓðμÞ

� �4
f 3

μ

ΓðμÞ ;U
� �

; (8)

where μ= μ0− ReΣ(ω= 0) is the effective chemical potential, Γ(μ)=
− ImΣ(ω= 0) is the scattering rate, σ0∝ e2/ħ is the universal
conductivity and E0∝ t0/ea is a characteristic electric-field scale
determined by the inter-atomic hopping energy t0 and by the lattice
constant a.
We stress again that Eqs. (7) and (8) are tied together since they

must descend in a compelling way from a common self-energy
approximation. Heretofore, although many self-energy paradigms
have been discussed for the linear response, the third-order
response has been analyzed only in the simplistic case of a
phenomenological constant scattering rate Σ=− iΓ. Since such
phenomenological self-energy does not depend on the external
field, the third-order response function reduces to the first

“square” diagram of Fig. 1a dropping all the vertex renormaliza-
tion processes, i.e., replacing the filled circles with empty ones. A
similar scheme can be employed for the linear response. Under
these ultra-simplified conditions, the linear and third-order dc
transport depend uniquely on the semiclassical parameter x= μ/Γ,
i.e., f1(x; y)= f1(x), f3(x; y)= f3(x). The analytical expressions for the
functions f1(x) and f3(x) are obtained in Supplementary Notes 5
and 6A, respectively. In particular, in the Boltzmann regime, one
gets f1(∞) ≈ 2μ/πΓ, f3(∞) ≈− 3πΓ/32μ, implying a nonlinear reduc-
tion of the dc conductivity. A similar analysis is performed in the
quantum regime, giving f1(0)= 8/π2, f3(0)= 2/5, implying an
enhancement of the dc conductivity in the quantum regime due
to nonlinear effects.
The above predictions, based on the phenomenological con-

stant-Γ model, are challenged when many-body effects are
computed in a compelling conserving scheme. We estimate the

third-order dc conductivity as σð3Þ
dc ¼ limω!0σ

ð3Þ
THGðωÞ where σð3Þ

THGðωÞ
is the third-harmonic generation conductivity (see Supplementary
Note 6B for details). In Fig. 2a, b we show the characteristic dc
transport function f3 as a function of the parameter x= μ/Γ(μ), from
the extreme quantum limit (x≪ 1) to the Boltzmann regime (x≫ 1).
From the computational point of view, since the presence of a finite
cut-off energy W, the quantum limit is conveniently investigated by
fixing U and varying μ, whereas the Boltzmann regime is more
easily spanned fixing μ and varying U. We discuss first the
Boltzmann regime (Fig. 2b). We notice that a full many-body
analysis recovers qualitatively the predictions of the constant-Γ
model with f3(x, y) ≈ f3(x)∝− 1/x in the Boltzmann regime x≫ x* ≈
10. The quantitative mismatch in the Boltzmann limit between our
full quantum theory and constant-Γ model (as well as the
phenomenological density matrix approach24–26,29) can be ascribed
to a good extend to the lack, in the phenomenological constant-Γ
models, of the all vertex renormalization processes which are
known already at the linear transport level to give rise in a quantum
treatment for isotropic impurity scattering to an additional factor
Γtr ¼ Γ ð1� cos θÞð1þ cos θÞh i ¼ Γ=2 (see refs. 45,46,57 and also
Supplementary Note 5). This leads roughly to a mismatch factor
16= 23 × 2 between constant-Γ model and the full quantum theory
where 23 comes from the three one-photon renormalization factors
corresponding to black vertex dots in the square diagram in Fig. 1a
and an extra 2 is the net effect of three-photon bubble diagram
contribution (see the last diagram in Fig. 1a).
On the other hand, in the quantum regime x≪ x* (Fig. 2a), f3

shows a significant dependence on μ0, signalizing that the

Fig. 2 Nonlinear dc conductivity in 2D Dirac materials. Characteristic nonlinear transport function f3 versus the dimensionless parameter x
= μ/Γ(μ) within the many-body conserving scheme. Also shown is f3 for the phenomenological model (dashed green line). Curves of f3 versus
x are plotted for different U’s in the quantum regime (a), and for different μ0’s in the Boltzmann regime in THz unit (b).
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nonlinear transport is no more governed uniquely by the
semiclassical parameter x but the value of μ0 (or conversely, U)
starts playing a relevant role. Some striking things are worth being
pointed out: (i) counterintuitively, the third-order contribution to
the dc transport appears to be magnified approaching the clean
limit U→ 0; (ii) there are two isosbestic points (i.e., x-points where
f3 does not depend on U) coinciding in a very good approximation
with f3-function zeroes; (iii) the phenomenological constant-Γ
model predicts a well-determined positive sign of the nonlinear
correction in the quantum regime (implying an increase of the
total conductivity) whereas this sign in the quantum regime of the
full conserving many-body theory is not univocally determined,
presenting a positive crossover to negative sign in the extreme
quantum limit.
We rationalize points (i)-(ii) by assuming that in the quantum

regime the nonlinear characteristic transport function f3(x; U) can
be factorized as:

f 3ðx;UÞ � CðxÞ=Uγ; (9)

(with γ > 0), where the strength of interaction U rules the intensity
of the third-order transport, while the semiclassical parameter x
dictates the sign of the correction. To assess the robustness of
such a description we plot in Fig. 3a the absolute value of the
function f3(x; U) versus U for a representative case x= 0.03 in the
quantum regime. We find a perfect agreement with a scaling
behavior f3(x; U)∝ 1/Uγ with γ slightly smaller than 2 (γ= 1.82)
signalizing that in the clean limit the third-order transport is
expected to dominate the linear one. As detailed in Supplemen-
tary Fig. 5, a similar analysis is valid in the whole quantum regime.

DISCUSSIONS
Two-photon vertex self-generation
To fully understand these interesting features, we analyze
separately in Fig. 3a, b the relevance of each diagram contributing
to the total third-order conductivity as depicted in Fig. 1a. We can
realize that the contribution of the conventional “square” diagram
(which is the only one present in the non-interacting case and for
the constant-Γ model), is essentially marginal, as well as the
contribution of the last “bubble” associated with the renormalized
three-photon vertex. The dominant role is instead played by the
“triangle” diagrams containing the renormalized TPV. A quantita-
tive analysis shows that each family of diagrams obeys Eq. (9) with

an approximately integer exponent (i.e., γ ≈ 2, γ ≈ 2, and γ ≈ 1
for the square, triangle and the bubble diagrams). The dominance
of the triangle diagrams results in an exponent very close to 2 (γ ≈
γ ). The self-consistent BS renormalization of the TPV (Fig. 1c) is a
crucial ingredient in such a nontrivial scenario. This can be
assessed in Fig. 3a, b where once neglected the BS renormaliza-
tion, the contribution of the triangle diagrams is of the same order
(even smaller) of that of the conventional square diagram. The
dominant role of the TPV renormalization appears even more
evident by investigating the scaling of the third-order transport
function f3(x; U) versus U. As depicted in Fig. 3a, once replaced the
BS renormalized TPV (Fig. 1c) with the “bare” one (Fig. 1e), the
third-order dc conductivity scales as 1/U (γ ≈ 1), with an
additional sign-change, as shown in Fig. 3b. This means that the
BS renormalization of the TPV gives rise in the quantum regime to
an additional dependence ~ 1/U that diverges in the clean limit.
The n-photon vertex matrix structure, Λ̂n ¼ ð�evσ̂yÞnΛn, plays a

crucial role in the relevance of the BS renormalization effect. The

impressive effect is peculiar of the TPV renormalization Λ2 ¼
Λ
ð0Þ
2 =½1� UX2� and does not appear in the BS renormalization of

the one- three-photon vertex (Λn ¼ Λ
ð0Þ
n =½1� UXn�, with n= 1, 3

and see Supplementary Notes 3B–D for details). This different
impact can be traced down to the different Pauli structure in the
spinor space. As detailed in Eq. (65) and Eq. (76) of Supplementary
Information we get X1 ¼ X3 / Tr½σ̂yĜσ̂yĜ�, X2 / Tr½ĜĜ�. In the
quantum regime, one can thus show that in the dc limit UX1 ≈
UX3∝ U, whereas UX2 � 1þOðUÞ, resulting in an effective

divergence of Λ2=Λ
ð0Þ
2 at zero temperature and in the clean limit

(U→ 0). The impact of the two-photon renormalization can be
understood in more details by investigating the two-photon
renormalization factor in an arbitrary spatial dimension (see
Supplementary Note 3C for details),

Q2ðz1; z2Þ ¼ 1
1� UX2ðz1; z2Þ ¼

Sðz1Þ � Sðz2Þ
z1 � z2

; (10)

where X2ðz1; z2Þ /
P

kTr½Ĝðk; z1ÞĜðk; z2Þ� and where z1 and z2 are
the electronic frequencies in the complex plane. Particularly
enlightening is the analysis of the retarded-retarded (RR) channel.
In the dc limit (ω→ 0) QRR

2 ðϵ; ϵþ _ωÞ of 2D DMs is simply given by

Fig. 3 Universal scaling of nonlinear dc conductivity in 2D Dirac materials. a Log–log scale plot for the absolute value of the characteristic
third-order transport function f3(μ, U) versus U at x= 0.03. Different lines correspond to the individual contribution of diagrams in Fig. 1a as
mentioned the shared plot-legend in (b). b Nonlinear correction g ¼ jσð3Þdc jE2=σð1Þdc at external electric-field E= 1 mV/nm is shown versus the
chemical potential μ for U= 0.11. Similar to (a), different curves correspond to different diagram’s contribution as mentioned the plot-legend.
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(see Supplementary Note 7)

lim
ω!0

QRR
2 ðϵ; ϵþ _ωÞ ¼ dSðϵÞ

dϵ
¼ SðϵÞ

2USðϵÞ þ μ0 þ ϵ
; (11)

where ħω is the photon energy and ϵ is the electronic energy. For
low-energy excitations ϵ ≈ 0 we have QRR

2 ¼ Sð0Þ=½2USð0Þ þ μ0�.
The Boltzmann regime is achieved as μ0≫ 2US(0). In the clean
limit U→ 0 we get S(0)= μ0 and QRR

2 ¼ 1. The quantum regime is
on the other hand characterized by μ0≪ 2US(0), so that
QRR
2 ¼ 1=2U, leading thus to a huge enhancement for U→ 0 as

long as μ0≪ 2US(0). A similar behavior Q2∝ 1/U appears also in
the retarded-advance (RA) channel, although more delicately (see
Supplementary Note 7 for details). As a net result, there is a
divergence 1/ω in QRA

2 ðϵ; ϵþ _ωÞ at a low frequency which is
reflected in a consequent divergence− 1/U, similarly as for the RR
channel, but with a negative sign. The balance between RR and RA
terms determines the sign-change of the third-order dc con-
ductivity versus x in the quantum regime. We must stress that the
huge enhancement of the third-order dc transport is governed by

the dominant role of the TPV renormalization. Since Λ
ð0Þ
2 scales as

U and 1/[1− UX2] scales as 1/U, such enhancement can be
regarded as TPV self-generation (Λ2 ≠ 0) which survives in the
weak-coupling (clean) limit U→ 0.

Phase diagram and quantitative predictions in graphene
The net result on the dc transport is summarized in Fig. 4a where
we plot the sign and the magnitude of the third-order
conductivity for a representative electric field E= 1 mV/nm58–60

normalized to the linear order conductivity,

gðEÞ ¼ σ
ð3Þ
dc E

2=σ
ð1Þ
dc

��� ���; (12)

in the physical space of the effective chemical potential μ and
scattering rate Γ(μ), as they can be obtained directly in an
experimental way. The Boltzmann regime corresponds thus to the
right-lower corner whereas the extreme quantum regime (x→ 0) is
recovered in the left-upper corner. As noticed before, at odds with
the predictions of the phenomenological model, we find that the
third-order conductivity σð3Þ

dc is negative not only in the Boltzmann
regime but also in the quantum regime. Note that the zeroes of
the third-order dc conductivity, see x1 and x2 in Fig. 2a, appear in
this plot as straight dashed lines. This is a consequence of the
factorizable expression for the characteristic third-order dc

transport function as shown in Eq. (9). We mark with tiny dotted
in this plot the regions where the third-order terms start to be
relevant g ≈ 0.1 and where they become of the same order than
the linear dc term g ≈ 1. Note that the condition g= 1, in the
regions where the third-order dc conductivity σ

ð3Þ
dc is negative

should not be regarded as an onset of negative total dc
conductivity, rather as a sign that the expansion at the third-
order in E starts to be a poor approximation and higher-order
terms in powers of E must be included in the analysis. In Fig. 4b,
we show the phase diagram for the constant-Γmodel. As it is seen
this phase diagram is completely different from that of the full
quantum theory which is given panel (a). We can see only one
sign-change in the constant-Γ model in contrast to that of full
quantum theory which gives two sign-changes. Unlike the full
quantum theory, the constant-Γ model predicts a positive
nonlinear correction in the quantum regime.
We now assess the relevance of the nonlinear conductivity in

graphene as a paradigmatic 2D DM. In particular, we consider a
honeycomb lattice with inter-atom distance b= 1.42Å, with lattice
parameter a ¼ ffiffiffi

3
p

b ¼ 2:46Å and nearest-neighbor hopping t0 ≈ 3
eV, corresponding to a Dirac velocity v ¼ ffiffiffi

3
p

t0a=2_ � 106 m/s.
Note that we have σ0= e2/4ħ and E0 ¼ πt0=

ffiffiffi
3

p
ea � 22:0 V=nm is

an ultra-strong characteristic electric field. We define an ultraviolet
energy cut-off W= 7.2 eV for the Dirac linear dispersion (see
Supplementary Note 1 for details). We evaluate the ratio g(E)
between the third-order and the linear order responses, as defined
in Eq. (12). A critical electric-field Emax is defined as the electric-field
above which third-order corrections become of the same order of
the linear term, i.e., gðEmaxÞ ¼ 1. The relevance of the third-order
term compared with the linear contribution is investigated in an
extended way shown in Fig. 4 in the generic μ-Γ phase diagram. In
the phenomenological constant-Γ model we obtain Emax ¼ αE0
with α � 1:47 ´ μΓ=t20 in the Boltzmann regime and α �
1:42 ´ Γ2=t20 in the quantum limit. These values can be compared
with the estimates for the full conserving theory that gives α �
0:32 ´ μΓðμÞ=t20 in the Boltzmann regime and α � 1:14U ´ Γð0Þ2=t20
in the quantum limit with U ¼ 1=ln ½W2=Γ2ð0Þ�. In Ref. 61 a roughly
constant value Γ ≈ 15 meV was estimated in the wide range μ ~
0− 200 meV. With these values the phenomenological constant-Γ
model would estimate a critical field Emax � 10:8 mV/nm for μ ≈
200 meV and Emax � 0:8 mV/nm for μ= 0 with a quantum-
Boltzmann crossover at μ* ≈ 150 meV, whereas the full conserving
theory predicts Emax � 2:35 mV/nm for μ ≈ 200meV and Emax �
0:05 mV/nm for μ= 0, in a more observable range58–60. In realistic

Fig. 4 Phase diagram for the nonlinear transport regimes in 2D Dirac materials. Colormap plot for g ¼ jσð3Þdc E
2=σ

ð1Þ
dc j factor with E= 1mV/nm

versus chemical potential μ and relaxation rate Γ(μ) in the full conserving and constant-Γmodels depicted in (a) and (b), respectively. The sign
of σð3Þdc is written on the plot where two sign-switch borders are highlighted by dashed red lines. Green and blue dashed lines stand for the
contour lines with g= 1 and g= 0.1, respectively.
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experimental conditions, the electronic temperature raises due to
high electric field, and thus a finite temperature analysis is needed
to explain the experiments.
In summary, we have presented a fully conserving theory of

nonlinear transport in DMs in the presence of disorder scattering.
The predicted two-photon vertex self-generation is an intrinsic
property of 2D systems which is absent in other dimensions (see
Supplementary Note 7 for details). Our results show that the
previous analyses in literature, based on phenomenological
scattering models, can be qualitatively (but not quantitatively)
reliable in the Boltzmann regime but they completely fail in the
quantum regime. We have shown that, in a wide quantum region
close to the neutral point, the nonlinear transport response is
dominated by different physical processes where the TPV, absent
in the non-interacting Dirac Hamiltonian, plays a relevant role. Our
results, focused on the dc limit, imply that the current knowledge
about the nonlinear optical response in the terahertz regime
should be deeply revised as well. The TPV self-generation is
particularly important in difference-frequency nonlinear phenom-
ena such as photogalvanic effect, two-photon absorption, and
stimulated Raman effect where there is always a low (infrared or
even dc) frequency component for which the self-generation
condition is satisfied. Our work, which paves the way for a further
generalization to include in a conserving way the electron–phonon
and electron–electron scattering channels for going beyond
standard hydrodynamic and mean-field density matrix analysis,
opens new perspectives to deeply understand the nonlinear
response of Dirac systems, whose relevance ranges from
condensed matter to high-energy physics.

DATA AVAILABILITY
All data that support the findings of this study are available on request from the
corresponding author.
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