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Facilely synthesized nitrogen-doped reduced graphene oxide
functionalized with copper ions as electrocatalyst for oxygen
reduction
Nadia Garino 1,2,4✉, Juqin Zeng 2,4✉, Micaela Castellino 1,2, Adriano Sacco 2, Francesca Risplendi 1, Michele Re Fiorentin 2,
Katarzyna Bejtka 2, Angelica Chiodoni 2, Damien Salomon 3, Jaime Segura-Ruiz 3, Candido F. Pirri 1,2 and Giancarlo Cicero 1

Nitrogen-doped reduced graphene oxide is successfully synthesized and functionalized with hydroxylated copper ions via one-pot
microwave-assisted route. The presence of cationic Cu coordinated to the graphene layer is fully elucidated through a set of
experimental characterizations and theoretical calculations. Thanks to the presence of these hydroxyl-coordinated Cu2+ active sites,
the proposed material shows good electrocatalytic performance for the oxygen reduction reaction, as evidenced by an electron
transfer number of almost 4 and by high onset and half-wave potentials of 0.91 V and 0.78 V vs. the reversible hydrogen electrode,
respectively. In addition, the N-doped Cu-functionalized graphene displays a superior current retention with respect to a
commercial Pt/C catalyst during the stability test, implying its potential implementation in high-performance fuel cells and metal-air
batteries.
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INTRODUCTION
To date, several efficient and smart technologies for energy
conversion and storage are emerging as suitable strategies to
build a green and sustainable future. Among them, fuel cells1,2

and metal-air batteries3,4 attract particular worldwide interest, due
to their high energy density, enabling an increasing driving
autonomy in electric vehicles, to be comparable to that of
gasoline-supplied vehicles, and supporting the development of
small advanced portable electronic devices as well as auxiliary
power units5. However, both these electrochemical devices suffer
from kinetically sluggish oxygen reduction reaction (ORR) at the
oxygen/air cathode6,7. In order to boost ORR for practical and
large-scale applications, active, stable and low-cost electrocata-
lysts are highly desirable. During the last decades, extensive
efforts have been focused on the discovery and development of
such ORR active materials8–12.
Among many platinum group metal-free catalysts, carbon-based

materials, doped with heteroatoms and/or transition metals, are
considered the most promising alternatives to the state-of-the-art
platinum-based catalysts for ORR due to their encouraging
performance13–16. In particular, many research groups reported
heteroatom-doped graphene, such as nitrogen-doped17,18, boron-
doped19, sulfur-doped20, phosphorous-doped21, and edge-
halogenated (Cl, Br or I) graphene22, as efficient and robust ORR
electrocatalyst23. Moreover, graphene materials with binary, ternary
and quaternary doping of various heteroatoms were also widely
investigated as ORR catalysts, such as boron/nitrogen-doped24,
nitrogen/sulfur-doped25, nitrogen/phosphorous-doped26,27, nitro-
gen/boron/phosphorous-doped28 and boron/nitrogen/phosphorus/
sulfur-doped graphene29.
To date, incorporating metal sites into graphene-based

materials is considered an effective strategy to further improve
the catalytic performance toward ORR30–35. In biological systems,

copper centers (Cu2+), such as those present in cytochrome c
oxidase and laccase, can bind molecular oxygen and efficiently
reduce it to water. Taking the cue from nature, Wang et al.36

reported a bioinspired catalyst, with the coexistence of Cu0 and
Cu2+ connected to N atoms in reduced graphene oxide (rGO),
exhibiting superior catalytic activity (onset potential 0.978 V vs. the
reversible hydrogen electrode (RHE) and electron transfer number
in the range from 3.7 to 4) with respect to conventional Pt/C in
alkaline media. Shakhseh et al.30 studied sulfur and copper
modified graphene, showing an onset potential of 1.09 V vs. RHE
and a high selectivity for the four-electron ORR. Li et al.37 reported
single atomic Cu anchored to an ultrathin two-dimensional carbon
matrix, demonstrating impressive ORR activity, with an electron
transfer number of 3.97 and a half-wave potential of 0.869 V vs.
RHE. Despite the remarkable ORR activity, it is worth noticing that
most of the above-mentioned doped and Cu-modified graphene
catalysts were prepared through pyrolysis and thermal annealing
at high temperatures, which are time- and energy-consuming.
In this work, we propose to achieve surface functionalization of

N-doped rGO with active copper ions through a simple and fast
route with microwave irradiation, using graphene oxide (GO), urea
and copper sulfate as chemical precursors. Under microwave
radiation at 180 °C, GO was reduced and N atoms were
simultaneously bonded to the graphitic lattice, forming N-doped
rGO (denoted as N-rGO in this work). With the addition of copper
precursor, the metal ions are forced to bind to the residual
oxygen-containing functional groups present at the rGO surface,
generating additional catalytic Cu active sites for ORR on the
carbonaceous N-rGO. This sample is indicated as Cu-N-rGO. The
prepared materials were carefully characterized utilizing field
emission scanning electron microscopy (FESEM), transmission
electron microscopy (TEM) and X-ray photoelectron spectroscopy
(XPS). Thanks to the comparison between experimental and
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simulated extended X-ray absorption fine structure (EXAFS)
spectra with density functional theory (DFT) calculations, the
molecular structure responsible for the high electrocatalytic
activity of this complex toward ORR has been identified and
characterized. Various electrochemical techniques were employed
to evaluate the activity and durability of the electrocatalysts for
ORR in atmospheric environment in alkaline solution. The Cu-N-
rGO demonstrated superior catalytic activity to the counterpart
N-rGO, and enhanced durability compared to commercial Pt/C.

RESULTS
Physical and chemical characterizations
FESEM and TEM characterizations were performed to evaluate the
morphology and structural properties of the as prepared Cu-N-
rGO samples (see Fig. 1). FESEM images (Fig. 1a, b) show that the
obtained flakes exhibit smooth surfaces, large area, and are easily
found well spread over the surface. They exhibit the characteristic
morphology of the 2-dimensional graphene structure, with no
modification or damage induced to the original GO by the
preparation technique. This is also confirmed by TEM character-
ization. Bright field TEM (BFTEM) (Fig. 1c) and scanning TEM
(STEM) (Fig. 1d, e) images confirm the good quality of the
obtained rGO, and at the same time show that no copper oxide
particles or metallic aggregates are present. The selected area
electron diffraction pattern, shown in Fig. 1f, presents a well-
defined spot pattern, composed of elongated bright spots in a
hexagonal configuration. This corresponds to rGO in [001] axis
zone; the points are elongated because the signal is generated by
a small number of stacked rGO layers. There is no detectable
evidence of copper in the form of metallic phase or other solid
compounds, since no discrete spots or rings appear in the

diffraction pattern; consistently, the interplanar spacings are
unchanged with respect to those observed in pristine rGO.
However, the presence of copper in these samples was confirmed
by energy dispersive X-ray spectroscopy (EDX) (shown in Fig. 1g):
signals from C, O, N, Cu, Si and Au (the last two being due to the
experimental set-up) were detected in the area where no particles
or aggregation was observed.
Semi-quantitative elemental analysis was achieved via XPS

measurements. The survey spectrum (see Fig. 2a) highlights the
presence of C (77.5 at.%), O (17.2 at.%), N (2.4 at.%) and Cu (2.2 at.
%), and traces of S, Cl, Na (<0.4 at.%) due to precursors. To search
for specific signals induced by the presence of Cu atoms in the
rGO matrix, we compared the N-rGO high resolution (HR) spectra
to those of the Cu-N-rGO. C 1s HR spectra (see Supplementary Fig.
1a) were normalized and overlapped, and showed no substantial
changes. This suggests that Cu atoms are not bonded directly to C
atoms, since no perturbation to their chemical environment is
detectable. The C 1s deconvolution procedure applied to Cu-N-
rGO sample (see Fig. 2b) shows the well-known peaks due to sp2

carbon, three peaks due to carbon oxygen/nitrogen bonds and
the π−π* shake up satellite38. Performing a comparable analysis
for the N 1s peak (see Supplementary Fig. 1b), we achieved the
same conclusion obtained for the C 1s peak: no distortions are
visible in the curves of the two samples. From N 1s deconvolution
procedure applied to the HR spectra of both N-rGO and Cu-N-rGO,
we obtained two components that can be assigned to N atoms
implanted in the graphene lattice, one is attributed to pyrrolic-like
nitrogen (399.1–399.6 eV) and the other is due to a quaternary or
graphitic configuration (400.9–401.7 eV), as already reported in our
previous work9. We can, therefore, state that N atoms are not
involved into bonding with Cu either, differently from what
observed for N and Mn in our previous work33.

Fig. 1 Electron microscopy characterization of Cu-N-rGO sample. a FESEM micrograph (scale bar: 1 µm), b FESEM micrograph (scale bar:
100 nm), c BFTEM image (scale bar: 500 nm), d STEM micrograph (scale bar: 1 µm), e STEM micrograph (scale bar: 100 nm), f selected area
electron diffraction pattern and g EDX spectrum.
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The Cu 2p doublet (Fig. 2c) presents the fingerprint typical of
Cu(II) oxidation state which corresponds to the shake-up satellite
located at 940–945 eV. Moreover, the Cu2p3/2 peak maximum at
934.4 eV, slightly shifted towards higher binding energies
compared to CuO bond (933.6 eV), can be attributed to Cu(OH)2
chemical shift39. For a further confirmation, we analyzed the
CuL3M4,5M4,5 Auger peak (see Fig. 2d): the position of its
maximum at 916.2 eV (in the kinetic energy scale) is in accordance
with the values reported in the literature above mentioned.
Moreover, the modified Auger parameter, calculated using the
Cu2p3/2 and CuL3M4,5M4,5 peak positions and equal to 1850.6 eV,
represents a further confirmation of our attribution to Cu(OH)2
chemical shift. O 1 s HR spectrum (Supplementary Fig. 1c) has also
been analyzed to confirm the presence of Cu(OH)2 component.
The fitting procedure results are: a first peak at 531.2 eV due to
both –C–O and Cu(OH)2 bonds, a second peak at 533.1 eV due to
–C=O bond and a third flat one at binding energy higher than
534 eV ascribed to adsorbed H2O

40. In summary, from XPS results,
we can state that Cu atoms, in a +2 oxidation state, are supposed
to be bonded to OH group.

DFT and EXAFS
Starting from these experimental evidences, we employed DFT
calculations to propose realistic structures where Cu2+ ions form
ionic coordinated complexes, in which copper is bonded with the
oxygen atoms of the functional groups (epoxides and hydroxides)
present on rGO basal plane and hydroxyl groups originating from

the synthesis solution. We built several model systems to
represent our Cu-based samples: in some structures the Cu ion
is coordinated to surface –O− groups (structures (a)–(b) of Fig. 3),
or to surface epoxide groups only (structure (d) of Fig. 3), while in
other structures it is also bound to hydroxyl groups (structures (c)–
(f) of Fig. 3). All the structures depicted in Fig. 3 are characterized
by a cell with null total charge (q= 0), except for structure (f) for
which q is equal to −2. In all the simulated systems, the Cu ion
oxidation state is equal to +2, as evaluated by XPS.
Upon structural relaxation, Cu binds to two or more O atoms at

a bond distance of about 1.85 Å in case of OH group and about
1.90 Å in case of surface epoxides. To evaluate the stability of
these Cu2+ based complexes, we calculated the binding energy
(BE) between the complex and the rGO matrix (structures in Fig. 3),
defined as the difference between the total energy of the
interacting systems and those of the isolated components. The
calculated BEs for the structures presented in Fig. 3 are lower than
−1 eV for Cu2+ based complexes. We found that the most
favorable structure, characterized by a high value of binding
energy (−1.45 eV), is the one reported in Fig. 3f. These results
demonstrate that Cu2+ ions bind to the rGO layer through
the formation of metal complexes involving hydroxyl and epoxide
groups, consistently with the XPS results that points at the
presence of Cu2+ ions bound with O atoms only.
In order to determine the local structure around the Cu atoms in

the Cu-N-rGO sample, EXAFS data around the K-edge of this
element were acquired at the ID16-B beamline of the ESRF41. The
data analysis was carried out comparing the experimental EXAFS

Fig. 2 XPS characterization of Cu-N-rGO sample. a Survey spectrum, b C 1s HR spectrum with deconvolution procedure, c Cu 2p HR doublet
and d CuLMM Auger peak.
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spectrum to the one obtained by simulating with the FEFF code42

the spectra of the structures proposed by the ab initio modeling.
Theoretical backscattering amplitudes and phase shifts for all
single and multiple scattering paths were calculated for the
different Cu-N-rGO structures proposed by DFT simulations
reported in Fig. 3. The ARTEMIS package43,44 was exploited to fit
the data in R space within the window [0.8 − 3.2 Å] in order to
include the first two coordination shells. The coordination number
N was fixed by the theoretical model whereas the amplitudes (S0

2),
interatomic distances (Ri) and Debye-Waller factors (σ2) of the first
and second atomic shells were fitted. Among the simulated
structures, the one reported in Fig. 3f was the only one that fitted
well the experimental data (see Fig. 4), with an R-factor of 0.7%
and with a value of S0

2 in the range of those already reported for
Cu45 and very close to the one obtained from the fitting of the
Cu-foil measured as a reference.
The values of the structural parameters extracted from the

curve fit for the (f) structure are reported in Table 1. Analyzing
structure (f) in more details, the first broad peak in the EXAFS data,
at around 1.4 Å, corresponds to the backscattering from the first
four O atoms, whereas the second shell would correspond to the

closest two C atoms. Scattering from H atoms is very weak and its
contribution to the total EXAFS signal is negligible.
Once confirmed that the local structure around the copper

atoms is well represented by the one depicted in Fig. 3f, we
calculated the changes induced in the electronic properties of rGO
by the presence of Cu2+ surface complexes. The electronic
properties of this structure were analyzed in terms of density of
states (DOS) and projected DOS (PDOS), as shown in Fig. 5.
The main effect induced by the Cu2+ complex corresponds to

the appearance of occupied valence states between −10 eV and
−3 eV below the Fermi level, due to the hybridization of Cu 3d
orbitals with O 2p and C 2p orbitals. Cu2+ based complexes give
rise to occupied states located right below the Fermi level that is
spatially localized on the O atoms directly bound to Cu atom. The
observed increase of the density of occupied states near the Fermi
level indicates that these complexes behave as an n-type dopant
and increase the sample conductivity as discussed below.

Electrochemical characterizations
The electrocatalytic performance of Cu-N-rGO was evaluated in an
alkaline solution with dissolved oxygen from the air at ambient

Fig. 3 Ball and stick representation of Cu-N-rGO structures. a, b Cu ion is coordinated to two surface –O− groups, c Cu ion is coordinated to
one surface –O− group and also bound to one hydroxyl group, d Cu ion is coordinated to two surface epoxide groups, e, f Cu ion is
coordinated to two surface –O− groups and also bound to hydroxyl groups. Gray spheres represent C atoms, red spheres O atoms, white
spheres H atoms and orange spheres Cu atoms.
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conditions. N-rGO and a commercial Pt/C were also studied for
comparison.
Cyclic voltammetry was initially carried out in 0.1 M KOH

solution with nitrogen or air purging. In N2-saturated electrolyte,
both Cu-N-rGO and N-rGO samples show supercapacitor perfor-
mance, evident from the characteristic quasi-rectangular voltam-
mogram (Fig. 6), which is typical of high-surface-area carbons46. It
is worth noting that a pair of redox peaks appears in the Cu-N-rGO
voltammogram at 0.91 V in the anodic direction and 0.71 V in the
cathodic direction, which are related to the formation and

reduction of metal-OHads, respectively
47. It was also stated47 that

the redox of such metal sites promotes the ORR and simulta-
neously maintains the catalytic cycle stable in alkaline media.
When the electrolyte is purged with air, a well-defined cathodic
peak appears in the voltammograms, centered at 0.61 V for N-rGO
and 0.80 V for Cu-N-rGO, indicating that both samples are active
for ORR even at low oxygen concentration. It is widely accepted
that the catalytic properties of N-doped carbons are ascribed to
the doping-induced charge delocalization or to the spin distribu-
tion alteration of the sp2 carbon plane, which facilitate the oxygen
adsorption and subsequent O–O bond cleavage17,48–50. This
change in the electron density induced by nitrogen species can
improve the electrical properties of N-doped graphene51 and
create active sites for ORR52. The Cu functionalization of N-rGO has
further enhanced the catalytic activity for ORR, as evidenced by a
positive shift of the reductive peak by 190mV with respect to the
bare N-rGO.
To further characterize the ORR activity of the prepared

materials, rotating disk electrode measurements were performed.
By drawing tangent lines from the rising current and baseline
current in the linear sweep voltammograms, we can obtain an
intersection where the potential is considered onset potential
(Eonset)

53. As shown in Fig. 7, the Eonset of the ORR is 0.80 V for
N-rGO and 0.91 V for Cu-N-rGO. The Eonset at the Cu-N-rGO

Fig. 4 EXAFS study of Cu-N-rGO sample. a k3-weighted Cu K edge
EXAFS, b corresponding Fourier transform in R-space. The solid red
lines represent the best fit obtained using the structure of Fig. 3f.

Table 1. EXAFS fittinga parameters for structure (f ).

Shell S0
2 Ri σ21 R-factor

Cu-O1 0.84 ± 0.18 1.89 ± 0.02 0.0025 ± 0.0015 0.007

Cu-O2 1.94 ± 0.02 0.0025 ± 0.0015

Cu-C1 2.59 ± 0.10 0.016 ± 0.011

Cu-C2 2.76 ± 0.10 0.016 ± 0.011

aThe coordination number was fixed by the theoretical model whereas the
amplitudes (S0

2), interatomic distances (Ri) and Debye-Waller factors (σ2)
were fitted. Ri is distance between the Cu and the different backscattering
shells; σ2 encapsulates static and thermal disorder; and the R-factor
indicates the quality of the fit. Fitting ranges were 2.3–8 Å−1 in k, and
0.8–3.2 Å in R.

Fig. 5 Analysis of electronic properties of Cu-N-rGO sample.
Density of states (DOS) and projected density of states (PDOS) for
Cu-N-rGO in the configuration reported in Fig. 3f. The black lines
correspond to the total DOS, the grey lines to the DOS projected on
C atoms, the orange line to DOS projected on Cu atom, blue and red
lines represent the DOS projected on H and O atoms respectively;
the thin dashed vertical line corresponds to the position of Fermi
Energy.

Fig. 6 Cyclic voltammetry analysis. Cyclic voltammograms of
graphene-based catalysts in air- and N2-saturated 0.1 M KOH
solutions.
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electrode indicates a minimum activation overpotential of 0.32 V
for the four-electron ORR, slightly higher than 0.29 V at
commercial Pt/C catalysts in alkaline solutions17,54,55. In addition,
the Cu-N-rGO also shows a good half-wave potential (E1∕2) of
0.78 V. The high performance of Cu-N-rGO could be related to the
rich Cu2+ active sites, whose electron density is tuned by the
connection with residual oxygen atoms present in the graphene
lattice, as confirmed by EXAFS, XPS analysis and DFT simulations.
In addition, the mass-transfer-limited current density of Cu-N-rGO
is twice that of N-rGO electrode, which could be due to the
positive kinetic effect as well as high mass diffusion rate on the
former.
Electrochemical impedance spectroscopy analysis was carried

out in order to further identify the rationale of the different
behavior. In agreement with the results presented above, the N-
rGO sample exhibits larger total impedance values with respect to
the Cu-containing material, as shown in Fig. 8. The experimental
data were fitted with the equivalent circuit shown in the inset of
Fig. 8. The series resistance Rs accounts for the electrolyte and

wiring resistances, the parallels R1//Q1 and R2//Q2 model the
charge transport and transfer processes inside the catalyst and at
the catalyst/electrolyte interface, respectively, and the Warburg
element W represents the diffusion of ionic species9,56,57. It is
worth noting that constant phase elements (with exponent in the
range of 0.85–0.95) were used instead of capacitances to take into
account frequency dispersion due to the porous nature of the
catalyst materials58. Very large capacitances (54 and 68mF cm−2

for N-rGO and Cu-N-rGO, respectively) were obtained for these
materials, confirming the supercapacitive properties of both
samples. As expected, series and diffusion resistances (about
47 Ω and 18 Ω, respectively) are similar for the two samples, while
larger differences were obtained for the other resistances. In
particular, Cu-N-rGO exhibits an R1 value equal to 70Ω, which is
smaller than that of N-rGO sample (82Ω), confirming that the
presence of Cu2+-based complexes is effective in increasing the
material conductivity, as suggested by the presence of occupied
states near the Fermi level discussed above. In addition, the
charge transfer at the interface is also enhanced for the Cu-N-rGO
catalyst, as evidenced by the lower R2 value of 3098Ω with respect
to 4315Ω for the N-rGO sample. The availability of electrons at the
Fermi energy or equivalently the high electrical conductivity of the
catalyst largely influence the ORR mechanism18. On the Cu-N-rGO
catalyst, sufficient electron density could promote coupled
proton-electron transfer with lower barriers for ORR with respect
to the uncoupled steps59. Hence, we believe that the good
conductivity plays a crucial role in the high activity of the Cu-N-
rGO for the ORR, as evidenced by low activation overpotential,
good half-wave potential, and high current density in air ambient.
Beside the catalytic activity, the pathway of the ORR is another

important criterion for evaluating an electrocatalyst. As is well
known, the ORR can proceed through a two-electron process
(reaction 1) or a four-electron process (reaction 2) in alkaline
conditions (pH larger than 11.7)18,60:

O2 þ H2Oþ 2e� ! HO�
2 þ OH� U0 ¼ 0:76 V vs: RHE (reaction 1)

O2 þ H2Oþ 4e� ! 4OH� U0 ¼ 1:23 V vs: RHE (reaction 2)

where U0 is the standard potential for the reactions. Generally,
peroxide formation through two-electron ORR is undesirable,
since it not only lowers the maximum attainable voltage, thus
decreasing the efficiency, but also causes chemical degradation of
electrodes and other components of the electrochemical devices
due to its corrosive nature61. The rotating ring disk electrode
technique provides a fast way to obtain the number of transferred
electrons and the percentage of produced peroxide as a function
of the applied potential at the disk electrode, as displayed in Fig. 9.
The ORR on Cu-N-rGO sample follows a quasi four-electron

pathway producing less than 5% peroxide, which is comparable to
the performance of a commercial Pt/C in the observed potential

Fig. 7 Linear sweep voltammetry analysis. Linear sweep voltam-
mograms on graphene-based catalysts in air-saturated 0.1 M KOH
solution.

Fig. 8 Electrochemical impedance spectroscopy analysis. Electro-
chemical impedance spectroscopy measurements on graphene-
based catalysts in air-saturated 0.1 M KOH solution. The points are
experimental data, the continuous lines are the curves simulated
exploiting the equivalent circuit shown in the inset.

Fig. 9 Rotating ring disk electrode study. Number of electrons (left
axis) and peroxide percentage (right axis) on graphene-based and
reference Pt/C catalysts in air-saturated 0.1 M KOH solution.
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window, and similar to other graphene-based electrocatalysts62–64.
On the contrary, the N-rGO catalyst exhibits the coexistence of
two- and four-electron processes, with 30–50% peroxide produced.
The enhanced efficiency of Cu-N-rGO could be due to the redox
Cu2+ species, which ensures direct O2 adsorption on the copper-
based active site and leads to four-electron electrocatalytic inner-
sphere electron transfer47.
Chronoamperometric (CA) tests at 0.68 V were performed to

evaluate the electrochemical stability of Cu-N-rGO catalyst for
ORR. Linear sweep voltammograms were acquired also before and
after CA test through rotating disk electrode measurements. As
displayed in Fig. 10a, Cu-N-rGO maintains a higher current
percentage during the CA tests compared to the commercial Pt/
C catalyst. Moreover, it shows a small decrease (8 %) of current
density and a slightly negative shift (±12mV) of E1/2 after the long-
term test (Fig. 10b). This indicates a very good stability,
comparable to that of transition metal catalysts protected by a
carbon shell against surface segregation or oxidation when
exposed to oxygen or water55. The slight decrease of the activity
of the graphene-based catalyst can be attributed to the oxidative
attack of the ORR intermediates or to the demetalation of the
metal-active site65. It is important to highlight that the electro-
chemical performance exhibited by the herein proposed Cu-N-
rGO is in line or even better with respect to that of other reported
2D-based ORR catalysts in terms of onset and half-wave potentials,
number of transferred electrons, long-term stability, as summar-
ized in Supplementary Table 1.

DISCUSSION
In this work, we reported a rGO-based catalyst for ORR and
elucidated the structure of the active sites as well as the structure-
preformation correlation. By combining XPS and EXAFS character-
izations with DFT calculations, we understood that our synthesis
method generates Cu2+ ions coordinated to residual oxygen
atoms present on the rGO surface and to hydroxyl groups coming
from the precursor solution. The Cu ions are identified to play a
determining role in efficiently driving the ORR by increasing the
material conductivity and enhancing the charge transfer at
catalyst/electrolyte interface. In addition, the redox Cu2+ species
ensures direct O2 adsorption at the active site and leads to the
desired four-electron ORR pathway.
In conclusion, the coordinated copper ions have imparted to N-

rGO high catalytic activity and brilliant long-term stability for ORR,
outperforming noble metal-containing catalysts. Particularly, the
present work highlights that, thanks to a fast and green microwave-
assisted process, it is possible to synthesize unconventional
high-performance catalysts, aiming at application in a wide range

of challenging electrochemical reactions such as ORR, water
splitting and CO2 reduction.

METHODS
Synthesis of the catalysts
All chemicals were used as purchased without further purification. N-rGO
and Cu-N-rGO catalysts were fabricated through a modified procedure
reported by El-Deen et al.66.
In a typical synthesis, 50 mg of GO (Single Layer Graphene Oxide, Cheap

Tubes Inc., USA, product number 060102) was suspended in 30mL of
double distilled water containing 20mg of urea (Urea ACS reagent,
99.0–100.5%, Sigma-Aldrich, product number U5378-100G). In the case of
Cu-N-rGO sample, 25mg of CuSO4·5H2O (Copper (II) sulfate pentahydrate
ACS reagent, ≥98.0%, Sigma-Aldrich, product number 209198-100G) was
added and dissolved in the as-prepared suspension. For both samples, the
precursor mixtures were sonicated for 40min and then transferred in a
100mL Teflon reactor, equipped with pressure and temperature probes
and placed in the microwave furnace (Milestone STARTSynth, Milestone
Inc., Shelton, Connecticut). The mixtures were irradiated for 15min at
180 °C (max. 800W) and then the reactor was cooled to ambient
temperature. The final powder samples were obtained by freeze-drying
(Lio-5P, 5Pascal, Italy).

Physical and chemical characterizations
Field emission scanning electron microscopy (ZEISS Dual Beam Auriga) was
used to evaluate the morphology of the studied material. Transmission
electron microscopy (FEI Tecnai F20ST, 200 kV) and energy dispersive X-ray
spectroscopy (EDX, EDAX) were used to evaluate the morphology,
structure and composition of the studied material. High-angle annular
dark field (HAADF) detector was used in Scanning TEM (STEM) mode.
Samples for TEM analysis were prepared by suspending the obtained
nanocomposite powder in ethanol and then dropping the suspension on a
TEM Au grid with holey carbon film. The Au grid was used to avoid
detection of spurious Cu signal not related to the sample.
A PHI 5000 Versaprobe Scanning X-ray Photoelectron Spectrometer was

used to investigate the material chemical composition. The X-ray source
was a monochromatic Al Kα radiation (1486.6 eV). The spectra were
analyzed using CasaXPS Version 2.3.18 dedicated software. All core-level
peak energies were referenced to the C 1s peak at 284.5 eV and the
background contribution, in high resolution (HR) spectra, was subtracted
by means of a Shirley function.
The Cu K-edge EXAFS measurements were performed at room

temperature in transmission mode on the beamline ID16B at the ESRF41.
The sample powder was deposited on a 5 × 5 × 0.5 mm3 window closed
with 8 μm-thick kapton. The incident flux was measured by an ion
chamber filled with N2 and the transmitted flux by a 500 μm-thick Si diode.
The size of the beam was 1 × 1mm2 and the X-ray energy was scanned
around the Cu K edge between 8.8 keV and 9.6 keV with 1 eV step size and
200ms counting time per point. Apart from the Cu-N-rGO sample, a Cu
metallic foil was also measured as a reference. The analysis of the EXAFS
was performed with the Athena and Artemis packages43 using FEFF and

Fig. 10 Stability tests. a CA measurements on Cu-N-rGO and reference Pt/C catalysts in air-saturated 0.1 M KOH solution, b linear sweep
voltammograms on Cu-N-rGO before and after the CA test (the inset shows the high magnification in the 0.63–0.89 V range).
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IFFEFIT44. The theoretical backscattering amplitudes and phase shifts for
single and multiple scattering of the different structures were obtained
using FEFF44. Artemis was then used to fit the theoretical values to the
experimental data.

Computational details
All theoretical calculations are based on spin-polarized density functional
theory as implemented in the Quantum Espresso package67. The Kohn-
Sham equations are solved using ultrasoft pseudopotential to describe the
electron-ion interaction, employing the gradient-corrected Perdew-Burke-
Ernzerhof (PBE) functional68 to describe the exchange-correlation effects,
and expanding the electronic wave functions in plane waves (PW). To
include London dispersion interactions, the DFT-D2 method proposed by
Grimme69 was used. For all calculations, a PW energy cutoff of 28 Ry for the
wave functions and 280 Ry for the charge density and potentials, were
adopted. 7 × 7 graphene supercells were employed to investigate Cu
functionalization. A vacuum region of 10 Å thickness was added in the cells
to avoid spurious interaction between periodic replicas. The Brillouin Zone
was sampled employing a 2 × 2 × 1 Monkhorst-Pack mesh70. All the
structures were relaxed by minimizing the atomic forces and convergence
was assumed when the maximum component of the residual forces on the
ions was smaller than 10−4 Ry/Bohr. To partially heal the underestimation
of the energy gap typical of PBE when applied to transition metals, such as
Cu, we applied to the relaxed structures a Hubbard U correction to the
Cu-3d orbital (UCu= 11.50 eV) obtained following the procedure reported
in ref. 71.

Electrochemical characterizations
All electrochemical characterizations were performed at room temperature
with a CHI760D electrochemical workstation and an ALS RRDE−3A rotating
ring disk electrode apparatus. The catalyst samples were deposited onto
the glassy carbon (GC) disk (electrode area 0.1256 cm2) of GC disk/Pt ring
working electrode following the procedure reported in ref. 9. A Pt wire was
used as counter electrode and Ag/AgCl was used as reference electrode.
Unless otherwise specified, all the measurements were carried out in a 3-
electrode configuration (disk working/reference/counter electrodes) in air-
saturated 0.1 M KOH aqueous electrolytic solution (Potassium hydroxide
concentrate, 0.1 M KOH in water (0.1 N), Supelco, product number 61699-
1L) with 2500 RPM rotation speed, and all potentials refer to the RHE. A
reference Pt/C catalyst (Pt/C, 10 wt. % Pt loading, matrix activated carbon
support, Sigma Aldrich, product number 205958-10G) was used to
compare the obtained result with a commercially available material.
Cyclic voltammetry curves were acquired from 1.18 V to 0.18 V with a

scan rate of 10mV/s in air- and N2-saturated electrolytic solution. Rotating
disk electrode tests were carried out in the potential range 1.18 V–0.18 V
with a scan rate of 5 mV/s. Electrochemical impedance spectroscopy
measurements were performed at fixed 0.68 V potential, with an AC signal
of 10 mV amplitude and 10−2–104 Hz frequency range. Chronoampero-
metric (CA) data were acquired at fixed 0.68 V potential. Rotating ring disk
electrode measurements were carried out in a 4-electrode configuration
(disk and ring working/reference/counter electrodes) by applying linear
sweep voltammetry at the disk electrode from 1.18 V to 0.18 V (at a scan
rate of 5 mV/s) and by employing controlled-potential CA on the ring
potential at 1.18 V. The measured disk (ID) and ring (IR) currents were
employed to calculate the number of transferred electrons (n) and the
percentage of produced peroxide (HO2

−%) according to the formulae:

n ¼ 4 � ID
ID þ IR

N
(1)

HO�
2 % ¼ 200 �

IR
N

ID þ IR
N

(2)

where N is the current collection efficiency of the ring electrode56.
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