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Graphene–ferroelectric transistors as complementary synapses
for supervised learning in spiking neural network
Yangyang Chen1, Yue Zhou1, Fuwei Zhuge 2, Bobo Tian 3, Mengge Yan3, Yi Li1, Yuhui He 1 and Xiang Shui Miao1

The hardware design of supervised learning (SL) in spiking neural network (SNN) prefers 3-terminal memristive synapses, where the
third terminal is used to impose supervise signals. In this work we address this demand by fabricating graphene transistor gated
through organic ferroelectrics of polyvinylidene fluoride. Through gate tuning not only is the nonvolatile and continuous change of
graphene channel conductance demonstrated, but also the transition between electron-dominated and hole-dominated transport.
By exploiting the adjustable bipolar characteristic, the graphene–ferroelectric transistor can be electrically reconfigured as
potentiative or depressive synapse and in this way complementary synapses are realized. The complementary synapse and neuron
circuit is then constructed to execute remote supervise method (ReSuMe) of SNN, and quick convergence to successful learning is
found through network-level simulation when applying to a SL task of classifying 3 × 3-pixel images. The presented design of
graphene–ferroelectric transistor-based complementary synapses and quantitative simulation may indicate a potential approach to
hardware implementation of SL in SNN.
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INTRODUCTION
By mimicking the plasticity of brain, neuromorphic computing is
capable of self-learning, while with revolutionary speed and
energy efficiency, and is thus regarded as a promising candidate
to next generation computing.1 At hardware level, it calls for
materials and devices that emulate the nonvolatile modulation of
synaptic strengths.2–5 Currently, two-terminal memristors made
from various kinds of materials such as resistive random access
memory,6 phase-change memory,7 and conducting bridge ran-
dom access memory,8 etc. are intensely studied as electronic
synapses for artificial neural networks.9–11 In a typical supervised
learning (SL) task, the two-terminal memristors implement
algorithms with iterative read-and-write operations: during the
forward step the outputs are obtained through multiplying
voltages from input neurons by the conductance of memristive
synapses (read), while during the update step the conductance of
memristors is delicately tuned in order to minimize the error
between real outputs and the desired ones (write). In this way, the
outputs are calibrated to the targets through the SL process. By
further adopting structures such as 1-transistor-1-memristor12 and
1-selector-1-memristor,13,14 the network-level computing is sub-
stantially facilitated by removing the sneak paths in the synaptic
arrays, and excellent performances on face recognition12 and
handwritten digit classification6 have been reported.
On the other side, a spike-based computing paradigm namely

spiking neural network (SNN) has emerged as the third generation
neural network.15 Since it is more similar to the operation of
biological brains, SNN shares the advantages of real brains, such as
ultralow power consumption and larger processing capacity. From
the viewpoint of hardware, 3-terminal nonvolatile transistors that

accommodate direct feedback modulation to synapse weight are
desired.16,17 As seen in Fig. 1a, spike signals transmitting from
drain to source of the transistor mimics that from presynaptic
neuron to postsynaptic one in biological systems. Once neurons in
the output layer fire, the error message is generated by comparing
the timings of actual outputs and desired ones. The required
amounts of synapse strength modulation, represented by the
channel conductance changes, are then calculated through those
auxiliary modules in SNN circuits and the corresponding
conductance tuning is implemented by the feedback gate voltage.
In this regard, memristive transistors such as 3-terminal ferro-
electric memristor17 and organic ferroelectric synapses18 have
been proposed, whereas further development on the device
materials, functions, and the related implementation of advanced
algorithms are called for.
In order to address the above demands, we fabricate field effect

transistors using graphene as the channels and P(VDF-TrFE)
ferroelectric polymer as the gate dielectric (graphene–ferroelectric
field effect transistor, abbreviated as GrFeFET) as seen in Fig. 1b.
The graphene channel serves as the synapse connecting the pre-
and postsynaptic neurons, while the gate terminal accepts
supervise signals and modulates the channel conductance. Here
the gate tuning to channel conductance is nonvolatile due to the
remnant of ferroelectric polarization in the polyvinylidene fluoride
(PVDF) layer (100 nm thick), which then emulates the plastic
changes of synapse strengths.19 Figure 1c illustrates a 3-
dimensional optical view of our device with false color of the
source, drain, top electrodes, and graphene channel (5 μm long
and 10 μm wide). Such GrFeFETs were previously explored as
nonvolatile memory device,20,21 while in the current work we will
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demonstrate its unique potential as complementary synapses and
usage in SL of SNN.

RESULTS AND DISCUSSION
Figure 2a shows the channel conductance modulated by back
gate voltage G(Vbg) through 300 nm SiO2. The left and right
branches denote the hole- and electron-dominated transport,
respectively. The electron and hole mobility is extracted to be μ=
1.7 × 103 cm2/V s by taking the permittivity of back gate dielectric
SiO2 as κSiO2= 3.9 (estimation details are provided in the “Method”
section).21 In a back-gate sweep loop from −40 to 40 V and
reversely to −40 V, the hysteresis-free conductance change in
graphene indicated well-suppressed interface traps in transistor. It
should be noted that the back gate does not cause memorable
modulation of the channel conductance therefore not suitable for
artificial synapses. The physical mechanism is that the polarization
states in PVDF could hardly be changed by the back-gate voltage
as the applied electric field is mostly screened by the graphene
channel. On the other hand, in Fig. 2b, an obvious hysteresis
window appears during the sweep of top gate voltage (Vtg)
between −20 and 20 V due to the tuning of polarization in PVDF.
It is known that the dielectric polarization of PVDF ferroelectric by
gate voltage exhibits both the linear response that is proportional
to external polarization field and a nonlinear component known as
residual polarization when the external field is removed.21

Depending on the upward or downward polarization in PVDF,
the graphene channel was hole doped or electron doped, causing
a nonvolatile shift of Dirac point. We further extract p(E) curve of
PVDF from Fig. 2b by adopting the theoretical description of
ferroelectric FET provided in the “Method” section, and compare it
with the direct electric displacement measurement of PVDF film

with the same thickness alone, D’(E). As shown in Fig. 2c, D and D’
have very similar coercive fields EC ~ 50 MV/m, which are
consistent with values previously reported on PVDF.20 Moreover,
the capacitance–voltage(C–V) relationship measured from Au/
PVDF/Al structure also indicates coercive fields EC ~ ±50MV/m as
shown in Fig. 2d. These quantitative agreements strongly suggest
that the hysteresis observed in the transport measurements is
indeed caused by the hysteretic polarization of the ferroelectric
gate dielectric. The residual polarization is estimated to be
~ ±1 μC/cm2. It is worth reminding that compared with other
tuning approaches of graphene channel conductance,22,23 the
nonvolatile nature of ferroelectric polarization causes persistent and
memorable modulation of the graphene channel conductance,
thus providing a feasible approach toward a 3-terminal synapse.
Figure 3a illustrates the basic principle of tuning graphene

channel to be hole- or electron-conduction through the different
polarization of ferroelectric layer. A negative/positive gate voltage
with large amplitude over the coercive voltage will result in
upward/downward polarization of the PVDF dielectric, which
causes hole/electron doping of graphene channel, respectively.
From the viewpoint of energy band filling, the graphene channel
becomes p- or n-type conduction depending on the polarization
direction of PVDF dielectric, as indicated by the right subfigures
shown in Fig. 3a. Moreover, given the same positive voltage
pulses, while with small magnitudes (+15 V in Fig. 3b and +8 V in
Fig. 3c), the upward (downward) PVDF polarization will be
decreased (increased), while the Fermi levels will shift upward in
both p- and n-type graphene channels. However, the ascending of
Fermi levels in p- and n-type graphene channel will lead to
different results: for the former it is a reduction of the hole density,
while for the latter an enhancement of electron density near the
Fermi level. In other words, the conductance tuning of GrFeFET

Fig. 1 Schematic view of a 3-terminal memristive synapses for supervised learning (SL) in spiking neural network (SNN), where b the field
effect transistors with graphene as channels and organic ferroelectric polyvinylidene fluoride (PVDF) as gate dielectric (GrFeFET) mimic the
synaptic functions. The source and drain terminals serve as the axon of the presynaptic neuron and the dendrite of the postsynaptic one,
respectively, while the tuning of the channel conductance by the PVDF polarization emulates the modulation of synaptic strength. c Optical
profiler image of the fabricated GrFeFET, where fake color by Photoshop is applied. The two brown colored pads are the source and drain
regions, while the graphene region is characterized by the dash lines. A top view optical image of the fabricated device is provided in Section
1 of Supplementary Information. Dimensions of graphene channel are 5 μm long and 10 μm wide, and PVDF is 100 nm thick
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based synapses can be depressive or potentiative depending on
the initial status of graphene energy band filling and this filling is
adjustable through opposite polarization of gate ferroelectric. It
explains why given similar small amplitudes of positive voltage
pulses on the gate, the variation trends of the measured p- and n-
type graphene channel conductance become opposite as shown
in Fig. 3b, c. Similar analysis can be conducted on the
measurement of negative voltage pulses imposed to the gates
of p- and n-type GrFeFET (−10 V in Fig. 3b and −6 V in Fig. 3c). In
this way, the analog weight update of GrFeFET synapse is
successfully realized as plotted in Fig. 3b, c. Compared with
previous reports,2,12 a distinct feature here is that in our GrFeFET
synapse the synaptic weight update can be switched to be
potentiative or depressive depending on the conduction type of
channel given SET/RESET voltage pulses.
Here we point out that the synapses with positive/negative

changes of weights (Δw > 0 or Δw < 0) under ordinary SET pulses
should be defined as potentiative/depressive rather than as
excitatory/inhibitive,22 since in neuroscience excitatory/inhibitive
synapses mean positive/negative weights (w > 0 or w < 0).24 We
further stress that the realization of both potentiative and
depressive, i.e., complementary synapses, with the same material
and device structures is credited to the unique characteristic of
zero bandgap of graphene. Although it is usually regarded as a
negative factor when trying to manage power consumption in the
related devices, here the zero-bandgap feature plays a construc-
tive role in achieving the complementary synapses. Only with this
ultrasmall bandgap could a practical gate voltage tune the
transition between electron- and hole-dominated conduction
through ferroelectric polarization. As further illustrated in Fig. 3b

and c, the electron or hole filling of graphene channel will be
enhanced or reduced oppositely given similar variation of PVDF
polarization field caused by gate tuning. In this way, the analog
weight update of the corresponding synapse can be potentiative
or depressive when imposing similar programming gate voltages.
Just as the importance of complementary metal-oxide-
semiconductor field effect transistors in integrated circuit design,
the demonstrated GrFeFET-based complementary synapses may
find promising usage in the future hardware neural network
design.
We further evaluate the nonideal factors of the demonstrated

analog weight update of GrFeFET synapse by formulas provided in
“Method” section and the obtained quantities are listed in Table 1.
They are at the same levels with those recently reported in other
kinds of ferroelectric synapses.25 A conventional convolution
neural network (CNN) is then set up where both the convolutional
kernels and the connections in the fully connected layers are
implemented with the GrFeFET synapses. By taking these nonideal
parameters into account, the simulation yields a recognition rate
of 94%, when implementing MNIST tasks (details are provided in
Section “GrFeFET synapse in CNN for MNIST recognition” of
Supplementary Information).
In order to implement SL of SNN, we further measure the

conductance tuning of GrFeFET under different amplitudes of gate
voltages and initial channel conductance ΔG(G0, V), and results are
plotted in Fig. 3d, e. The directions of conductance tuning become
opposite in p- and n-type GrFeFET synapses, just as expected.
Moreover, saturation behaviors are observed when trying to
further increase G in the presence of already large G0 or to
decrease G given small G0. It is largely ascribed to the saturation of

Fig. 2 Electrical properties of GrFeFET. a The measured source-drain conductance versus back gate voltage Gds(Vbg), where the left and right
branches correspond to hole- and electron-dominated transport respectively. b Electric hysteresis loop by sweeping top gate voltage Gds(Vtg).
c The electric displacement versus the applied electric field D(E) deduced from b, while that obtained directly from ferroelectric measurement
of PVDF is plotted with red line. d The measured capacitance versus the applied voltage C(V) for single PVDF film with 100 nm thickness
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ferroelectric polarization under the applied voltage, as seen in
Fig. 2. Note that the widths of imposed voltage pulses in Fig. 3d, e
are different from those already shown in Fig. 3b and c, since they
are set for different computing schemes of SL. The latter has been

applied to level-based computing as seen in Section “GrFeFET
synapse in CNN for MNIST recognition” of Supplementary
Information, while the former will be used for spike-based
computing26 (detailed discussions are provided in Section
“Selection of write pulse widths when training with different
computing schemes” of Supplementary Information).
Besides, it is worth reminding that the potentiative and

depressive behaviors of the device are not symmetric. The figure
illustrates that in the hole-conduction dominated depressive
region (Fig. 3b, d) the conductance and its tuning range are about
two times larger than those in the electron dominated potentia-
tive one (Fig. 3c, e). It is ascribed to the fact that graphene material
is usually p-doped in the natural environment. For depressive
region, it is straightforward to tune the hole conduction. On the
other hand, for potentiative counterpart, first of all, a top gate
voltage with quite large amplitude (~16 V) has to be imposed to
induce sufficient change of PVDF ferroelectric polarization so that

Fig. 3 Complementary synapses by tuning one GrFeFET to operate at different conduction regions. a Left: schematic view of tuning GrFeFET
to be potentiative or depressive synapses. Upon imposing a large negative/positive gate voltage, the ferroelectric layer is polarized in upward/
downward direction. Consequently, the graphene channel becomes hole/electron dominated due to different positions of Fermi levels within
the graphene energy bands. Right: given the same series of positive voltage pulses on the gate, the channel conductance will be decreased/
increased due to reduction/enhancement of hole/electron density caused by the corresponding change of ferroelectric polarization. b, c
Analog weight update of one GrFeFET based depressive/potentiative synapses. The continuous decrease/increase of channel conductance G
caused by a series of 50 (or 30) positive gate voltage pulses followed by another series of 50 (or 30) negative pulses. Here pulse width Δt=
100ms, the source-drain voltage VDS= 0.1 V, and six SET/RESET cycles are demonstrated. Moreover, a gate voltage with height 16 V and
duration 10 s is capable of turning the hole domination to be electron domination. d, e The channel conductance change ΔG of depressive/
potentiative synapses versus the magnitudes of imposed gate voltage Vtg and the initial conductance G0 (pulse width Δt= 500ms)

Table 1. The nonlinear parameters of long-term potentiation/
depression (LTP/LTD), asymmetry between LTP and LTD, and cycle-to-
cycle variations of depressive and potentiative GrFeFET synapses

Nonlinear parameter Asymmetric
nonlinearity factor

Cycle-to-cycle
variation

Depressive
synapse

LTP 4.17 0.11 LTP 0.035

LTD 4.64 LTD 0.063

Potentiative
synapse

LTP 2.87 0.5 LTP 0.061

LTD 4.70 LTD 0.027
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electrons are attracted to, while holes are repelled from the
graphene channel. After the transition of graphene channel from
hole conduction to electron one, additional voltage pulses are
applied to further modulate the PVDF polarization and hence
induce continuous conductance changes. However, saturation of
PVDF ferroelectric polarization is easily met in this situation since it
has already been changed significantly during the hole-to-
electron transition. Such asymmetry between hole and electron
conductance tuning has also been reported in other GrFeFET
devices.22,27 As we will see, it poses challenge to the implementa-
tion of our complementary synapses in SNN tasks.
Figure 3 further demonstrates that a conductance ON/OFF ratio

about 3.2 has been realized in GrFeFET device. When using as
synapses, the corresponding relative weight change Δw/w0 is
about 220%, which is significantly larger than other graphene-
channel based synaptic devices, where Δw/w0 ≈ 12.5%22 or 35%.28

Although it benefits the learning efficiency of neural network
greatly,26 the relatively large conductance ON/OFF ratio is at the
expense of using write voltage pulses with widths about hundreds
or tens of milliseconds. Physically, it is ascribed to the remarkable
OFF state conductance gOFF caused by the zero bandgap and p-
dope nature of graphene. Comparing with other memristive
materials with quite small gOFF,

18 here a large ON state
conductance gON is required to obtain the target ratio gON/gOFF
in the graphene-channel devices. In order to achieve the large
conductance tuning Δg= gON− gOFF, the gate voltages with
amplitudes or widths several orders larger are necessitated. It
explains the 6-order slower operation speed comparing with those
found in the fastest memristive synapses.12,29 We remind that this
is a common problem met by graphene-based synaptic
devices,18,22 rather than a specific issue raised by the design of
complementary synapses in this work. In order to promote the
operation speed, a compromise has to be made with the
conductance ON/OFF ratio and further strategies are called for
in the future research.
In the following, by exploiting the above conductance tuning

properties of GrFeFET, an approach of using complementary
GrFeFETs as synapses to implement the ReSuMe30 is proposed as
illustrated in Fig. 4a. Here ReSuMe is a widely used strategy to
realize SL in SNN, since it does not resort to the conventional
stochastic gradient descent method as employed by Spike Back
Propagation (SpikeProp)17,31 or the Widrow–Hoff rule as by Spike
Pattern Association Neuron .32,33 Instead, it uses window function
to drive the spike timings of output neuron to the desire ones as
follows30

dw
dt

¼ Sd tð Þ � SoðtÞ½ � aþ
Z 1

0
WðτÞSinðt � τÞdτ

� �
; (1)

where Sx tð Þ ¼Pf δðt � tðf Þx Þ is the spike sequence of the super-
vise (desire), output or input neuron with subscript x= d, o, or in.
Here f characterizes the f th spike emitted by the x neuron, a is a
bias term, and W(τ) is the window function to convolute with the
input. Compared with other SL methods, ReSuMe has several
prominent advantages including that it is capable of learning
spike sequence rather than single spikes and it is applicable to
various types of neuron models. Therefore in the work, we choose
to realize ReSuMe based on our complementary GrFeFETs. Figure
4a shows that the source and drain terminals of the two parallel
connected GrFeFETs are for receiving spikes from the presynaptic
neuron and transmitting them to the postsynaptic neuron,
respectively. The gate terminals are for imposing the supervise
signals to adjust the channel conductance. As illustrated in Fig. 4a,
an input spike triggers a decaying waveform by convoluting the
input with window function in the supervise circuit (theR1
0 WðτÞSinðt � τÞdτ term in the above equation, as represented

by the decaying waveform inside the square in the lower left
corner of the circuit). The teach and output pulse signals will

sample the waveform respectively according to their different
timings, as depicted in the lower middle part of the supervise
circuit. The resulted voltages are then fed to the gate terminals of
the complementary GrFeFET synapses, respectively. Here the
upper GrFeFET is a potentiative synapse, of which the weight is
modified through the voltage sampled by teach signal, while the
lower device is a depressive one tuned through voltage sampled
by the output signal. Mathematically, the former implements
þSd tð Þ R10 WðτÞSinðt � τÞdτ term, while the latter does
�So tð Þ R10 WðτÞSinðt � τÞdτ in the above ReSuMe expression. Note
that the positive and negative signs before Sd(t) and So(t) are
realized through the potentiative and depressive properties of the
two complementary synapses: given the positive voltages
sampled by teach and output signals, the conductance of the
upper GrFeFET is enhanced, while that of the latter is reduced. The
time chart of Fig. 4b shows an example, where the first-round
output fires earlier than the desired (tout < td). In this case, the
amplitude of sampled voltage by the output signal is greater than
that by the teach signal (c1 > c2 > 0). As results, the magnitude of
conductance decrease of the lower depressive GrFeFET is greater
than that of increase of the upper potentiative one. Therefore, the
summing conductance of the two devices in parallel gets
decreased and consequently the second-round output fires later.
In this way the output timing tout approaches the desired one td
round-by-round. For the other case, where the initial output
timing is later than the desired (tout > td), similar SL is implemented
by using this circuit. The above demonstration of working
principle indicates that the key requirement on device properties
is the symmetry of conductance tuning between the potentiative
and depressive GrFeFETs. Without this symmetry, the training
cannot get convergent. The mechanism is that assuming the same
timings of td and tout, two voltages with the same amplitudes
while with opposite signs will be sampled as seen in Fig. 4b;
however, different magnitudes of conductance tuning will then be
induced by these two mirror voltages in the two asymmetric
devices. In this situation, the summing conductance will continue
to change while the ReSuMe algorithm demands no more
modulation of the synaptic weight. In the real devices, as seen
previously in Fig. 3b–e the symmetry between n-doped (poten-
tiative) and p-doped (depressive) conduction of one device is quite
difficult to obtain. Therefore, in this task two devices are employed
and their conduction behaviors have been delicately tuned to be
highly symmetric as illustrated in Fig. 4c. The blue and red curves
represent the cycle-to-cycle conductance tuning of two GrFeFETs
under a series of 50 positive top-gate voltage pulses followed by
50 negative ones. The stimulated conductance changes in the two
devices are almost equal while opposite in directions, indicating
nice symmetric electrical properties between the two GrFeFETs
(The measured conductance tuning as functions of gate voltage
amplitudes and the initial conductance for the two devices ΔG(Vtg,
G0) are further demonstrated in Section “Conductance tuning as
functions of gate voltage amplitudes and the initial conductance
for two complementary GrFeFETs” of the Supplementary Informa-
tion for interested readers). Figure 4d shows the converging
processes of our ReSuMe circuit by using the electrical properties
of the above two complementary devices where the first-round
output timing tout= 14ms, while that of desire td varies from 13 to
15ms. Here the convergence is defined as that the relative
difference between the final output timing and the desired one |
tout− td|/|td| is <1%. The figure indicates that convergence will be
achieved with about 50 iterations at most.
Comparing with conventional approaches, in which single

devices are used as synapses for SL in SNN,17 the major
advantages here are the greatly reduced auxiliary circuit and the
simplified operations. As seen in ref. 17 for conventional approach
not only were at circuit module level the design of neuron and
synapse circuits quite complicated (e.g., three waveforms with
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different amplitudes and durations had to be designed as a set of
output spikes of neurons), but also at network level quite a few
other types of circuit modules such as error detectors and analog
adders were needed. On the other side, here by using
complementary GrFeFET synapses both the circuit and operation
have been greatly simplified as seen in Fig. 4a, b. The chip area
efficiency would be drastically promoted while the power
consumption would get substantially reduced due to the
simplification. This improvement can also be found by comparing
the present approach with that using single GrFeFET as synapse to
implement ReSuMe (the latter is presented in Section “The
approach of using single GrFeFET as synapse (S-approach) to
ReSuMe” of Supplementary Information for interested readers).
In order to check the network-level performance of the above

GrFeFET synapse, we design a SNN to implement the standard

classification task of 3 × 3-pixel z, v, and n images and test through
simulation as shown in Fig. 4e, f. The black-and-white images are
encoded by pulses of nine input neurons, while the different
timings of the output neuron infer which images are inputted17

(design, simulation results, and comparison of different encoding
approaches are discussed are provided in Section “ReSuMe to
MNIST recognition with GrFeFET synapses” of Supplementary
Information). SL is then conducted through the GrFeFET-based
complementary synapses as designed in Fig. 4a, where the
network parameters and simulation details are provided in the
“Method” section. As indicated by Fig. 4f, with <15 epochs of
training satisfactory convergence is achieved for the three input
patterns. The demonstrated capability of quick and accurate
learning is ascribed to both the power of ReSuMe algorithm and

Fig. 4 The designed ReSuMe based on complementary GrFeFET synapses and its performance estimated through simulation. a ReSuMe
module composed of complementary GrFeFET synapses, leaky integrate-and-fire (LIF) neuron, and supervise circuits. b Time chart of signals,
where the Error is defined as (td− tout)/(td+ tout). Notice that since the desired time td keeps the same with respect to the input tin, the
sampled voltage amplitude c2 and corresponding weight change of potentiative device Δw2 are invariant during each training epoch. c The
measured cycle-to-cycle analog weight update of two GrFeFET devices, where a series of positive voltage pulses Vtg with amplitudes 10 V and
widths 50ms are imposed followed by another series of Vtg with −8 V and 50ms. d The difference between the desired timing and output one
(td− tout) versus the number of iterations. e and f Pattern classification with GrFeFET complementary synapse based ReSuMe learning. e The
single-layer perceptron for classification of 3 × 3 binary images of z, v, and n, where the black/white pixels are encoded by spiking of nine
input neurons, classification is represented by the different timings of the output neuron and the connection are by GrFeFET synapses. f The
evolution of output signals, where lines with symbols are the output timings for z, v, and n inputs, while the dash lines are the desired ones
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the hardware implementation by our complementary GrFeFET
synapses.
Finally, the figures of merits of our GrFeFET synapses are listed

as follows: the energy consumption of each synaptic weight
update operation is about 50 nJ (estimation method is provided in
the “Method” section), the time step is about 50 ms and the
effective area per synapse is about 50 μm2. By analyzing these
performance indexes of GrFeFET synapses and the network level
simulation results, we conclude that the major advantages of
using graphene as channel material are the high mobility and
large conductance ON/OFF ratio that are gained through
optimizing the fabrication process in our experiments. The high
mobility facilitates the signal transmission through synapse and
thus helps reduce the power-delay product, while the large ON/
OFF ratio greatly promotes the learning capacity at the network
level. However, the asymmetry between potentiative and
depressive synapses as surveyed previously is outlined as one
major restriction of using GrFeFET as complementary synapses. As
analyzed before, this nonideal factor is a by-product of the p-dope
nature of graphene material. By further improving the fabrication
process the p-dope problem can be alleviated. Other strategies
include trials with 2-dimensional (2D) transition metal dichalco-
genide (TMD) ferroelectric devices as complementary synapses for
SNN design, since several types of 2D TMD have both modest
bandgaps and bipolar conduction properties.34,35

In summary, compared with conventional 2-terminal memris-
tors we have found 3-terminal nonvolatile transistor appropriate
to implement the synaptic plasticity required by the SL tasks in
SNN, where the source/drain terminals are for transmitting spike
signals from presynaptic neuron to the post one, while the gate
terminal is used to impose the supervise signals. Based on the
fabricated graphene–ferroelectric transistor and the measured
nonvolatile and continuous tuning of channel conductance by
gate voltages, we have realized complementary synapses. In these
synapses, the analog weight update can be positive or negative
depending on hole or electron dominance within the graphene
channels. It is physically ascribed to the zero bandgap character-
istic of graphene, while can be utilized to reconfigure the synapse
to be potentiative or depressive. Interestingly, successful transition
between these potentiative and depressive synapses have been
achieved through large amplitude gate modulation of the
ferroelectric polarization. The synapses have been further applied
to implement remote supervise method in SNN. Through system-
level simulation, we have further verified that the constructed
synapses and SNN can perform classification of 3 × 3-pixel images
after tens of iterations of training. In the future, concerning the
proposed complementary synapses we will try to develop more
complicated functions such as using the two complementary
synapses to implement spike timing dependent plasticity (STDP)
and anti-STDP, respectively, and dynamically interchange them,
and hopefully a number of hardware architectures and the
associated designs of neuromorphic computing will be
accomplished.

METHODS
GrFeFET fabrication
First, the source and drain electrode regions (with 5 μm between them)
were patterned by UV lithography on SiO2/p-Si (300 nm/500 um) substrate.
Cr/Au (10/50 nm) electrodes were deposited through e-beam evaporation
followed by a lift-off process. Commercial single layer graphene grown on
copper foil with PMMA support layer was wet transferred onto the as-
prepared electrodes. After removing PMMA layer by acetone, a photoresist
bar with 10 μm wide was defined on the graphene between source and
drain electrodes with UV lithography. The graphene within the uncovered
region was removed by reactive-ion etching. By removing the residue
photoresist with acetone, graphene channel with 5 μm× 10 μm size was
fabricated. Note that the channel fabrication process should be finished in
<2 h in order to reduce photoresist residue contamination as much as

possible. After that, the sample was transferred in a glove box with argon
atmosphere for top gate dielectric layer fabrication. PVDF-Trfe solution (70/
30mol%, dissolved in dimethylformamide with 3 wt%) was spin coated on
graphene with film thickness of ∼70 nm. Sample was annealed at 115 °C
for 10min to evaporate the solvent followed by 4 h of further annealing at
135 °C to enhance the crystallinity of the organic ferroelectric film. The
aluminum electrode was then fabricated as top gate through UV
lithography patterning, e-beam evaporation, and 4-h immersing in
isopropanol as lift off. The fabricated device was characterized by optical
profiler Olympus LEXT OLS5000 Industrial Laser Confocal Microscopes as
demonstrated in Fig. 1c.

Measurement
The polarization versus electric field (P-E) curves of a ferroelectric capacitor
with gold (Au) bottom electrode and chromium (Cr) top electrode, and
thickness of ~100 nm was measured by using Radiant Inc circuit. The
capacitance–voltage (C–V) relationship obtained from Au/PVDF/Al struc-
ture, where PVDF is 100 nm was measured by using a B1500A parameter
analyzer at 10 kHz applied voltage frequency. The other measurements
were performed using a Keithley 4200A-SCS parameter analyzer. All
channel conductance was collected by compelling a DC bias (0.1 V)
between source and drain.

Model
The carrier concentrations (electrons or holes) in the graphene channel
ntotal is estimated by21

ntotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ n Vtg

� �2q
(2)

n0 is the residual carrier concentration characterizing the density of carriers
at the minimum conductivity, i.e., at Dirac point. n(Vtg) is the carrier
concentration (electrons or holes) induced by the top gate voltage,
measuring the Fermi level modulated away from the Dirac point. The total
device resistance Rtotal is:

Rtotal ¼ Rcontact þ L=W
ntotaleμ

¼ 1=G; (3)

where Rcontact is the metal/graphene contact resistance, L and W are the
length and width of graphene channel, and μ is the charge carrier mobility.
The continuity of electric displacement field D at the PVDF/graphene
interface then gives rise to the following equation21:

D ¼ ε0εrEPVDF þ P Vtg
� � ¼ �n Vtg

� �
e; (4)

where ε0= 8.854 × 10−12 F/m is the vacuum dielectric constant, εr= 10 is
the dielectric constant of PVDF, and EPVDF is the electric field within PVDF.
The item ε0εrEPVDF represents the linear component in the dielectric
response of the ferroelectrics, which is the common property in most
dielectric, while P(Vtg) is the hysteretic component. Two additional
equations concerning the capacitive effect of gate dielectric and the
electrostatics are as below:

ne ¼ CðVtg � VDiracÞ (5)

EPVDF ¼ Vtg=d; (6)

where C is the capacitance of PVDF gate dielectric and VDirac is the Dirac
point of graphene material. By combining the above equations, the
relation between the measured conductance G and the imposed top gate
voltage Vtg is derived as

G ¼ 1
Rtotal

¼ 1= Rcontact þ L

Weμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ C2ðVtg � VDiracÞ

p
 

(7)

By fitting this model to the measured top-gate transfer curves shown in
Fig. 2a, parameters such as Rcontact and μ are obtained as Rcontact ≈ 600Ω
and μ ≈ 1.7 × 103 cm2/V s. Here we remind that the values of μ fitted from
the left and right branches in Fig. 2a are almost the same.
The electric boundary condition at the interface between the gate

dielectric PVDF and the graphene channel is described by the following
equation:

PVtgD ¼ ε0εrEPVDF þ P Vtg
� � ¼ �n Vtg

� �
e: (8)

By solving the above equation, D(E) is then extracted from the measured
G(Vtg) shown in Fig. 2b.
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Estimation of nonideal factors
The analog weight update behaviors of GrFeFET synapses shown in Fig. 3c,
d are usually measured with the following nonideal factors. One is the
nonlinearity factor α of long-term potentiation (LTP) and depression (LTD)
processes36:

B ¼ ðGmax � GminÞ=ð1� e�Pm=AÞ (9)

GLTP ¼ B � 1� e�P=A
� �

þ Gmin (10)

GLTD ¼ Gmax � B � 1� eðP�PmÞ=A
� �

þ Gmin (11)

α ¼ 1:726=ðAþ 0:162Þ; (12)

where Gmax and Gmin are the maximum and minimum conductance, Pm is
the maximum number of pulses required to tune the conductance from
Gmin to Gmax, while A and B are fitting parameters.
Another is the asymmetry β between LTP and LTD36:

β ¼ GLTP
N
2

	 

� GLTD

N
2

	 
� �
= Gmax � Gminð Þ (13)

The third is the cycle-to-cycle variation σ37:

G ¼ Gideal þ NðσÞ � ffiffiffi
n

p
; (14)

where σ is the standard deviation of the conductance at different cycles
obtained from the experiment, N(σ) is the normal distribution of the
variation, n is the number of pulses to be applied for each update, and
Gideal is the conductance when no variation is introduced.

Simulation
The synapse, neuron, and supervise circuits to execute ReSuMe are built
with MATLAB Simulink. The parameters are listed in the following Table 2:
Figure 5 demonstrates the flowchart for implementing 3 × 3 pixel z, v,

and n classification is as follows:

Estimation of energy consumption
The energy consumed per update operation of synaptic weight is
calculated by Eup ≈ VtgItgΔt, where Vtg and Δt are the amplitude and
duration of the imposed top gate voltage pulses, and Itg is the measured
leaky current through the gate terminal during the update operation. In
our measurement, Itg is found to be 100 nA.
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