
ARTICLE OPEN

Degradation of black phosphorus is contingent on UV–blue
light exposure
Taimur Ahmed1, Sivacarendran Balendhran1, Md Nurul Karim2, Edwin L. H. Mayes3, Matthew R. Field3, Rajesh Ramanathan 2,
Mandeep Singh2, Vipul Bansal 2, Sharath Sriram1, Madhu Bhaskaran1 and Sumeet Walia1

Layered black phosphorous has recently emerged as a promising candidate for next generation nanoelectronic devices. However,
the rapid ambient degradation of mechanically exfoliated black phosphorous poses challenges in its practical implementation in
scalable devices. As photo-oxidation has been identified as the main cause of degradation, to-date, the strategies employed to
protect black phosphorous have relied upon preventing its exposure to atmospheric oxygen. These strategies inhibit access to the
material limiting its use. An understanding of the effect of individual wavelengths of the light spectrum can lead to alternatives that
do not require the complete isolation of black phosphorous from ambient environment. Here, we determine the influence of
discrete wavelengths ranging from ultraviolet to infrared on the degradation of black phosphorous. It is shown that the ultraviolet
component of the spectrum is primarily responsible for the deterioration of black phosphorous in ambient conditions. Based on
these results, new insights into the degradation mechanism have been generated which will enable the handling and operating of
black phosphorous in standard fabrication laboratory environments.
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INTRODUCTION
Black-phosphorus (BP) has recently emerged as a material of
interest owing to its high carrier mobility and the presence of a
direct bandgap.1 Its thickness-dependent energy gap and highly
anisotropic properties make it an important material to investigate
from the family of two-dimensional (2D) materials.2, 3 Exfoliated
few-layer BP has been a focus of several studies and is promising
for applications in electronics, optoelectronics, energy storage, gas
sensing, catalysis and chemical/biosensing.4–9

However, any practical implementation of BP is hampered by its
susceptibility to ambient conditions.10, 11 The material degrades
rapidly (within few hours to days depending on BP thickness)
when exposed to the environment. After a lot of debate, there is a
growing consensus that the main cause of BP degradation is
photo-oxidation which is expedited in the presence of moisture.10,
12–15 It is also generally agreed upon that the photodegradation of
BP is thickness-dependent. However, there is a mismatch between
theoretical and experimental studies in regards to BP stability. A
recent study suggests that BP consisting of six or more
monolayers is stable for relatively longer periods.10 This has also
been corroborated using theoretical calculations.13 However,
experimental investigations consistently show that even thicker
layers of BP are prone to ambient degradation. It is noteworthy
that the theoretical models, being resource-intensive, are
restricted to mono-layer to few-layer BP, wherein they suggest
the involvement of superoxide radicals (O2

−) as the dominant
reactive oxygen species (ROS) participating in BP photo-
oxidation.13 As such, several reports of BP degradation have
surfaced recently and passivation procedures are now being
explored to protect the material.16–23

A knowledge gap exists in terms of (i) which part of the light
spectrum degrades BP the most, and (ii) involvement of additional
ROS in BP degradation, particularly in the case of thicker BP flakes.
Here, we study the effect of discrete wavelengths ranging from
ultraviolet (UV) to infrared and the mechanism behind the
degradation of mechanically-exfoliated BP flakes of 20–30 nm
thickness. The interactions of different wavelengths, their effect on
surface morphology, light-activated degradation, and mechanisms
to prevent such degradation are explored.

RESULTS
BP flakes are mechanically-exfoliated on to 100 nm SiO2 on Si
substrates. We choose BP flakes 20–30 nm thick so that the
involvement of additional ROS in the case of thicker flakes can be
assessed and the relative degradation at different wavelengths
can be better separated. This is because thin flakes rapidly form a
PxOy layer at the top surface that makes it complex to assess and
compare degradation with varying wavelengths of light.10 The
layered nature of BP can be observed from the transmission
electron micrograph (TEM) of a mechanically exfoliated flake
(Fig. 1a). Figure 1b shows the selective area electron diffraction
(SAED) pattern of the highlighted area, which further signifies the
occurrence of perfectly crystalline, pristine BP, whereas Fig. 1c
shows a magnified, high resolution TEM (HRTEM) image of the BP
flake shown in Fig. 1a. The lattice fringes correlate well with
those reported in literature, indicating the presence of crystalline
BP.24, 25 Figure 1d shows a Raman spectrum acquired from a
representative BP flake. All three signature peaks of BP
corresponding to the 361 cm−1 (A1g mode), 438 cm−1 (B2g mode)
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and 465 cm−1 (A2g mode) are observed.2 The A1g mode originates
primarily from the out-of-plane vibrations of phosphorus atoms
along the c-axis, while the B2g and A2g modes arise from the in-
plane vibrations of phosphorus atoms along the b-axis (armchair)
and a-axis (zigzag), respectively.26

To assess the rate of BP degradation under different wave-
lengths of light, six representative BP flakes are chosen and atomic
force microscopy (AFM) scans are performed prior to exposure as
reference. Subsequently, these flakes are individually exposed to
six different light wavelengths (280, 455, 565, 660, 850 and 1050
nm corresponding to equivalent energies of 4.43, 2.72, 2.19, 1.88,
1.46 and 1.18 eV, respectively) and imaged after identical exposure
durations (30, 60, 90 and 120min). The intensity of all light sources
is maintained at 4.5 mW/cm2. The exposures are conducted in a
dark room to rule out any influence of ambient light. Thereafter,
AFM imaging of the BP flakes is conducted immediately after
exposure at every time step. Figure 2 shows the evolution of BP
degradation for the different photo-wavelength exposures, at
varying time durations. After 2 h of exposure, it is seen that
predominantly UV (280 nm) followed by blue light (455 nm) are
responsible for the appearance of morphological protrusions on
the BP surface, which are indicative of material deterioration.22, 27

None of the BP flakes exposed to green (565 nm), red (660 nm)
and infrared (850 and 1050 nm) show any signs of degradation
within the same time duration. It is also clear that UV light causes
fastest deterioration of the BP surface, whereas blue light induced
degradation is comparatively slower. Figure 3a shows the
absorbance spectrum of a representative BP flake. It can be
observed that there are two absorption bands; one in range of
280–300 nm and another between 370–390 nm with a shoulder in
the blue region, which is in line with previous reports.28 This
implies that UV light is readily absorbed by BP along with a
component of blue, indicating that the high absorption in UV and
blue might be the main factors in the photo-oxidation induced
degradation of BP. This agrees with theoretical studies which
predict that intrinsic defect induced photo-oxidation sites lower
the chemisorption barrier of BP.29 As such, the onset of photo-
oxidation occurs most readily in the UV-blue region.

DISCUSSION
Now we assess the mechanism governing the BP degradation
process (schematic illustration in Fig. 3b). It is theoretically
predicted that the exposure of up to 3–5 layers thick BP to
ambient light and molecular oxygen leads to the generation of
superoxide radicals (where the reaction proceeds at −4.11 eV with
respect to the vacuum level), which is further expedited in the
presence of H2O.

13, 30–34 The generated superoxide radicals are
proposed to interact with the BP surface to produce PxOy,
resulting in the eventual loss of pristine BP.10, 13 The process of
superoxide radical formation cannot be sustained in BP that is
beyond 3–5 layers in thickness due to the changes in the band
positions in thicker BP flakes.13 In this scenario, however, when
thicker BP flakes are photoirradiated, they can efficiently
participate in the generation of OH• radicals (reaction proceeds
at much lower potential of −4.76 eV with respect to the vacuum
level).13, 33, 34 Further, photoexcitation of BP has been demon-
strated to efficiently generate singlet oxygen 1O2, an another
ROS.30 The process of production of these different ROS on
photoexcitation is very much similar to photosystem II chemistry
in plants, where a combination of light and oxygen in the
presence of moisture is known to produce oxidising radicals and
ROS, which are detrimental to organisms.35

We also hypothesise that discrete components of the light
spectrum play drastically different roles in ROS generation,
consequently affecting BP degradation. Hence, we need to under-
stand the ROS generation capabilities of the individual components
of light, to obtain further insights into the degradation of BP.
Therefore, we perform assays under discrete components of the

light spectrum to assess the production of these ROS (see
experimental section for details). Figure 3c shows a comparison of
the 1O2 and OH• radicals generated at six different excitation
wavelengths used in this study. It is distinctively clear that the
relative generation of both 1O2 and OH• radicals is significantly
higher under UV irradiation. An interesting observation is that
there is a rapid burst generation of OH• radicals at lower time
points. However, this saturates within 15min of light exposure. In
contrast, there is a gradual increase in the generation of 1O2 up to
15min following which there is a significant increase in the ROS
generation. Such a trend is not observed for either visible or infra-
red light exposure. Of the other wavelengths that are assessed,
blue (455 nm) light resulted in the generation of both singlet
oxygen and hydroxyl radicals, albeit with lower efficiency when
compared to UV. Wavelengths higher than blue generate
negligible ROS. We did not observe any discernible production
of superoxide radical under photoexcitation conditions. These
results clearly show that UV and blue light can result in the
generation of the 1O2 and OH• radicals, which may facilitate
degradation of even thick BP flakes. Since high energy wave-
lengths are more efficient in producing these ROS, UV light aids

Fig. 1 Characterisation of mechanically-exfoliated black phos-
phorus. a Transmission electron micrograph of a multilayer BP flake.
b SAED pattern and c HRTEM image of the crystal shown in a,
indicating the presence of crystalline BP. d Micro-Raman spectra of a
BP flake showing the presence of all three signature BP modes
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the rapid degradation of BP in comparison to the rest of the light
spectrum. This observation is well in alignment with the AFM
analysis (Fig. 2) which suggests UV light to be the predominant
contributor towards the photo-induced degradation of BP with
some contribution from blue light.
The aforementioned experiments demonstrated that the

damaging ROS species are formed within a few minutes of
photoexcitation. Hence, we hypothesise that upon exposure to

UV, the degradation should occur regardless of subsequent
isolation from ambient environment. To verify this, we expose a
fresh set of mechanically exfoliated BP flakes to UV and blue light
(characterised using AFM prior to exposure, Fig. 4a) for a short
duration of 10 min. Subsequently, the flakes are stored in a
controlled N2 environment in dark and then re-imaged after 24 h.
A control sample is also stored in a N2 environment in dark to
ensure its comparison with the light-exposed BP flakes. Figure 4a

Fig. 2 Atomic force micrographs of BP flakes showing degradation with respect to time, upon exposure to different optical wavelengths. It
can be seen that the UV light causes maximum degradation followed by blue light. The degradation is observed by the appearance of bubble-
like morphological features on the surface of the flakes. Scalebars denote 1 µm
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shows a comparison of AFM scans of the BP flakes which were
subjected to short exposure and then stored for 24 h in an inert
atmosphere with the control sample. It is seen that the flake that
was exposed to UV deteriorated the most, followed by BP exposed
to blue (455 nm) light. Higher wavelength exposures did not result
in any degradation and appeared similar to the control sample.
This observation is in line with expectations that UV and blue light
generates ROS within the first few minutes of exposure and
subsequently results in degradation of the surface, even if it is
subsequently stored under inert conditions.
To confirm that the observed deterioration of BP is not limited

only to the surface but also results in a commensurate decline of
electronic properties, we measure the current flow through of BP
flakes for extended durations, under various excitation wave-
lengths which can indicate changes in the electronic character-
istics as the material deteriorates. The current is acquired at a
constant bias of 50 mV on BP flakes with electrodes in a two-
terminal configuration (see experimental section for details). The
rate of current decay is fastest under 280 nm exposure (Fig. 4b).
Minimal or no current decay is observed upon exposure to higher
wavelengths even on extended exposures of up to 8 h. The trend
in current decay is consistent with our observations; whereby, the
BP flakes exposed to UV shows the highest rate of degradation.
To further support our findings, we perform Raman measure-

ments on individual BP flakes after 60 min exposures to red, green,
blue and UV light. Figure 4c shows a comparison of the Raman
spectra of BP flakes post-exposure to these different wavelengths.
The corresponding extended range spectra are shown in
Supplementary Fig. S1. The signature BP peaks are seen in all
three cases. A relatively small and broad peak can be observed in
the 800–900 cm−1 range. These additional features are consistent
with the Raman vibration modes of different phosphorus oxides
and corresponding acidic species.22, 36–38 Although further
investigations are needed to accurately ascertain the exact

composition of these oxidised phosphorus species, these signa-
tures affirm that the degradation of the BP surface predominantly
occurs due to the UV light. It should be noted that the as-
exfoliated BP does not show the presence of these species
(Supplementary Fig. S2).
It can be concluded that handling and operating BP in an UV-

deficient environment should be sufficient in protecting it against
photo-oxidation. To verify this, we prepared and stored two
samples: one in ambient conditions and the other in a standard
photolithography lab which lacks UV light. The corresponding
AFM images can be seen in Fig 4d and e, respectively. It can be
seen that the sample prepared and kept in the photolithography
lab does not show any signs of degradation even after 28 days,
whereas the sample synthesised and stored under ambient
conditions show distinct signs of deterioration. This indicates that
isolation from UV light is as effective as surface passivation (using
capping layers), without requiring complete isolation from
molecular oxygen. Moreover, passivation approaches in early
stages limits incorporation of BP into devices, with the proposed
use in a yellow-light photolithography environment more
practical. Final devices can then be passivated for practical use.
In summary, we have studied the individual role of different

parts of the light spectrum in the degradation of BP. Using a
combination of AFM and electrical characterizations, it is shown
that UV is predominantly responsible for the environmental
deterioration of BP. Blue light is also observed to cause minor
surface deterioration, however the electronic characteristics decay
by less than 5% over 8 h of continuous exposure. In contrast, none
of the wavelengths beyond blue light result in discernible
degradation of the BP surface or its electronic characteristics (less
than 1%). These observations are further validated through
studying wavelength-dependent photo-induced generation of a
number of ROS that can cause degradation of even 20–30 nm
thick BP flakes. As such, this work is an important milestone

Fig. 3 a Absorbance spectrum acquired from a representative mechanically-exfoliated BP flake. It shows two clear bands in the UV region and
a shoulder in the blue wavelength. b A schematic representation of the photo-oxidation mechanism, whereby reactive oxygen species are
generated via the interaction of atmospheric oxygen and light. These reactive oxygen species result in the degradation of BP. c, d The
generation of damaging reactive oxygen species (1O2 and OH•) under, different excitation wavelengths (see experimental section for details
about ROS generation). It is seen that the UV ligh t generates the maximum reactive oxygen species that degrade BP. This is in line with
physical observations presented in the AFM results shown in Fig. 2. The error bars in c, d are standard deviations obtained from three
independent experiments with each experiment comprised of four replicates
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towards understanding the underlying mechanisms governing the
photo-degradation of BP, whereby it is shown that by isolating BP
from UV light it is possible to preserve it without the requirement
of inert operating environments.

METHODS
Materials
Layered black phosphorus is obtained via polydimethylsiloxane (PDMS)
assisted micromechanical exfoliation of commercial bulk black phosphorus
crystals (Smart Elements). Terephthalic acid (TA), 9, 10-anthracenediyl-bis
(methylene) dimalonic acid (ABMDMA), rose Bengal (RB), dimethyl
sulfoxide, sodium acetate and acetic acid (Sigma-Aldrich, St. Louis, USA)

and hydrogen peroxide (H2O2, 30% w/w, Chem-Supply Pty. Ltd., Australia)
were used in the free radical generation experiments.

Sample fabrication and characterisation
For all the experiments conducted in this work, few-layered black
phosphorus crystals were obtained via PDMS assisted micromechanical
exfoliation of commercial bulk black phosphorus crystals (Smart Elements).

Instrumentation
Transmission electron microscopy (TEM) images of exfoliated specimens
were acquired using a JEOL2100F. AFM imaging is conducted on a
Dimension Icon AFM in ScanAsyst mode. The spatial Raman peak intensity

Fig. 4 a AFM micrograph on flakes that are initially exposed for only 10min to 280 nm (UV) and 455 nm (blue), respectively. Subsequently,
they are re-imaged after being stored in vacuum for 24 h. The control sample without exposure to UV or blue was left in a N2 environment in
dark for the same duration to compare the degradation with the 10min light-exposed flakes. The scale bars in a represent 1 µm. b Current
decay with respect to exposure duration for the different wavelengths of light. It is seen that the relative degradation of current is the highest
for flakes exposed to 280 nm (UV). c Micro-Raman spectra of BP flakes on SiO2/Si substrates after 60min exposure to red, green, blue and UV
respectively. The evolution of mixed POx and HxPOy signatures between 800 and 900 cm−1 can be observed for blue and UV exposures,
whereas these features are absent for higher wavelengths. The corresponding extended range spectra is showm in Figure S1. d AFM images
of a representative BP flake synthesised and stored under ambient conditions. e AFM image of a flake synthesised and stored in a standard
photolithography lab that lacks UV light. A comparison of d, and e shows that the flake in a UV deficient environment remains intact, whereas
the flake in ambient shows distinct signs of deterioration in 3 days. The scale bars in d, e represent 2 µm
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mapping was conducted on a Horiba LabRAM HR Evolution micro-Raman
system equipped with 9mW, 532 nm laser (500 nm lateral resolution, 0.25 s
exposure), and a 50 × objective. The representative black phosphorous
flakes are exposed to the discrete wavelengths (280, 455, 565, 660, 850 and
1050 nm) by using commercial high power light-emitting diodes (LED,
Thorlabs, Inc.). The illumination power was calibrated by a commercial UV-
enhanced silicon photodetector (Newport Corporation). Absorption
measurements were performed using Envision multilabel plate reader
(PerkinElmer). Fluorescence measurements were performed using
Fluoromax-4 spectrofluorometer.

Free radical generation
Singlet oxygen radicals were generated by photo-irradiating (intensity of
1.2 mW cm−2) RB dye and the singlet oxygen generation was confirmed
through the degradation of ABMBDA dye (0.1 mM ABMDMA with 20 µM
RB).39 ABMDMA, an anthracene derivative, reacts with singlet oxygen to
produce an endoperoxide and causes a decrease in the fluorescence
intensity at 425 nm40 which was recorded at 5 min intervals for 20min by
applying an excitation wavelength of 380. The presented data and
associated standard deviations are an average of three independent
experiments.
The generation of OH• radicals under different light sources was

detected using a fluorescent assay. The OH• radical studies were performed
in the presence of H2O2 (1 M) and TA (1mM), which was the capture
probe.41 The reaction mixture was independently exposed to the six
wavelengths of light (intensity of 4.5 mW cm−2). TA is a non-fluorescent
compound that specifically reacts with OH• radicals to form a fluorescent
product 2-hydroxyterephthalate (excitation 310 nm; emission 430 nm).
The fluorescence intensity was recorded at 5 min intervals for 20min. The
fluorescence intensity is directly proportional to the amount of OH•

radicals. The presented data and associated standard deviations are an
average of three independent experiments.

BP absorption measurements
A CRAIC 20/30 XL UV-Vis micro-spectrophotometer was used to acquire
the absorption profile of the BP flake.

Electrical measurements
Devices were fabricated on mechanically-exfoliated BP flakes on 100 nm
SiO2 on Si substrates. Subsequently, a photoresist layer was spin-coated at
4000 rpm for 45 s followed by 100 °C soft bake. The electrode patterns
were UV-exposed using a mask aligner system (MA6, SUSS MicroTech) and
subsequently developed. The metal electrodes Cr/Au (10/100 nm) were
then deposited on the developed patterns using electron beam
evaporation. Finally, the lift-off in acetone was carried out to reveal the
required metallic contact pads for micro-probes and electrical measure-
ment. The electrical measurements were conducted using a Keithley
4200SCS semiconductor parameter analyser. All measurements were
performed under dark conditions with exposure to only the target
wavelength of light.

Data availability
All relevant data is available from the authors on request.
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