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Constitutionalmismatch repair deficiency (CMMRD) is a rare syndrome characterized by an increased
incidence of cancer. It is caused by biallelic germline mutations in one of the four mismatch repair
genes (MMR) genes: MLH1,MSH2, MSH6, or PMS2. Accurate diagnosis accompanied by a proper
molecular genetic examinationplays a crucial role in cancermanagement andalso has implications for
other family members. In this report, we share the impact of the diagnosis and challenges during the
clinical management of two brothers with CMMRD from a non-consanguineous family harbouring
compound heterozygous variants in the PMS2 gene. Both brothers presented with different
phenotypic manifestations and cancer spectrum. Treatment involving immune checkpoint inhibitors
significantly contributed to prolonged survival in both patients affected by lethal gliomas. The uniform
hypermutation also allowed immune-directed treatment using nivolumab for the B-cell lymphoma,
thereby limiting the intensive chemotherapy exposure in this young patient who remains at risk for
subsequent malignancies.

Constitutional mismatch repair deficiency (CMMRD) is a rare cancer-
predisposition syndrome resulting from biallelic germlinemutations in one
of the fourmismatch repair (MMR) genes:MLH1,MSH2,MSH6, orPMS21.
While clinical manifestations are often nonspecific and overlap with other
syndromes such as neurofibromatosis type-I2,3, a diagnosis in a pediatric

patient can also be suspectedby thepresenceof either synchronous or rapid-
onset of specific metachronous malignancies4,5. These include gastro-
intestinal, hematological, and central nervous system cancers, most fre-
quently high-grade gliomas6. Accurate diagnosis is important for cancer
management and also has implications for other familymembers6,7. Cancers
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in CMMRD patients are refractory to agents like temozolomide and mer-
captopurines which need an intact MMR machinery for their cytotoxic
action, but these tumors uniformly harbor high tumormutation (TMB) and
microsatellite indel (MSI) burden, making them amenable to immune
checkpoint inhibition (ICI)8–13. In this report, we share the impact of the
diagnosis and challenges during the clinical management of two brothers
with CMMRD from a non-consanguineous family harboring compound
heterozygous variants in the PMS2 gene, who presented with different
phenotypic manifestations and cancer spectrum.

Results
Case presentation: patient 1
The index patient was diagnosed with colon adenocarcinoma at 14-years
(Fig. 1a; Fig. S1), achievedcomplete remission followinghemicolectomyand
standard FOLFOX chemotherapy, and subsequently developed a pediatric-
type diffuse high-grade glioma (PDHGG; histone and IDH-wild type with
chromosome13q loss), 4-years later (Fig. 1b, c). Therewasno consanguinity
or history of cancers in the family, as well as no neuro-cutaneous stigmata.
Germline sequencing confirmed CMMRD caused by distinct PMS2
pathogenic variants – c.2 T >A/p.(M1K) and c.2521del/p.(W841Gfs*10),
each inherited from asymptomatic parents (Fig. 1d). Both cancers were
hypermutatedwithmutational signatures ofMMRdeficiency14,15 (Fig.1 e, f),
loss of PMS2 expression on immunohistochemistry (IHC) and high exomic
MSI burden (colon: 207; PDHGG: 1360; median for MMR-proficient
controls: 17). Additionally, the PDHGG harbored extreme tumor muta-
tional burden (TMB) (337.56 mut/Mb) likely contributed by a somatic,
pathogenicPOLE drivermutation in the exonuclease domain (p.E978G)16,17

accompanied by COSMIC single-base substitution signature 1014,15. Fol-
lowing focal radiation, the child was enrolled in a clinical trial of a dendritic
cell vaccine (5 doses)18 and then started on nivolumab. Temozolomide,
initially initiated,was stopped followingmulti-disciplinarydiscussions1. The
child achieved complete remission, and nivolumab was continued for 24
months. Ongoing surveillance identified no new primary cancers.

Unfortunately, a disseminated recurrence 5-months after stopping
nivolumab was confirmed as hypermutant and MSI-high PDHGG (TMB:
461.87 mut/Mb; exomic MSI burden: 2101) with the same POLEmutation
but an otherwise evolved mutational spectrum from the original biopsy
(Fig. 1g). The recurrent tumor did not show any known mechanisms of
immune evasion, including either new pathogenic variants in the JAK/
STAT pathway or loss of heterozygosity of HLA alleles. In contrast, the
paired gene analysis for neoantigen expression suggested retained immu-
nogenicity (Supplementary Fig. 1 in the Supplementary Data). Focal
radiation was administered to sites of disease recurrence in combination
with bevacizumab, and nivolumab was reinitiated. Ipilimumab was added
post-radiation, but the treatment had to be interrupted for
thrombocytopenia19. Autoimmune toxicity and concomitant hematological
malignancy were excluded by exhaustive investigations. Ultimately, the
thrombocytopenia was attributed to a Parvovirus-B19 infection, and the
child was treated with intravenous immunoglobulin. However, during this
period, he presented with status epilepticus. Magnetic resonance imaging
(MRI) demonstrated disseminated glioma progression (Fig. 1h). He was
started ondexamethasone and shifted topalliative care, leading to demise 43
months from his PDHGG diagnosis.

Case presentation: patient 2
The brother of the index patient was diagnosed with CMMRD as part of
cascade testing and initiated on the published cancer surveillance protocol6.
Notably, he also harbored café-au-lait macules. Surveillance imaging
detected asymptomatic abdominal lymphadenopathy. A biopsy confirmed
high-grademature B-cell-lymphomawith 11q aberration but lackingMYC/
8q24 rearrangement20,21 (Fig. 2a, b). The patient received two courses of
intensive chemotherapy as per the NHL-BFM 2012 protocol, along with
rituximab. Hypermutation (TMB: 107.74 mut/Mb) driven by MMR defi-
ciency mutational signatures (COSMIC)14,15 (Fig. 2c), loss of PMS2 protein
expression, and high exomic MSI burden (1830) were detected.

Chemotherapy was stopped, and the patient was treated with nivolumab
following a multi-disciplinary consensus. With sustained remission lasting
>24 months, a decision to taper nivolumab was made. After 9 months on
this tapering schedule at a dose of 1mg/kg q2-weeks, the surveillance MRI
revealed a lesion in the putamen/globus pallidus. A biopsy confirmed this as
PDHGG with losses in chromosomes 1q, 2p, 4, 7, 10q, 13q, and extreme
TMB (142 mut/Mb) with a driver mutation in the POLE exonuclease
domain (p.V411L)16,17, corresponding mutational signatures and high
exomic MSI burden (534) (Fig. 2f). The patient was treated with tumor
debulking, re-irradiation, and re-initiation of full-dose nivolumab (3mg/kg
q2-weeks) (Fig. 2g). Initial radiological progression led to a decision to add
trametinib, as the tumor harbored a truncating NF1 mutation (p.G824*)
and previous reports of success using this approach22. However, trametinib
had to be withheld following significant cardiac toxicity. Ipilimumab was
then added to nivolumab, and complete remission was achieved. Unfor-
tunately, ICI treatment had to be stopped due to symptomatic autoimmune
pulmonary toxicity. Infectious etiologies were excluded, and rapid clinical
and radiological improvements were noted after initiating steroids. As
autoimmune pneumonitis is more frequently reported with nivolumab, a
decision was made to rechallenge the patient with ipilimumab
monotherapy23. However, this, too, had to be stopped following severe
hepato-toxicity. The patient is currently on imaging surveillance without
evidence of any cancer, 13months after stopping ICI treatment, >23months
since PDHGG diagnosis, and 5 years from the lymphoma diagnosis.

Discussion
We gained several important clinical insights during the management of
these two siblingswithCMMRD,which, we believe, will be extremely useful
in managing future patients with such rare and complex disorders.

First, we observed that the clinical phenotype can vary between two
siblings harboring the same germline pathogenic variants in CMMRD.
Here, only the younger brother harbored café-au-lait macules, which is
otherwise the commonest clinical manifestation triggering evaluation for
germline disorders like neurofibromatosis and CMMRD in the context of a
childhood malignancy2,3. It was recently demonstrated that children with
CMMRD and café-au-lait macules uniformly lack germline variants inNF1
or SPRED1 genes24 but can harbor somatic mosaicism for such aberrations
explaining such inter-patient heterogeneity25. Second, the high prevalence
and early onset ofmultiplemalignancies in this aggressive cancer syndrome
highlight the importance of systematic cancer surveillance in these
patients6,8. Notably, both malignancies in the second sibling were detected
on imaging-based surveillance in the asymptomatic state, plausibly con-
tributing to the improved outcome in this patient.

Next, we demonstrate that the germline genomic instability in
CMMRD patients not only leads to the development of hypermutant
cancers but can also contribute to the rapid evolution of the mutational
spectrum between the primary diagnosis and recurrence. The first patient’s
PDHGGharbored a combination ofMMRDand polymerase-proofreading
deficiencies, which not only contributed to the extreme TMB16,17 and MSI
burden both at diagnosis and recurrence but resulted in the acquisition of
diverse novel somatic variants at recurrence. This underscores that a repeat
biopsy followed by genomic analyses of a recurrent tumor should be an
important consideration in a patient with CMMRD. As recently reported
for these genomically unstable RRD cancers10,26, known drivers of immune
evasion in lung and other cancers, including defects in antigen presentation
and interferon signaling, were not demonstrated to be enriched at recur-
rence and persistently high immunogenicity was noted. This underscores
that a repeat biopsy followed by genomic analyses of a recurrent tumor
should be an important consideration in apatientwithCMMRD, as this can
allow re-initiation of treatment and continuation of immunotherapy can
lead to second, even if, delayed responses10,26.

Last, while the impact of ICI treatment was reiterated for deadly
gliomas with prolonged survival in both patients, the uniform hypermu-
tation also allowed immune-directed treatment using nivolumab for the
B-cell lymphoma, thereby limiting intensive chemotherapy exposure in this
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young patient who remains at risk for subsequent malignancies8. This is in
contrast to T-cell lymphomas, where ICI treatment may not only be inef-
fective but can add to risk of disease progression9,27. Importantly following
the success in selected young patients with favorable biomarkers26 including
high TMB, MSI and immune infiltrates, by using post-resection ICI treat-
ment and avoiding chemo-radiation12, this approach has generated

enthusiasm as an upcoming clinical trial. However, we also note that there
may be a need for sustained immune surveillance in these patients with
germline genomic instability, as interruption of immunotherapy was
clinically correlated with recurrence/progression at multiple time points in
both patients. This can be challenging with the use of combinatorial ICI-
based treatments, like anti-CTLA4 and anti-PD1, especially in CMMRD
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patients where even non-malignant cells in the body accumulate mutations
and MS-indels at high rates, leading to high rates of autoimmune toxicities
in a recently published study, was also seen in our patients19,26. Hence, while
combinatorial strategies can be effective salvage options upon failure of

checkpoint-inhibitor monotherapy, it can be challenging to continuously
deliver existing combinations in CMMRD patients. Novel treatment regi-
mens need to be explored to balance efficacy while minimizing toxicity to
improve the patient’s tolerance to immune-based combinations. Immune

Fig. 1 | Histopathology, molecular diagnostic results, and therapy and imaging
methods timeline in Patient 1. a Hematoxylin-eosin staining showing well-to-
moderately differentiated colorectal adenocarcinoma growing into the muscularis
propria. Magnification 50x, scale bar 100 µm. b Hematoxylin-eosin staining
showing pediatric-type diffuse high-grade glioma (PDHGG) with a primitive neu-
ronal component (left) (biopsy 2017). Magnification ×50, scale bar 100 µm. c Copy
number variations output fromMolecularNeuropathology.org classifier in PDHGG
(biopsy 2019)—depiction of chromosome 1 to 22. Gains/amplifications represent
positive, losses negative deviations from the baseline. Twenty-nine brain tumor
relevant gene regions are highlighted for easier assessment31. dMutations in PMS2
c.2 T > A/p.(M1K) (left) and c.2521del/p.(W841Gfs*10) (right) identified by whole-
exome sequencing visualized in The Integrative Genomics Viewer tool32.
eMutational signatures (MS) analysis in PDHGG (biopsy 2017): Signatures single-

base substitution (SBS) 6, SBS15 and SBS21 associated with mismatch repair defi-
ciency (MMRD) were identified in the tumor. SBS10b associated with polymerase-
proofreading deficiency (PPD) was also identified as the result of pathogenic POLE
mutation. fMS analysis in PDHGG (biopsy 2019):MMRD-related SBS15was found
to be the most represented signature. As for the PPD, SBS10b together with similar
SBS10awere identified in the tumor. gMutational overlap in PDHGG2017 and 2019
biopsy. h Schematic overview of patient’s individualized treatment plan including
immune checkpoint inhibitors. Overview of imaging tests and treatment responses
in patient. Abbreviations in the figure: DCV dendritic cell vaccination, RT radio-
therapy, TMZ temozolomide, MRI magnetic resonance imaging, ICI immune
checkpoint inhibitor, PET positron emission tomography, FLT 18F-fluor-
othymidine, SUV standardized uptake value, CR complete response, Other therapy*
other potentially anticancer therapy.

Fig. 2 | Histopathology, molecular diagnostic results, and therapy and imaging
methods timeline in Patient 2. a Hematoxylin-eosin staining showing medium-
sized blastic cells and starry sky pattern (Burkitt-likemorphology,MYC-negative) in
patient’s high-grade B-cell lymphoma with 11q aberrations (HGBL-11q). Magni-
fication ×50, scale bar 100 µm. bChromosome 11q aberrations (gain/loss) identified
in patient’s HGBL-11q using array-CGH visualized in CytoGenomics software
(Agilent Technologies, CA, USA). cMutational signatures (MS) analysis in HGBL-
11q: Signatures single-base substitution (SBS) 15, SBS21 and SBS26 associated with
mismatch repair deficiency (MMRD) were identified in the tumor. dHematoxylin-
eosin staining showing bizarremultinucleated cells in patient’s pediatric-type diffuse
high-grade glioma (PDHGG). Magnification ×50, scale bar 100 µm. e Copy number
variations output from MolecularNeuropathology.org classifier in the patient’s
PDHGG – depiction of chromosome 1 to 22. Gains/amplifications represent

positive, losses negative deviations from the baseline. Twenty-nine brain tumor
relevant gene regions are highlighted for easier assessment31. f MS analysis in
PDHGG: MMRD-related SB15, as the most represented signature, together with
SBS21were identified in the tumor. SBS10a and SBS10b associated with polymerase-
proofreading deficiency (PPD) were also identified as the result of pathogenic POLE
mutation. g Schematic overview of patient’s individualized treatment plan including
immune checkpoint inhibitors. Overview of imaging tests and treatment responses
in patient. Abbreviations in the figure: NHL-BFM non-Hodgkin lymphoma Berlin-
Frankfurt-Münster, RT radiotherapy, WB MRI whole-body magnetic resonance
imaging, HGBL-11q high-grade B-cell lymphoma with 11q aberrations, PET/MRI
positron emission tomography/magnetic resonance imaging, FDG F-fluorodeox-
yglucose, PDHGG pediatric-type diffuse high-grade glioma, Other therapy* other
potentially anticancer therapy.
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surveillance using vaccines targeting tumor neoantigens are in clinical trials
in patients with heterozygous MMR-deficient Lynch syndrome following
success in preclinical models28,29, and need to be systematically explored for
patients with CMMRD.

Limited data exist on the optimal duration of immunotherapy for
patients with CMMRD and for children in particular. The ICI treatment
duration for the first patient was 24 months, which at that time was con-
sidered as standard of care for other cancers. For the secondbrotherwehave
tried to keep him on prolonged immune surveillance while trying to
decrease the risk of side effects with lower dose. The question if the full dose
of nivolumab would prevent evolution of the secondary glioblastoma
remains unanswered.

We conclude that, despite being ahighly aggressive cancer syndrome, a
timely diagnosis of CMMRD andmonitoring of affected patients according
to established algorithms is essential for the early detection ofmalignancy as
this can be associated with longer patient survival. Comprehensive mole-
cular testing is paramount for developing individualized treatment plans in
affected patients. While immunotherapy plays an indispensable role in the
treatment of CMMRD-driven tumors, novel regimens are urgently needed
to maintain sustained systemic immune surveillance while limiting treat-
ment toxicity.

Methods
Whole-exome sequencing
Whole-exome sequencing (WES) using TruSeq DNA Exome Kit, NextSeq
500/550 Mid Output Kit, and NextSeq 500 device (all Illumina, CA, USA)
was done in both brothers’ tumors. 100 ng ofDNAobtained from formalin-
fixedparaffin-embedded (FFPE) tumor samples served as the inputmaterial
for the somatic (cancer) exome. 400 ng ofDNAobtained from leukocytes of
peripheral blood was used as the input material for the germline exome. All
steps abovewere performed according to themanufacturer’s protocol.WES
was performed with high coverage, where at least 90% of targeted regions
were covered at least 20 times. This was followed by bioinformatic analysis
using a standardized pipeline.

A spectrum of novel and described variants affecting both oncogenes
and tumor suppressor genes were identified in both patients’ tumors and
selected variants are listed in Table 1a–d.

Determination of TMB and mutational signatures
The TMB (single nucleotide variants per megabase) from WES data was
calculated by counting total number of somatic single nucleotide variants

divided by total number of callable bases in megabases (~50Mb). Muta-
tional signatures were examined according toCOSMIC version 3.2 (Figs.1e,
f and 2c, f)15.

Microsatellite indel calling
The methodology was previously described in Das et al.9. Microsatellite
indels were called on the bam files of tumor and matched normal samples,
using an in-house pipeline using MSMuTect v1. The detailed methods for
this algorithm have been previously reported30.

RNA sequencing: gene expression profiling
In all Patient 1’s tumors (CRC, both PDHGGs) and Patient 2’s tumors
(HGBL-11q andPDHGG), gene expressionprofiling usingRNAsequencing
was performed.Messenger RNAwas purified from300 ng of RNAextracted
fromfrozen tumor tissueusingNEBNextPoly(A)mRNAMagnetic Isolation
Module (NewEngland Biolabs,MA,USA). Sequencing libraries frompolyA
selected mRNA were prepared using NEBNext Ultra II Directional RNA
Library Prep Kit (New England Biolabs) and sequenced on the NextSeq 500
device usingNextSeq 500/550MidOutput Kit v2,5 (75 cycles) (Illumina), all
according to the manufacturer’s recommendations. Raw sequencing reads
were quality-checked with FastQC and then aligned against GRCh37. The
gene counts were estimated with Gencode gene definitions and compared
with reference gene counts from the GTEx database of non-disease tissue-
specific samples. The gene counts were TMM normalized, and a t-test sta-
tistic was used. For selected genes (211 genes), which were classified
according to the pathways they participate in, the fold change value ≤ 0.5was
recorded and graphically expressed (+ to ++++++). Selected gene
expressions are shown in the Supplementary Data, Supplementary
Tables 2 and 3.

Additional analyses of WES and RNA sequencing data
Additional analyses of WES and RNA sequencing data were performed.
Description and results of these analyses can be found in the Supplemen-
tary Data.

Targeted RNA sequencing: fusion genes examination
Examination of fusion genes using RNA sequencing was performed in both
brothers and all the respective tumors. Sequencing libraries were prepared
using TruSight RNAPan-Cancer Panel, loaded onto NextSeq 500/550Mid
Output Kit v2,5 (150 cycles) cartridge, and sequenced using NextSeq
500 sequencing device (all Illumina, CA, USA), all according to

Table 1a | Selected somatic variants identified in Patient 1’s pediatric-type diffuse high-grade glioma (PDHGG) using whole
exome sequencing (WES)

Gene Protein (according to Uniprot) Variant (c.DNA/protein) dbSNP identifier Biopsy

PIK3CA Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform c.1360 G > T/p.D454Y - 2017, 2019

PIK3CA “ c.2422 C > T/p.R808W rs200671228 2017, 2019

PIK3R1 Phosphatidylinositol 3-kinase regulatory subunit alpha c.1126 G > A/p.G376R rs1057519757 2017, 2019

PIK3R1 “ c.1507 C > T/p.R503W - 2017, 2019

PDGFRA Platelet-derived growth factor receptor alpha c.1715 A >C/p.Y572S - 2017, 2019

PDGFRA “ c.3265 C > A/ p.L1089M - 2017, 2019

RET Proto-oncogene tyrosine-protein kinase receptor Ret c.2437 C > T/p.R813W rs779996040 2017, 2019

TP53 Cellular tumor antigen p53 c.844 C > T/p.R282W rs28934574 2017, 2019

NF1 Neurofibromin c.3574 G > T/p.E1192* - 2017, 2019

NF1 “ c.4600 C > T/p.R1534* rs760703505 2017, 2019

NF1 “ c.6951 G > A/p.W2317* - 2017, 2019

POLE DNA polymerase epsilon catalytic subunit A c.5278 G > A/p.V1760M rs373272795 2017, 2019

POLE “ c.3697 C > T/p.R1233* rs745750549 2019

NF1 Neurofibromin c.2033dup/p.I679fs rs1232596244 2019

RAD50 DNA repair protein RAD50 c.3598 C > T/p.R1200 rs750586158 2019
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manufacturer’s recommendations. As the input material, 50 ng of RNA
isolated from a frozen tumor was used. A parablock was obtained from this
frozen tumor tissue, and the content of the tumor component was deter-
mined by a pathologist. Sequencing data were bioinformatically processed
using a standardized pipeline.

No fusion geneswere detected in anyof the samples, and the absence of
MYC fusion was confirmed in Patient 2’s lymphoma.

Methylation profiling
Methylation profiling was done in both patients’ tumors of central nervous
system (CNS) using 850k EPIC Methylation Array Kit and NextSeq
550 sequencing device (all Illumina, CA, USA) according tomanufacturer’s
protocol. As the input material, 250 ng of DNA isolated from frozen tissue
samples was used. DNA methylation-based classification of CNS tumors
was performed according to Capper et al.31.

Table 1c | Selected somatic variants identified in Patient 2’s high-grade B-cell lymphoma with 11q aberrations (HGBL-11q)

Gene Protein (according to Uniprot) Variant (c.DNA/protein) dbSNP identifier

TP53 Cellular tumor antigen p53 c.821 T > C/p.V274A rs1057520006

TP53 “ c.503 A >G/p.H168R rs867114783

ATM Serine-protein kinase ATM c.640del/p.S214fs rs1388051413

CCND3 G1/S-specific cyclin-D3 c.811dup/p.R271fs -

PTEN Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN c.521 A >G/p.Y174C rs864622341

ROS1 Proto-oncogene tyrosine-protein kinase ROS c.3989 A > T/p.N1330I -

ROS1 “ c.2122 T > C/p.S708P -

DDX3X ATP-dependent RNA helicase DDX3X c.1415 A >G/p.H472R -

FAT4 Protocadherin Fat 4 c.1397 A >G/p.N466S -

FAT4 “ c.1849A>C/p.T617P -

FAT4 “ c.3656 T > C/p.I1219T -

FAT4 “ c.8606 A >G/p.D2869G -

FAT4 “ c.11181 C > A/p.F3727L -

FAT4 “ c.14804 T > C/p.L4935P -

NFRKB Nuclear factor related to kappa-B-binding protein c.1007del/p.K336fs -

LRP1B Low-density lipoprotein receptor-related protein 1B c.12715 T > C/p.C4239R -

LRP1B “ c.12130 A > T/p.T4044S -

LRP1B “ c.11908 A >G/p.R3970G rs970306366

LRP1B “ c.8831 A > T/p.D2944V -

LRP1B “ c.7927 T >G/p.F2643V -

LRP1B “ c.6940 A >G/p.M2314V rs1031301423

LRP1B “ c.4025 T > A/p.V1342D -

In addition to TP53 and CCND3, other genes found to be frequently mutated in Burkitt lymphoma and HGBL-11q has been included (DDX3X, FAT4, NFRKB, LRP1B)1

Table 1b | Selected somatic variants identified in Patient 1’s colorectal carcinoma using WES

Gene Protein (according to Uniprot) Variant (c.DNA/protein) dbSNP identifier

KRAS GTPase KRas c.35 G >C/p.G12A rs121913529

PIK3CA Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform c.1634 A > G/p.E545G rs121913274

RET Proto-oncogene tyrosine-protein kinase receptor Ret c.2099 T > C/p.M700T -

BRAF Serine/threonine-protein kinase B-raf c.1208dup/p.A404fs rs777474487

AMER1 APC membrane recruitment protein 1 c.1489 C > T/p.R497* -

APC Adenomatous polyposis coli protein c.2563 G > T/p.E855* -

APC “ c.4666dup/p.T1556fs -

EP300 Histone acetyltransferase p300 c.6329_6330insT/p.Q2110fs -

EP300 “ c.6316del/p.M2106fs -

BARD1 BRCA1-associated RING domain protein 1 c.672dup/p.E225fs -

BARD1 “ c.623dup/p.K209fs rs587780033

SMAD4 Mothers against decapentaplegic homolog 4 c.153dup/p.D52fs -

SMAD4 “ c.1082 G > A/p.R361H rs377767347

TP53 Cellular tumor antigen p53 c.718 A > C/p.S240R -

POLE DNA polymerase epsilon catalytic subunit A c.875 A > G/p.Q292R -
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Both CNS tumors were classified as diffuse pediatric-type HGG,
RTK1 subtype, subclass A, which corresponds to the methylation class
characteristics, stating that tumors developing in the context of CMMRD
predominantly belong to this category. In addition to tumor classification,
theoutputof theanalysiswas also a copynumbervariationprofile (Fig.1c, 2e)
and determination of methylguanine-DNA-methyltransferase promotor
methylation status (both tumors resulted as unmethylated).

Microarray-based comparative genomic hybridization
(array-CGH)
Oligonucleotide array-CGH was performed using SurePrint G3 Cancer
CGH+ SNP Microarray Kit, 4x180K (Agilent Technologies, CA, USA).
Sample DNA and sex-matched control DNA (Human Genomic DNA,
Agilent) were restricted, labeled, and purifiedwith SureTagComplete DNA
Labeling Kit according to manufacture protocol (Agilent). The quality of
DNA was checked by Nanodrop, and the specific activity of both DNA,
sample, and reference were in an optimal range. Hybridization was done
with Oligo aCGH/ChIP-Chip Hybridization Kit (Agilent) and ran for
24 hours at 67 °C. Analysis was performed according to the protocol pro-
vided by the supplier (Agilent Oligonucleotide Array-Based CGH for
Genomic DNA Analysis). Arrays were scanned using a SureScan High
Resolution Microarray Scanner (Agilent). Data were imported using the
Feature Extraction V.5.0.2.1 software, and results were analyzed using
CytoGenomics software v5.1.2.1 (Agilent). All genomic coordinates were
established using the human reference genome GRCh38. Detected aberra-
tions in both patients’ tumor are shown in the Supplementary Data.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The raw sequencing and array-CGH data are not publicly available due to
data privacy regulations and restrictions for use of such data, as stated in the
study protocol and patient consent form. Data supporting the findings of
this study are available within the article and its supplementary data files.

Code availability
Bioinformatics pipeline code is available upon request.
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