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Enhancing drug and cell line
representations via contrastive learning
for improved anti-cancer drug
prioritization
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Due to cancer’s complex nature and variable response to therapy, precision oncology informed by
omics sequence analysis has become the current standard of care. However, the amount of data
produced for each patient makes it difficult to quickly identify the best treatment regimen. Moreover,
limited data availability has hindered computational methods’ abilities to learn patterns associated
with effective drug-cell line pairs. In this work, we propose the use of contrastive learning to improve
learned drug and cell line representations by preserving relationship structures associated with drug
mechanisms of action and cell line cancer types. In addition to achieving enhanced performance
relative to a state-of-the-artmethod,we find that classifiers using our learned representations exhibit a
more balanced reliance on drug- and cell line-derived features when making predictions. This
facilitates more personalized drug prioritizations that are informed by signals related to drug
resistance.

Cancer, the leading cause of death worldwide, remains a challenge to treat
due to its complex nature and variable response to therapy, even among
patients with the same cancer type. Omics, which describes the collective
and comprehensive analysis of biomolecular data, is being leveraged to
conduct precision oncology. Transcriptomics, a subfield of omics that stu-
dies gene expression by quantifying relative levels of RNA molecules, has
been an especially valuable tool. Oncologists use transcriptomics—com-
paring normal and tumor cells—to identify changes in gene expression.
These alterations are used to pinpoint the molecular process(es) driving
tumorigenesis in each patient, allowing clinicians to develop personalized
treatment recommendations. However, because RNA sequencing (RNA-
seq) measures the expression of more than 20,000 genes, manually evalu-
ating each patient’s data to determine the best treatment is neither scalable
nor pragmatic.

Instead, machine learning models have been applied to omics data to
predict cellular sensitivities to drug candidates. RefDNN1, one state-of-the-
art (SOTA)method, represents drugs via their structural similarity to a set of
reference drugs. It then leverages these reference drugs to produce cell line

representations: each dimension is the output of an Elastic Net2 model
trained on transcriptomic data to predict a cell line’s sensitivity to a distinct
reference drug. During evaluation, RefDNN applies a dense neural network
(DNN) to the Hadamard product of drug and cell line representations to
predict cancer drug response (CDR). However, RefDNN is limited by data
quality: it requires complete CDR data for all reference drug-cell line pairs
during training. Other recent SOTA methods, such as SubCDR3, have
explored the use of expert annotations genes, explicitly denoting the role
each of the genes in their subset played in the tumorigenesis of each cancer
type in their data set. This method also relies on the use of CDR values as
‘side information’. While it improves on RefDNN, in that it can be trained
on incomplete CDR data, SubCDR is only able to accurately predict CDR
response for new combinations of cell lines and drugs seen during training.
Furthermore, manually labeling genes by their role is both time-consuming
and may introduce bias into the model.

DeepDSC4, another SOTAmethod, also leverages transcriptomic data
to produce cell line representations. It does so via the latent embeddings of a
pretrained autoencoder (AE). By encoding cell lines’ transcriptomic profiles
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into a lower-dimensional space, the AE captures key information while
mitigating the risk of overfitting, which commonly occurs when training
deep learning models on limited data. In DeepDSC, drugs are represented
byMorgan fingerprints5. A dense neural network (DNN) is then applied to
drug-cell line pairs to predict CDR. DeepDSC ismore robust than RefDNN
as it can be trained on incomplete data. However, its use of generic fin-
gerprintsmay still hinder performance as they are not customized to predict
CDR. Similarly, the cell line features derived from DeepDSC’s AE are
optimized for transcriptomic profile reconstruction,meaning they, too,may
not be relevant for CDR prediction.

As such, twomajor challenges in achievingpreciseCDRpredictions are
the creation of problem-specific embeddings and the integration of drug-
cell line pairs, which are both complicated by the quality and availability of
data. To address these issues, we propose a framework, denoted as
SiamCDR, that leverages contrastive loss within a Siamese neural network6

(SNN) to enhance the expressiveness of drug and cell line representations,
thereby improvingCancerDrugResponse predictions (Fig. 1a). Specifically,
our model learns to project drugs and cell lines to embedding spaces that
encode the similarities of gene targets for drugs and cancer type for cell lines,
respectively. This is guided by the intuition that drugs with similar targets
will have similar effects.Additionally, drug efficacies amongcells of the same
cancer type should be more similar than drug efficacies among cells of
different cancers. The benefit of using SNNshere is their, and other few-shot
learning frameworks’, ability to learn such similarity relationships from a
limited number of training instances for each group6–8. Specifically, drugs
are grouped by their mechanism of action (MOA); cell lines are grouped by
their cancer type. Moreover, contrastive learning will ensure our method
preserves similarity relationships tailored to predicting CDR.

Our experiments show that SiamCDR produces higher-quality and
more personalized drug prioritizations than DeepDSC. In fact, a network
analysis of genes whose expression is significantly correlated with
SiamCDR’s docetaxel prioritization in breast cancer identified enriched
pathways known to induce docetaxel-resistance. This suggests the
SiamCDR can learn tomodulate its recommendations from transcriptomic
signals associated with drug efficacy. Finally, using SiamCDR, we identify
multiple repurposing candidates for difficult-to-treat cancers.

Results
Evaluating model performance
High performingmodels will prioritize themost effective drugs for each cell
line above ineffective drugs.To that end,we assessmodel performanceusing
average Pcell@k (k ¼ 1; 2; 3; 4; 5; 10) and average Pcancer@k
(k ¼ 1; 2; 3; 4; 5) defined by Eqs. (2) and (3), respectively. These measure
the average proportion of highly effective drugs among a model’s top-k
prioritized drugs. Specific details regarding how each metric is calculated
can be found in the ‘Evaluation metrics’ subsection of Methods. We com-
pare the performance of the top-performing hyperparameter set for each
end-classifier evaluated within the context of our proposed architecture:
SiamCDRLR, SiamCDRRF, and SiamCDRDNN, against the DeepDSC base-
line (see Methods section for details about each model). Table 1a and b

report the average Pcell@k for cell lines with trained-on and novel cancers,
respectively; Table 2a and b report the average Pcancer@k for cell lines with
trained-on and novel cancers, respectively. Tables 1 and 2 also report
Bonferroni-corrected significance levels with respect to differences in per-
formance relative to DeepDSC. Each SiamCDR model achieves improve-
ments over DeepDSC for all reported metrics in Tables 1 and 2. However,
the Bonferroni-corrected significance level of these improvements varies.

Fig. 1 | Model architectures. Depicts architectures
for components proposed by this work: a Siamese
neural network and b SiamCDR. For both, boxes
with bold borders and a grey face denote trained
components. The input pair in a is either a pair of
drugs or pair or cell lines depending on if drug or cell
line encoder is being trained. Dashed lines and box
borders in b indicate optional components by var-
iation. See respective sections in Methods for com-
plete details.

Table1 | Evaluatingmodel performancewith respect toPcell@k

a Trained-on cancer types

Model Pcell@1 Pcell@2 Pcell@3 Pcell@4 Pcell@5 Pcell@10

DeepDSC 0.7059 0.6000 0.5608 0.5392 0.5294 0.5031

SiamCDRLR 0.9519 *0.9368 *0.9194 **0.8829 **0.8641 ***0.8007

SiamCDRRF 0.9647 *0.9196 *0.8915 **0.8657 **0.8486 ***0.8185

SiamCDRDNN 0.9490 *0.9137 *0.8941 *0.8598 **0.8353 ***0.8405

b Novel cancer types

Model Pcell@1 Pcell@2 Pcell@3 Pcell@4 Pcell@5 Pcell@10

DeepDSC 0.7938 0.6846 0.6164 0.6023 0.5742 0.5463

SiamCDRLR *0.9508 0.9123 *0.9046 *0.8738 **0.8622 ***0.8059

SiamCDRRF **0.9569 *0.9123 0.8892 *0.8554 *0.8363 ***0.8090

SiamCDRDNN *0.9723 *0.9354 0.9036 *0.8792 **0.8591 ***0.8239

Significance levels (α � 0:1; 0:05; 0:01; indicated by *, **, ***, respectively) are determined from p-
valuesobtainedviaBonferroni correction (n = 4) of two-tailed t-tests comparing theperformancesof
SiamCDRLR, SiamCDRRF, and SiamCDRDNN against DeepDSC.

Table 2 | Evaluating model performance with respect to
Pcancer@k

a Trained-on cancer types

Model Pcancer@1 Pcancer@2 Pcancer@3 Pcancer@4 Pcancer@5

DeepDSC 0.7182 0.6083 0.5640 0.5397 0.5347

SiamCDRLR 0.9571 *0.9435 *0.9179 **0.8820 **0.8597

SiamCDRRF *0.9712 *0.9313 *0.8968 **0.8695 **0.8485

SiamCDRDNN 0.9503 *0.9225 *0.9012 *0.8674 **0.8436

b Novel cancer types

Model Pcancer@1 Pcancer@2 Pcancer@3 Pcancer@4 Pcancer@5

DeepDSC 0.8157 0.7155 0.6447 0.6174 0.5793

SiamCDRLR *0.9621 0.9283 *0.9267 *0.8821 **0.8504

SiamCDRRF *0.9616 *0.9311 0.8840 0.8585 *0.8367

SiamCDRDNN *0.9794 *0.9547 0.9237 *0.8817 **0.8591

Significance levels (α � 0:1; 0:05; 0:01; indicated by *, **, ***, respectively) are determined from p-
valuesobtainedviaBonferroni correction (n = 4) of two-tailed t-tests comparing theperformancesof
SiamCDRLR, SiamCDRRF, and SiamCDRDNN against DeepDSC. Precision@k for each cancer is
presented in Supplementary Table 6
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Note, we do not observe significant differences in the performance of the
three SiamCDR models. This indicates all three are equally proficient at
recommending effective drugs to target the cells of trained-on and novel
cancers.

In Table 1a, we observe no significant difference in performance
between the models for Pcell@1. However, for all other values of k, we
observe significant improvements in performance for all three SiamCDR
models compared to DeepDSC. Notably, the significance level increases
with k for all SiamCDRmodels. This indicates that, for trained-on cancers,
SiamCDR models prioritize a greater number of effective drugs at the very
top compared to DeepDSC, which suggests that SiamCDR is more robust
than DeepDSC with respect to quality of its prioritizations. Identical trends
are observed when performance is generalized to cancer type (Pcancer) in
Table 2a, apart from SiamCDRRF gaining significance at k ¼ 1.

Table 1b reports significant improvements in Pcell@1 compared to
DeepDSC for all SiamCDR models. However, SiamCDRLR loses its sig-
nificance for k ¼ 2, while both SiamCDRRF and SiamCDRDNN do not
achieve significant improvement for k ¼ 3.Whengeneralized to cancer type
(Pcancer) in Table 2b, we observe substantial jumps in performance for
DeepDSC, SiamCDRLR, and SiamCDRDNN. Conversely, SiamCDRRF

demonstratesmore stable performance, which combinedwith the improved
relative performance of DeepDSC, yields a loss of significance at k ¼ 4. This
suggests DeepDSC, SiamCDRLR, and SiamCDRDNN may all be more sen-
sitive to cell line outliers thanSiamCDRRF.Onepotential explanation is these
models have learned to identify broad-spectrum (or cancer-specific) anti-
cancer drugs. In this case, presenting cell lines with resistance to these drugs
would yield reduced performance. However, averaging Pcell by cancer type
would reduce the impact each outlier has, thereby raising performance. If
thiswere the case, thatwould indicate that SiamCDRRFhas a greater capacity
for producing tailored cell line predictions compared to the other models.

To test whether DeepDSC, SiamCDRLR, and SiamCDRDNN models
may, in fact, favor broad-spectrum anti-cancer drugs more compared to
SiamCDRRF, we visualize prediction trends for each drug-cell line pair. In
Fig. 2, we plot continuous effective scores (y-axis)—denoted as CES and
defined by Eq. (1)—against CDRs predicted by a) DeepDSC, b)
SiamCDRRF, c) SiamCDRLR, and d) SiamCDRDNN (x-axis). The binariza-
tion threshold for CDR labels is illustrated by horizontal, dashed lines. Pairs
above this line are highly effective (top-10% with respect to CDR). To
specifically assess drugs commonly predicted as effective, we filter the drugs
to include only those prioritized among the top-5 for at least three cell lines
by all fourmodels. Eachof the six identifieddrugs is highlightedwithdistinct
shapes and colors in Fig. 2. Note that to qualitatively examine the rela-
tionship between the predicted score and CES, the scale of the x-axis in
Fig. 2a has been adjusted; the range of predictions produced by DeepDSC
(0.068 to 0.259) is much smaller than the range of the SiamCDR models’
predictions (0.0 to 1.0).

We observe a positive association betweenCES andmodel predictions
for each model. Considering only the six highlighted drugs, DeepDSC and
SiamCDRRF (Fig. 2a and b) produce scores with large drug-wise variance,
suggesting their predictions are more informed by cell lines than either
SiamCDRLR or SiamCDRDNN. Conversely, in Fig. 2c and d, we observe that
SiamCDRLR and SiamCDRDNN’s predictions have small by-drug variance.
This indicates that both have learned to identify broad-spectrum anti-
cancer drugs.With respect to SiamCDRLR, it is likely that the relationship(s)
that determine(s) cell lines’ individual drug responses are too complex to
capture via logistic regression. Additionally, it is probable that there is
insufficient data to train all SiamCDRDNN’s parameters. This is supported
by SiamCDRDNN’s average training and validation loss curves, which sug-
gest the model quickly overfits the training data (Supplementary Figure 1).
As a result, both models have learned to identify broad-spectrum anti-
cancer drugs as a way of minimizing loss during training. SiamCDRRF’s
ensemble approach allows decision trees to capture nonlinear interactions
more effectively than LRs while being less prone to overfitting than DNNs,
allowing it to provide unique predictions for each drug-cell line pair. This is
supported by the average variance in SiamCDRLR’s, SiamCDRRF’s, and

SiamCDRDNN’s predicted scores for any drug with a predicted score above
0.5 for at least one cell line. SiamCDRRF achieves 5.11- and 2.72-times
greater variance in its predictions than SiamCDRLR and SiamCDRDNN,
respectively, indicating it may be a more suitable candidate for precision
medicine applications.

Identifying drug- and cell line-derived feature importance to
model predictions
We measure model feature importance (see Methods) to discern whether
SiamCDRRF’s tailored drug prioritizations result from a more balanced
influence of drug- and cell line- derived features compared to DeepDSC,
SiamCDRLR or SiamCDRDNN. In Fig. 3, we rank features by their impor-
tance to the predictions of a)DeepDSC, b) SiamCDRRF, c) SiamCDRLR, or
d) SiamCDRDNN. For each subplot, a maximum of the top-100, nonzero
features are depicted. Relative feature importance is conveyed by bar height,
and feature source—drug or cell line—is represented by color. The average
importance for each source is denoted by a horizontal line of the source’s
respective color.

In Fig. 3a, we observe that DeepDSC’s predictions are more heavily
influenced by cell lines than drugs with 90% of the top-10 features being cell
line-derived. Conversely, we find SiamCDRLR and SiamCDRDNN almost
exclusivelyprefer drug-derived features (Fig. 3c andd, respectively).Noneof
SiamCDRLR’s top-100 features are derived fromcell lines andSiamCDRDNN

preferreda single cell line-derived feature among its top-100 (46th).The lack
of cell line influence yields non-personalized drug prioritization and
explains the small by-drug variance in SiamCDRLR’s and SiamCDRDNN’s
predictions observed in Fig. 2c and d.

On the other hand, in Fig. 2b, we observe a balanced influence of both
drugs andcell linesonSiamCDRRF’s predictions: among the top-10 features,
four and six are drug- and cell line-derived, respectively. In addition, we
observe that the average relative feature importance for drugs and for cell
lines is more similar inmagnitude for SiamCDRRF than for any of the other
models. This balanced integration of drug and cell line information when
making predictions highlights SiamCDRRF’s practical utility over both
SiamCDRLR and SiamCDRDNN for precision medicine. Therefore, we
consider only SiamCDRRF for the remaining experiments.

Comparing the expressiveness of DeepDSC’s and SiamCDRRF’s
cell line representations
Both DeepDSC and SiamCDRRF conduct representation learning to pro-
duce cell line embeddings (eae and ec, respectively). However, ec is learned
via contrastive losswithin an SNN framework,making itmore likely to have
captured task-specific information than eae. This is important as increasing
the expressiveness of embeddings will enhance a model’s ability to distin-
guish cell lines of different cancer types. The autoencoder framework that
produces eae has been optimized for reconstruction, making it less likely to
have captured theoptimal information to predictCDR.To evaluatewhether
using ec may better segregate cell lines by cancer than eae, we visualize the
clustering of cell lines represented by DeepDSC’s eae (Fig. 4a) and
SiamCDRRF’s ec (Fig. 4b) with t-SNE plots. Only cancer types with more
than 15 cell lines are shown.

We also calculate ec and eae’s intra-group similarity and inter-group
separability, where groups are defined as cancers. Use of ec reduces intra-
cancer similarity by −8.85% compared to eae, with mean inter-group
similarities of 0.91 and 1.00. This indicates each cancer’s cell lines are not as
tightly clustered when using ec versus eae. Interestingly, a mean intra-group
similarity of 1.00 suggests eae may not be able to differentiate between cell
lines of the same cancer andmay consider them identical. In terms of inter-
cancer type separability, ec achieves a significant improvement of 77.03%
compared to eae (1.77 vs 1.00; p < 0.0001). Importantly, a separability score
of 1.0 conveys that cancers cannot be differentiated when using eae. The
inability of eae to discern cells of the same and different cancer(s) is sup-
ported by the lack of well-defined clusters in Fig. 4a.

Conversely, ec’s inter-cancer type separability implies that it can better
distinguishbetweencell lines ofdistinct cancers.This is supportedbyFig. 4b,
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which illustrates that SiamCDRRF’s ec separates into distinct clustering
structures. For example, all cell lines of lung cancer, leukemia, lymphoma,
myeloma, and skin cancer, respectively, exist in single, well-defined clusters
for their respective cancer type (circled with dotted lines). The distance of
these clusters relative to others corresponds to a limited overlap in tumor-
igenesis for these cancers. Other cancer types, including bone cancer,

sarcoma, brain cancer, and neuroblastoma, exist within well-defined clus-
ters that are geometrically close to other cancer clusters. This is highlighted
in cluster i in Fig. 4b (magnified in Fig. 4c). The proximity of brain cancer
and neuroblastoma is unsurprising given both involve tumorigenesis within
the nervous system. Likewise, the proximity of bone cancer and sarcoma is
expected as sarcomas often originate in bone tissue. Previous evidence also

Fig. 2 | Comparing effective score to model pre-
dictions. Plots the relationship between CES (con-
tinuous effective score) and scores predicted by
a DeepDSC, b SiamCDRRF, c SiamCDRLR, and
d SiamCDRDNN. Each point represents a drug-cell
line pair. Drug-cell line pairs containing drugs
recommended in the top-3 for at least 3 cell lines by
all 4 models are highlighted with distinct colors and
shapes (see legend). Note the scale of predicted score
in a is different than b, c. This was done to allow the
general trend to be visualized.
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demonstrates a close relationship between some forms of sarcoma and
neuroblastomas9. Cluster ii, magnified in Fig. 4d, represents another multi-
cancer grouping (breast cancer, rhabdoid, and kidney). The close proximity
of rhabdoid tumors andkidneycancers in the embedding spacecorresponds
to the fact that rhabdoid tuners oftenoriginate in the kidneys, indicating that
the embeddings accurately capture cancer relations10. Additionally, the
proximity between kidney and breast cancers may indicate that embedding
geometrymay even capture a cell line’s drivingmutation(s) (e.g., the risk for
both breast and kidney cancer is significantly elevated by PTEN
mutations11). Finally, we observe in cluster iiiof Fig. 4b (magnified in Fig. 4e)
that the embeddings of colorectal, gastric, bile, and pancreatic cancer cell
lines are in close geometric proximity to one another, which may loosely
represent gastrointestinal cancers. Each set of multi-cancer groupings fur-
ther demonstrates the capacity of SiamCDR’s framework to embed highly
nuanced relationships, thereby producing embeddings (ec) with high
expressiveness that are fine-tuned to predict CDR than DeepDSC’s
embeddings (eae).

Comparing the expressiveness of SiamCDRRF’s and DeepDSC’s
drug representations
The drug representations (ed) produced by SiamCDR’s framework should
also capture more task-specific information than the Morgan fingerprints
(f) employed by DeepDSC. This is because the fingerprints are generic,
sparse vectors produced from predefined heuristics. To assess the expres-
siveness of each representation scheme, we use t-SNE plots to visualize how
drugs are clustered when using either f (Fig. 4f) or ed (Fig. 4g). Only MOAs
withmore than 10 drugs present in the pretraining data are highlighted. The
included MOAs and their drug counts are reported in Supplementary
Table 8.

We also calculate intra-MOA similarity and inter-MOA separability
for both f and ed,finding that theuse of ed significantly improves intra-MOA
similarity and inter-MOA separability compared to f by 89.50% (0.77 and
0.40) and60.82%(1.92 and1.19), respectively.The significance level for each
is less than 0.0001. Interestingly, this improvement demonstrates that

preservingdrug relations basedon shared gene target captures rich semantic
information related to MOA. Moreover, the improvement in both metrics
garnered by ed indicates ed has higher expressiveness than f.

This is further illustrated by the t-SNE plots. We observe, in Fig. 4g,
multiple well-defined clusters corresponding to distinct MOAs. This con-
trasts with largely unsegregated MOAs in Fig. 4f. Interestingly, in Fig. 4g,
cluster iv (magnified in Fig. 4h) is comprisedof bothphosphatidylinositol-3-
kinase (PI3K) inhibitors and mammalian target of rapamycin (mTOR)
inhibitors and is highly separated from all other MOAs. Both PI3K and
mTOR belong to a signaling pathway that controls cell growth and
survival12. Because genes comprising these pathways may be closely linked,
the clustering of drugs by pathways may result from overlapping genetic
targets of drugs spanning these MOA.

Additionally, some MOAs, such as protein synthesis inhibitors (PSI),
do not segregate well and span multiple clusters. Protein synthesis repre-
sents a broad category modulated by many genes, which, like genetic
pathways,mayoverlapwithotherMOAs. For example, in cluster vof Fig. 4g,
we observe three PSIs near tubulin polymerization inhibitors (TPIs).
Cluster v is magnified in Fig. 4i. One such PSI, brefeldin-a (BFA), targets
ARF1, which controls protein secretion and coordinates tubulin
polymerization13,14. Thus, it is not unexpected to observe BFA closely
associated with TPIs. In another example, CUDC-907 (fimepinostat),
classified as a PI3K inhibitor, is found amongHDAC inhibitors in cluster vi
(magnified in Fig. 4j). HDACs facilitate histone modification, modulating
gene accessibility for transcription to control gene expression15. This
reclassification is supported by recent evidence investigating its dual-
inhibitory properties16. The work concluded that CUDC-907’s HDAC
inhibition elicits more significant changes to gene expression than those
driven by its PI3K inhibition. As such, the drug embeddings produced by
SiamCDRRF may improve MOA classifications, a conclusion supported by
the classification of embeddings produced by SiamCDRRF for novel drugs.
We embed two drugs, YM-201636 and BNC-105, which are missing gene
target data and were excluded from pretraining but have reported MOAs
(PI3K inhibitor and TPI). We find that both embeddings place the drugs

Fig. 3 | Scaled drug- and cell line-derived feature
importance for model predictions.Minmax scaled
feature importance (>0.01) for the top-100, non-
zero features is plotted in descending order along the
x-axis for aDeepDSC, b SiamCDRRF, c SiamCDRLR,
and d SiamCDRDNN. In each plot, the average
relative feature importance for both drug- and cell
line-derived features is plotted with horizonal lines.
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within the clusters of their respectiveMOAs (clusters v and vi, respectively).
Altogether, this evidence supports the use of our proposed framework for
learning biologically relevant drug representations.

Evaluating FDA-approved drug prioritizations
Because prioritization quality can be difficult to ascertain when evaluating
novel candidates, we first compare SiamCDRRF’s and DeepDSC’s ability to
prioritize FDA-approved drugs. If a model can highly prioritize known/
approved treatments, it is likely that other highly prioritized candidatesmay
also be effective. Specifically, we examine how highly eachmodel prioritizes
the subset of drugs FDA-approved to treat each cell line based on its cancer
type compared to all 369 drugs with at least one reported indication. We
leverage 805 unseen cell lines for which there was also at least one FDA-
approved drug among our data. We score all combinations of these drugs
and cell lines using bothDeepDSC and SiamCDRRF. For each cell line, both
its top-prioritized FDA-approved therapy and the average priority of its
FDA-approved drug(s) are presented in Supplementary Data 1. In Table 3,
we report by-cancer summaries of these results and include significance
levels comparing SiamCDRRF’s and DeepDSC’s mean and max prioritiza-
tions of FDA-approved treatments; SiamCDRRF achieves significant
improvements in the average and max prioritization for 40 and 35% of the
evaluated cancers, respectively. Despite not achieving improvements across
the majority of evaluated cancers, for 80% of cancers, SiamCDRRF’s top
prioritization is a unique FDA-approved drug. Conversely, DeepDSC
exhibits limited uniqueness among its top-prioritized drugs; for 50% of the
evaluated cancers either docetaxel or doxorubicin is DeepDSC’s top-
prioritized FDA-approved therapy. This implies DeepDSC has learned to
prioritize a few broad-spectrum anti-cancer drugs rather than personalized
candidates, which may be driven by an inability to discern individual cells

after they have been embedded as illustrated in Fig. 4a. This notion is further
supported by the standard deviation (std) in the priority of each cancer’s
top-prioritized FDA-approved therapies for each model. The mean std of
SiamCDRRF’s 24 top-prioritized drugs is 17.32, while for DeepDSC’s 13
drugs it is 1.36. This indicates that while DeepDSC’s predictions do vary by
cell line (Fig. 2a), the priority-order of drugs does not change. The variance
in by-cell line variance in score may indicate DeepDSC has learned to
identify cell lines that have fewer effective drugs. However, the lack of
individualized drug prioritization suggests that, like SiamCDRDNN,
DeepDSC may have overfit to the data.

CaseStudy 1 –Exploringdocetaxel prioritization inbreast cancer
To better understand what SiamCDRRF may be leveraging to tailor its
prioritizations, we explore SiamCDRRF’s prioritization of docetaxel for
breast cancer. This pair was chosen as it follows a bimodal distribution—
the model prioritizes docetaxel very highly for some breast cancers and
lowly for others. Wemeasure the correlation in expression for each of the
463 genes with SiamCDRRF’s prioritization of docetaxel across all breast
cancer cells to ascertain whether transcriptomic differences in breast
cancer cells have influenced docetaxel’s priority. In SupplementaryData 2,
we report 40 genes whose expression is significantly correlated (magni-
tude > 0.35; significance ≤ 0.1). We use STRING17 to perform network
analysis on the isolated genes and observe significant enrichment of the
PI3K-Akt (19 genes), MAPK (11 genes), and RAS (12 genes) signaling
pathways. This aligns with documented evidence of transcriptomic
changes inAktpathways inducing docetaxel resistance18–21.Moreover, this
suggests SiamCDRRF has learned to leverage signals associated with
transcriptomic modulation of CDR to tailor its predictions, making it a
valuable tool for precision oncology.

Fig. 4 | t-SNE plots for cell line and drug feature representations. t-SNE plots were
from the embeddings produced by both aDeepDSC’s autoencoder andb SiamCDR’s
cell line encoder for cancers with at least 15 cells. Each cancer is represented by a
distinct color/shape combination. In b, clusters of single cancer types are highlighted
with dotted, black lines; clusters discussed in the Results are highlighted and labeled
with distinct colored lines. Clusters i, ii, and iii in b are magnified in c, d, and
e, respectively. We also produce t-SNE plots for drugs with MOAs with at least 10
drugs in the pre-training data using either f 256-bitMorgan fingerprints (DeepDSC)

or g SiamCDRRF’s drug encoder embeddings. EachMOA is represented by a unique
color/shape combination. Clusters discussed in the Results section are highlighted in
g and labeled with distinct colored lines. Clusters iv, v, and vi in g are magnified in
h, i, and j, respectively. The axis scales for all plots have been adjusted to best fit the
data. PS protein synthesis, TOP topoisomerase, H2RA histamine receptor antago-
nist, TP tubulin polymerization, AR adrenergic receptor, COX cyclooxygenase, GR
glucocorticoid receptor, AK aurora kinase, -INH inhibitor, -A antagonist, -Ag
agonist.
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Casestudy2 –Examining repurposingcandidates fordifficult-to-
treat cancers
Lastly, after demonstrating high-performance and personalized prioritiza-
tions, we evaluate SiamCDRRF’s capacity to repurposing candidates for
cancer treatment. We consider four cancers: two trained-on (bladder, BC;
and head and neck, HNC) and two novel (gastric, GC; and prostate, PC).
Thesewere selected viaTable 3 fromthe subsetof cancerswith fewer than10
approved therapies and an average max priority for prioritized FDA-
approved therapies less than 30. Because SiamCDRRF consistently prior-
itizes FDA-approved therapies highly, the other highly prioritized candi-
dates may also be effective. Moreover, the limited number of approved
therapies implies these cancers are difficult to treat.

For each of these cancers’ cell lines, we obtain SiamCDRRF’s prior-
itizations across all 1119 drugs. Then, for each cancer, we examine the
literature for anti-cancer evidence associatedwith anydrug prioritizedmore

highly, on average, than the top-prioritizedFDA-approveddrug recorded in
Table 3. We present the drug candidates with positive evidence in Table 4.
MOAs, gene targets, and indications are obtained from the Broad Institute’s
drug repurposing hub22. The first row for each cancer in Table 4 is its top-
prioritized FDA-approved drug. For cancers whose highest prioritized
FDA-approved drug is above 50, only candidates prioritized among the top
50 are considered.

For BC, we found 13/45 (28.9%) drugs prioritized above its top-
prioritized FDA-approved drug, valrubicin, with anti-BC evidence. The
mean priority of the anti-BC candidates was 18.8 compared to valrubicin’s
mean priority of 70.6. Notably, dolastatin-10 (dol-10) (mean priority: 5.0)
was approved to treat BC after the LINCS andDRHdata were published. In
addition, there are several drugs with published in vivo anti-BC evidence.
Cabazitaxel was found to increase objective response in muscle-invasive
bladder cancer by over 2 times the current gold standard (26% to 57%)

Table 3 | DeepDSC and SiamCDRRF’s by-cancer prioritizations of FDA-approved drugs

Cancer Cell
line count

Drug count Mean priority Max priority Highest prioritized drug (%)

DSC CDR α DSC CDR α DSC CDR

Bladder 17 3 22.19 98.92 **** 5.65 20.71 **** doxorubicin
(100.0)

valrubicin
(64.7)

Breast 43 17 133.14 163.68 **** 2.00 2.72 **** docetaxel
(62.8)

gemcitabine
(100.0)

Cervical 18 1 10.00 104.94 **** 10.00 104.94 **** topotecan
(100.0)

topotecan
(100.0)

Colorectal 50 9 183.50 238.18 **** 10.98 16.1 **** irinotecan
(100.0)

SN-38
(100.0)

E/U 22 1 222.27 332.27 **** 227.27 332.27 **** MTX
(100.0)

MTX
(100.0)

Gastric 39 3 144.81 159.10 ** 2.13 25.54 **** docetaxel
(100.0)

docetaxel
(100.0)

HNC 37 2 168.86 33.27 **** 2.11 25.86 **** docetaxel
(100.0)

docetaxel
(86.5)

Kidney 33 7 84.71 204.76 **** 5.64 8.70 **** doxorubicin
(100.0)

temsirolimus
(84.8)

Leukemia 104 33 190.98 169.65 **** 5.62 4.47 **** doxorubicin
(100.0)

vincristine
(89.4)

Liver 9 1 118.33 290.11 **** 118.33 290.11 **** sorafenib
(100.0)

sorafenub
(100.0)

Lung 118 19 134.55 169.89 **** 2.00 2.58 **** docetaxel
(91.5)

gemcitabine
(99.2)

Lymphoma 83 12 176.66 103.43 **** 5.14 3.82 **** doxorubicin
(65.1)

romidepsin
(100.0)

Myeloma 30 9 143.19 73.22 **** 5.67 6.20 * doxorubicin
(100.0)

ixazomib
(90.0)

Neuroblastoma 29 1 271.28 67.10 **** 271.28 67.10 **** cytoxan
(100.0)

cytoxan
(100.0)

Ovarian 38 7 176.88 78.73 **** 2.79 2.71 paclitaxel
(100.0)

gemcitabine
(100.0)

Pancreatic 24 7 193.88 226.23 **** 21.96 2.54 **** everolimus
(100.0)

gemcitabine
(100.0)

Prostate 10 5 77.78 35.66 **** 2.40 2.80 docetaxel
(100.0)

cabazitaxel
(100.0)

Sarcoma 35 2 101.10 140.20 **** 58.97 30.86 **** vinblastine
(100.0)

vinblastine
(100.0)

Skin 51 6 235.68 174.33 **** 112.96 39.82 **** vindesine
(100.0)

dabrafenib
(100.0)

Thyroid 7 5 205.01 286.19 **** 89.53 204.73 **** lenvatinib
(100.0)

cinacalcet
(60.0)

Theaveragemeanandmaxpriority of indicateddrugsacross cell lineswith a given cancer (SupplementaryData 1) are presented.Boldedcancers indicate those forwhichSiamCDRRFachieveshighermean
prioritizations thanDeepDSC.Significance levels (α � 0:1; 0:05; 0:01; 0:001; indicatedby *, **, ***, and **** respectively) are determined fromp-valuesobtained froma two-tailed, independent t-test and
denote the significance of SiamCDRRF’s prioritizations (CDR) compared to DeepDSC’s prioritizations (DSC). (%) in highest prioritized drug indicates the % of cell lines prioritizing the listed drug highest
among their FDA-approved indications. Cancer and drug abbreviations – CC Colon/Colorectal, E/U Endometrial/Uterine, HNC Head and Neck,MTX methotrexate, Cytoxan cyclophosphamide.
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during a phase II clinical trial23. Oltipraz reduced bladder carcinogenesis by
detoxifying a bladder-specific carcinogen in mice24. In another mouse
model, GZD824 displayed activity against FGFR1-mutant BCs, which are
especially difficult to treat25. Gemcitabine and 10-hydroxycamptothecin
(HCPT), two drugs with demonstrated anti-BC activity, both becamemore
effective when administered in combination with triptolide26,27. Similarly,
SiamCDRRF also highly prioritized triptolide to treat both GC and PC:
in vitro, triptolide reportedly enhanced apoptotic activity of other anti-
cancer drugswhenused topretreatGCcells28 and inhibitedPCcell growth29.

For HNC, 8/44 (18.2%) with higher priority than the highest prior-
itized FDA-approved drug, docetaxel, have anti-HNC evidence. The mean
priority of these drugs was 31.9 compared to docetaxel’s priority of 85.1. In
clinical trials, poziotinib, litronesib, ninlaro, and temsirolimus each posi-
tively affected HNC progression30–33. Additionally, previously published
in vitro and in vivo studies present evidence of anti-HNC activity for YM-
155, BGT226, and SN-3834–36.

For GC, 17.8% of drugs (8/45) with higher priority than the highest
prioritized FDA-approved drug, docetaxel, have evidence of anti-GC
activity (mean priority of 12.8 and 79.4, respectively). Specifically, alvespi-
mycin, cabazitaxel, and exatecan-mesylate (ExM) each achieved positive
results in clinical trials37–39. Furthermore, three additional drugs, including
triptolide, exhibited positive, pre-clinical evidence: romidepsin and YM-
15540,41. Another highly prioritized drug, BGT226, lacks published evidence
exploring its anti-GC activity; however, one of its gene targets, PIK3CA, is a
common oncogene known to stimulate GC tumorigenesis. As such, further
investigation into this candidate is warranted.

Finally, for 43.8% of the drugs (8/16) with higher priority than caba-
zitaxel, PC’s top-prioritized FDA-approved drug have documented evi-
dence of anti-BC activity. The mean priority of these drugs is 8.4 compared
to cabazitaxel’s mean priority of 17.7. Notably, YM-155 was recently
approved to treat PC. Alvespimycin demonstrated the capacity to achieve
complete responses in patients with PC during phase I clinical trials39. One
in vitro study cited ExM as the most potent TOP-INH against PC cells.
HCPT, dol-10, and camptothecin each showcased positive pre-clinical
evidence as well42–44.

Discussion
Due to variable drug responses among patients with the same cancer type,
optimizing cancer treatment for each patient remains a challenge. Com-
putational methods have been proposed to predict CDR, but their perfor-
mance is limited by data availability and modeling strategies. To address
this,we propose SiamCDRRF,whichuses SNNs topretraindrug andcell line
encoders to produce embeddings with high expressiveness. SNNs excel in
scenarios with limited data availability as they focus on learning the (dis)
similarity between training instances, which enables fine-grained differ-
ences, relevant to predicting CDR, to be captured. SiamCDRRF uses an RF
model to predict CDR from the learned embeddings. Its balance of sim-
plicity, to prevent overfitting, with an ability to capture complex, non-linear
relationships, affords the model enhanced precision in its pan-cancer drug
prioritizations over LR and DNN classifiers.

Furthermore, we find SiamCDRRF achieves significant improvements
in performance compared to the current SOTA, DeepDSC. SiamCDRRF

also identifies FDA-approved therapies and recommends drug repurposing
candidates with reasonable success. Notably, via pathway analysis of genes
significantly correlated with SiamCDRRF’s drug prioritization, we find sig-
nificant enrichment of pathways known to induce resistance. This implies
the proposed model has learned to tailor its predictions based on tran-
scriptomic signals of drug resistance. Finally, we present 19 drug repur-
posing candidates for the treatment of either BC, HNC, GC, or PC. Eight of
these drugs are unique to an individual cancer, further demonstrating
SiamCDRRF’s tailored prioritization.

We also demonstrate in Supplementary Note 2 that SiamCDRRF

outperforms SubCDR3 despite the method’s inclusion of additional hard-
coded annotations, indicating that a data-driven, unsupervised approach to
learning embeddings is better suited andmore efficient at capturing relevantT
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task-specific patterns. Its ability to identify effective drug candidates with
high precision for both novel cell lines and cancer types sets SiamCDRRF

apart from previous SOTA methods. Moreover, the highly personalized
predictions obtained by SiamCDRRF as well as their interpretable nature
demonstrates SiamCDRRF’s viability as a tool with the potential to be
leveraged by clinicians to advance precision medicine’s standard of care for
all cancers.

Despite its extremely promising performance, SiamCDRRF, like other
deep learning models, would likely benefit from additional data. Drug
representations may be further enhanced by leveraging inhibition/activa-
tion information while pretraining Encd. As observed in Fig. 4d, by using
only gene target to determine drug similarity, agonists and antagonists are
grouped together in the embedding space. While outside the scope of the
currentwork, in the future, it would also beworthwhile to evaluate common
molecular representation techniques to ascertain the optimal method for
producing learned drug embeddings within our contrastive learning fra-
mework. Cell line representations may also be improved with the use of
additional omics types as each omics type possesses distinct information
that may further enhance the model’s predictive power. Finally, producing
pan-cancer drug recommendations is a difficult problem as drug sensitiv-
ities vary both within and across cancer types. Given that drug sensitivities
among cells of the same cancer are generally more similar than drug sen-
sitivities of cells of different cancer types, a mixture of experts may improve
SiamCDRRF’s recommendations by enabling each ‘expert’ model to focus
only on predicting drug sensitivities for cells grouped by cancer type.

Methods
Drug-cell line pairs
Cancer drug response (CDR) data were obtained from the Broad Institute
(PRISM Repurposing 19Q4’s secondary screen)31. In total, this data set
contains information on 701,004 drug-cell line pairs. Data were collected
from chemical-perturbation viability screens for serial dilutions of 1,448
small-molecule drugs against 480 cell lines. Dose-response curveswerefit to
the viability screens and used to predict drug response-related metrics. The
CDR was calculated from features of the dose-response curve via a custom
effective score that will be introduced by Eq. (1) (see “Effective score”). The
score was calculated fromAUC, lower limit, and IC50 values. As such, pairs
missing these values were excluded. As lower limit is the minimum cell
viability a drug can achieve, pairs with predicted lower limits < 0 were
excluded. Additionally, we excluded drug-cell line pairs with R2 < 0.7 to
ensure the dose-response curves were well fit to the data. We further pro-
cessed data by removing duplicate pairs with the following process: (1) in
accordance with PRISM documentation, we retained cell lines with the
MTS010 screen ID as these are higher quality screens; and (2) if none of the
pair’s duplicates were from the MTS010 screen, the duplicate with the
highest R2 was retained. We then removed (1) previously withdrawn drugs
and (2) cell lines matching any of the following criteria: (a) less than 1% of
the cell line’s screened drugs were highly effective (CES ≥ 7.2734; see
“Effective score”); (b) the cell line’s cancer typewasunknown; and (c) the cell
line’s RNA-seq was unavailable (see “Cell line gene expression”). These
criteria ensure that, for each cell line, a minimum number of effective drugs
were observed to learn to predict CDR and that any drug identified as high-
priority candidates would be actionable. After removing pairs with missing
or low-quality data, we were left with 67,838 drug-cell line pairs from 1,105
drugs and 419 cell lines. Drugs and cell lines are initially represented as 256-
bit Morgan fingerprints (radius = 3)5,45 and RNA expression of a subset of
cancer genes (see “Cell line gene expression”) and are denoted by vectors f
and g, respectively.

Effective score
IC50, or the half-maximal inhibitory concentration, represents the con-
centration of a drug needed to reach 50% cell viability and partially conveys
drug effectiveness. However, this measure only evaluates drug potency,
completely ignoring both drug efficacy and the minimum viability a drug
canachieve. Twodrugswith similar IC50would be considered similar even if

one reached 5% viability and the other, 49%. To better balance potency and
efficacy, we propose a custom effective score (CES):

CES ¼ log
AUCþ lower limitþ IC50

2×AUC × lower limit× IC50

� �
: ð1Þ

AUC for dose-dependent curves conveys a drug’s cumulative effect
across treatment concentrations by incorporating both potency and effec-
tiveness. Specifically, lowerAUCvalues indicate higher cellular sensitivity to
treatment, even at low concentrations. The lower limit is the minimum
possible viability a drug can elicit. Including this term will give greater
importance to drugs that aremore likely to completely eradicate all cells of a
cancer. The score is binarized—threshold ≈7:27 μþ 1:28σ

� �
—such that

those with effective scores in the top 10% are labeled 1 and 0 otherwise.
Using these labels allows models to be trained to identify only the most
effective drugs for each cell line.

Cell line gene expression
We produce cell line representations by leveraging gene expression data
obtained from the Broad Institute’s Cancer Cell Line Encyclopedia (CCLE)
data set (version:DepMapPublic 22Q2)46.Gene expressionwas leveraged as
it is both information-rich and the most widely available of any omics data
type,making ourmodel and its predictionsmore accessible. The expression
of 18,964 protein-coding genes was measured across 1406 cell lines (473 of
which were evaluated for their CDR; see “Drug-cell line pairs”). Using
KEGG’s documentedcancer pathways47–49, we considered the expression for
only 463 cancer-related genes (Supplementary Note 1). We excluded any
remaining cell lines, not evaluated for CDR data if 1) their cancer types had
fewer than 10 cell lineswith expressiondata or 2) their listed cancer typewas
either ‘Unknown’ or ‘Noncancerous’. This yielded 864 cell lines, which we
used to pretrain DeepDSC’s autoencoder4 and SiamCDR’s cell line Siamese
neural network (SNN) (see “Learning cell line and drug representations”).
The distribution of cancers among the pretraining data is presented in
Supplementary Table 1a.

The 419 cells lines with CDR data were used for model training, vali-
dation, and testing.Cancers evaluatedon fewer than15cell lineshadall their
cell lines (67) reserved as a test set; we denote this subset of the data: novel.
These were withheld to facilitate an evaluation of model generalizability on
cancer types unseen during training. Supplementary Table 1b reports the
distribution of cell lines by cancer among the novel cancer test set. The
remaining cell lines underwent random training/test splitting. To preserve
the distributionof cancer across each split, randomsamplingwas conducted
by cancer. Specifically, 15% of the cell lines from each cancer were reserved
for testing model generalizability on cell lines with cancer types observed
during training. This subset is denoted trained-on cancers. The remaining
cell lines were randomly assigned to one of five folds, stratified by cancer
type, to be used for 5-fold cross-validation. The distribution of cell lines by
cancer in the training folds and trained-on test set is reported in Supple-
mentary Table 1c.

Baseline method
We evaluate our proposed framework by comparing the performance of
models trained from it against a SOTA method: DeepDSC4. We select this
method for its goodperformance relative toother publishedmethods and its
use of both gene expression and drugs as input. As such, improvements in
performance garneredbymodels producedbyourproposed frameworkwill
not be due to different data used. We do not compare against RefDNN,
despite its use of transcriptomics, as it requires a reference drug set forwhich
the response is known for all cell lines. There are no drugs for which this is
the case in our CDR data set, nor in real applications is this likely to be the
case. Other models such as DeepCDR50, and DeepDR51 may achieve com-
parable performance to DeepDSC; however, these also utilize multi-omics
data sets. Doing so provides the models with additional information about
cell lines that is unavailable when using a single omics data type. This
precludes fair comparison of methods as it becomes impossible to ascertain
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whether differences in performance arise from methodological differences
or the use of distinct information.

Overview of SiamCDR framework
Fig. 1a highlights the distinct components comprising the proposed
SiamCDR framework. Solid boxes are consistent across each variation of the
framework, while boxes with dashed borders represent aspects evaluated
during hyperparameter tuning. Drug-cell line pairs are input to the fra-
mework. Each drug is initially represented by a vector f; each cell line is
represented by a vector g. Depending on themodel, one or both of the drugs
and cell lines are projected to an embedding space using a DNN encoder
(Enc) pretrained by a Siamese neural network (SNN) (see “Learning cell line
anddrug representations” andFig. 1b).WedenoteEncd andEncc as thedrug
and cell line encoders, respectively, withEncd andEncc projecting f to ed and
g to ec, respectively. Here, ed and ec are vectors that represent drug and cell
line embeddings, respectively. Embedding drugs and cell lines in this way
enhances the framework’s ability to capture themost salient information for
CDR predictions, imparting higher expressiveness to the embeddings
produced. Drug and cell line representations are then combined and input
to an end classifier (see “SiamCDR’s end classifier”) which is used to predict
the relative CDR for each drug-cell line pair.

Learning cell line and drug representations
Our proposed SiamCDR framework leverages a SNN6 to pretrain Encd and
Encc to encode drugs or cell lines via contrastive learning, respectively. The
SNNstructure is illustrated inFig. 1b.During training, anEncwill be applied
to a pair of inputs, producing an embedding for each.Note theEnc’sweights
are shared when embedding each input. The SNN then applies a sigmoid
activation function to the Euclidean distance between the embeddings,
producing a probability that the inputs are from different groups. Ground-
truth labels indicate if the inputs are from different groups (1) or the same
group (0). Binary cross entropy loss is optimized such that Enc preserves
intra- and inter-group similarity relationships within the embedding space.
By doing this, members of the same group are mapped close together and
those of different groups are mapped further apart, allowing us to explicitly
capture task-specific information.

For our context, we employ nearly identical training structures when
pretrainingEncd andEncc to embeddrugs andcell lines.Theonlydifferences
are the input and how the ground-truth labels are determined. Drugs are
grouped by their gene targets; cell lines are grouped by cancer types. Encd,
which produce ed, is pretrained on the subset of drugs in the drug-cell line
pair data with at least one reported gene target. Encc, which produce ec, is
pretrainedon864 cells not evaluated forCDR.Hyperparameterswere tuned
via an exhaustive search; the best hyperparameters for both Encd and Encc
are indicated in Supplementary Table 2.

Note that the quality of embeddings produced using the SNN frame-
work was evaluated against those produced using momentum contrastive
learning52. We found that, for our context, SNNs produced embeddings
with 5-times greater separation while retaining comparable cohesion. The
complete comparison is presented in Supplementary Note 3.

SiamCDR’s end classifiers
Weevaluate the following classifiers:DNN, logistic regression (LR), random
forest (RF). DNNs are extremely popular because of their flexibility and
capacity to learn complex, nonlinear patterns.However, this capacity comes
at the cost of many learnable parameters, increasing the risk of overfitting
when training data is limited. On the other hand, LR models are simple
models that make predictions based on linear combinations of features.
Thus, while they benefit fromhaving fewer trainable parameters thanDNN,
making them less prone to overfitting, they fail to capture non-linear pat-
terns. Finally, RF models are ensemble methods comprised of multiple
decision trees with each tree trained on a bootstrap-sampled subset of the
training data. Its ensemble nature, which relies on consensus among trees,
provides greater stability to predictions. Furthermore, the risk of overfitting
can be mitigated by controlling tree depth and the minimum number of

observations in each split. The complexity of the entire RF model is limited
—compared to DNNs—by the simplicity of individual trees. However, by
making a series of nested, linear decision boundaries, these trees can capture
more complex relationships than LR models. Hyperparameter tuning
options forRF andDNNclassifiers are reported in SupplementaryTables 3a
and b, respectively.

Model training
Each DL method (Encd, Encc, and SiamCDRDNN) was trained using an
ADAM optimizer. Additionally, to mitigate the risk of overfitting we
implement dropout and early stopping. The learning rate is also exponen-
tially decayed during training. The specific hyperparameters used to train
Encd, Encc, and SiamCDRDNN are reported in Supplementary
Tables 2b and 3b. To improve SiamCDRRF’s ability to generalize during
inference, we evaluated the number of estimators and the minimum sam-
ples required for splits (Supplementary Table 3a).

Model selection
We evaluate the performance of all combinations of the overall framework
discussed above. This includes each combination of drug (f or ed) and cell
line (g or ec) embeddings. End classifiers are applied to the concatenated
drug-cell line pairs. From the results presented in Supplementary
Tables 4 and 5, we select the top-performing architecture for each end
classifier with respect to Pcell@k and Pcancer@k for trained-on cancers. The
best model for the DNN, RF, and LR end classifiers is denoted
SiamCDRDNN, SiamCDRRF, andSiamCDRLR, respectively.All threemodels
leverage learned cell line representation (ec). SiamCDRRF represents drugs
with learned embeddings (ed), while SiamCDRDNN and SiamCDRLR obtain
their best performance when using Morgan fingerprints (f).

Evaluation metrics
We evaluate model performance via precision@k for both cell lines and
cancers (Eqs. (2) and (3), respectively), which measures the proportion of
highly effective drugs among amodel’s top-k prioritized drugs. Eachmetric
provides a different level of granularity with which to evaluate the precision
of model prioritizations. Specifically, Pcell@k reports the average pre-
cision@k across all cell lines; Pcancer@k reduces the impact of outliers by
mean pooling Pcell@k for each cancer type. For each model, we obtain each
cell line’s prioritization order by sorting drug candidates by their predicted
CDR scores in descending order. The predicted score conveys the prob-
ability that a drug is effective against the given cell line. The closer a drug’s
score is to 1, the more likely a model believes the drug to be effective. Drugs
prioritized near the top are considered more promising candidates for a
given cell line than lower-prioritized drugs.

Pcell@kðiÞ ¼ DiðkÞ \ Ei

DiðkÞ
: ð2Þ

Pcancer@kðjÞ ¼
PNj

i¼1 Pcell@kðiÞ
Nj

: ð3Þ

In Eq. (2),DiðkÞ is the set of top-k prioritized drugs for the i th cell line
and Ei is the set of all effective drugs for that cell line. In Eq. (3),Nj is the set
of cell lines of the j th cancer. In both cases, higher Pcell@k and Pcancer@k
scores indicate a model is better able to prioritize effective drugs at the
very top.

Statistical analysis
Significance of the performance of top-3 best SiamCDR models
(SiamCDRLR, SiamCDRRF, and SiamCDRDNN) compared to the DeepDSC
baseline across 5-fold cross-validation was obtained via Bonferroni
multiple-hypothesis corrected, pairwise, two-tailed, independent t-tests.
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Feature importance
Wemeasure feature importance to discern their individual contributions to
model predictions. Higher importance reflects greater contribution. In our
context, we anticipate high-performance models to leverage both drug and
cell line information when making predictions, ranking features derived
from both drugs and cell lines highly with respect to their importance.
Random forest models (e.g., SiamCDRRF) provide feature importance as a
native attribute. For DNNs (e.g., SiamCDRDNN or DeepDSC), we estimate
individual feature importance as the mean magnitude of SHAP53 values
calculated across 5000 randomly sampled training examples. Finally, we
estimate feature importance for logistic regression classifiers (e.g.,
SiamCDRLR) by the magnitude of their coefficients. However, we first
evaluate coefficient stability as unstable coefficients serve as poor indicators
of feature importance. Coefficient stability reflects consistency in model
feature preferences and can be assessed by measuring the variance in coef-
ficients obtained across multiple training folds. High stability is indicated by
a small variance relative to the average magnitude of coefficients and vice
versa. We find the mean-variance of SiamCDRLR’s coefficients to be two
orders of magnitude smaller than the mean value of SiamCDRLR’s coeffi-
cients (7.99 ×10−3 and 0.38, respectively), suggesting that SiamCDRLR’s
coefficients can be reliably used to estimate feature importance.

Clustering
We use the t-SNE method54 (Euclidean distance and perplexity = 30) to
project the drug and cell line embedding spaces into two-dimensional
spaces. This facilitates a qualitative evaluation of the expressiveness of
embeddings used by DeepDSC and SiamCDRRF. Proximity within the
projected spaces is positively associatedwith embedding similarity. As such,
we expect embeddings with high expressiveness to produce well-defined
clusters comprised of drugs or cell lines of the same (or similar) MOA or
cancer, respectively.

Embedding expressiveness
We assess the expressiveness of our learned drug and cell line representa-
tions using intra-group similarity and inter-group separability. Groups are
defined as MOAs for drugs and cancer types for cell lines. In other words,
these metrics evaluate how well drug representations cluster by MOA and
how well cell line representations cluster by cancer type. We define intra-
group similarity as the average pairwise cosine similarity between all
members of a group and inter-group similarity as the average pairwise
cosine similarities of each group member to all non-group members. Both
range from−1 to 1 with more positive values denoting increased similarity
andmore negative values associated with increased dissimilarity. We gauge
the distinctiveness of a group’s cluster from those of other groups via the
ratio between its intra- and inter-group similarity, which we denote ‘inter-
group separability’. Higher inter-group separability indicates higher degrees
of separation between groups. In our context, embeddings with high
expressiveness should be capable of discerning drugs of differentMOAs and
cell lines of different cancer types. As such, they will, ideally, attain high
values with respect to both metrics.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All of the data used in this work is open source and can be freely obtained
from the Broad Institute. Both the processed CCLE46 gene expression data
(CCLE_expression.csv) and the cell linemeta data (sample_info.csv) can be
accessed through the DepMap portal (https://www.depmap.org; version:
DepMap22Q2 Public). The CDR data (filename: secondary-screen-repli-
cate-collapsed-logfold-change.csv) is also available through the DepMap
portal (version: PRISM Repurposing 19Q4). The code used to process the
data is freely available on GitHub (See Code availability).

Code availability
All of the code and instructions to replicate our work is freely available here:
https://github.com/ninglab/SiamCDR. Additionally, the source and ver-
sions of our work’s primary software, hardware, and data dependencies are
presented in Supplementary Table 9.
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