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Multiomics integration reveals NETosis
heterogeneity and TLR2 as a prognostic
biomarker in pancreatic cancer
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Yifan Fu 1,2,6, Jinxin Tao 1,6, Yani Gu1,3, Yueze Liu1, Jiangdong Qiu1, Dan Su1, Ruobing Wang1,
Wenhao Luo1, Tao Liu1, Feifan Zhang4, Taiping Zhang1,5,7 & Yupei Zhao 1,7

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor
prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex
heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell
population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics
approaches, we included both published datasets and our in-house patient cohorts, elucidating the
inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the
correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics
prognosticmodel that suggested the patients exhibiting downregulated expression of NETsmayhave
an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low
TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting
TLR2might be a promising strategy to reverse immunosuppression and control tumor progression for
an improved prognosis.

Pancreatic ductal adenocarcinoma (PDAC) represents a principal con-
tributor to cancer-associated mortality, with a mere 10% of patients
demonstrating survival at a five-year interval post-diagnosis1. Primary
surgical resection is feasible in less than 20% of patients, while the majority
manifest with advanced, non-resectable disease2,3. Intriguingly, even among
patients deemed suitable for surgical intervention and subjected to neoad-
juvant therapy, an estimated 75% will encounter recurrence within a
biennial timeframe, with a near 20% five-year overall survival rate4,5. The
implementation of immune therapeutic strategies has been largely futile due
to the immunologically “cold” tumor microenvironment (TME) char-
acterized by significant myeloid cell infiltration and impeded T cell
activation6.

Neutrophils, as a dominant constituent of myeloid cells and one of
the most abundant immune effector cells of the human immune system,
garnered increasing amounts of interest over recent years7–10. These cells
demonstrate considerable plasticity, possessing the ability to adapt to

shifts within the tumor immune microenvironment (TIME) via
mechanisms such as phagocytosis, degranulation, and the formation of
neutrophil extracellular traps (NETs), thereby establishing a reciprocal
regulation9–11. Diverse stimuli can induce the release of NETs via a
unique cell death process known as NETosis, which is distinct from both
necrosis and apoptosis yet closely linked to autophagy9,12,13. Unlike most
types of tumors, pancreatic cancer necessitates autophagy for tumor
growth, and the inhibition of autophagy leads to an increase in reactive
oxygen species (ROS) stress and mitochondrial oxidative phosphor-
ylation, which subsequently results in significant tumor regression and
improved survival outcomes14. Various stimuli mediated by ROS can
regulatemultiple cytotoxicmechanisms in neutrophils, such asNETosis,
autophagy, and ferroptosis15–17. These mechanisms exerted by neu-
trophils are significant contributors to the immunosuppressive phe-
nomena observed within the TIME, subsequently impacting the
prognosis of patients with pancreatic cancer. Simultaneously, in the
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TIME of pancreatic cancer, the interactions among neutrophils, mac-
rophages, and T cells also play a significant role in immune suppression.
However, the research on this mechanism, particularly the immune
suppression induced by neutrophils, remains unclear and necessitates
further investigation. Previous studies have demonstrated the impor-
tance of neutrophil infiltration in the PDAC TME, however, most of
them were incapable of inspecting neutrophils at single cell level due to
high sensitivity and vulnerability when sampling and sequencing18.
Moreover, neutrophil subtypes were not clearly identified except for
specific pro-inflammatory phenotypes, and only a few targets including
IL17, TIMP1 were characterized to illuminate the relationship between
NETosis and PDAC considering a lot of genes were advanced involving
NETosis18–21.

Here, we retrieved from published literature and in-house patients,
generating three cohorts to explore the heterogeneity of NETosis in the
PDACmicroenvironment. These cohortswere used to validate the clinical
relevance of newly discoveredNET subtypes and to integratemulti-omics
datasets, respectively (Fig. 1a). We conducted a comparative analysis of
the heterogeneity between different subtypes of NET positive and NET
negative neutrophils in terms of reprogramming metabolism, tumor
clearance, and immune suppression. We particularly focused on the
heterogeneity of TIME suppression by NETosis activation, and how they
are influenced by ROS levels. Moreover, we constructed three distinct
NET subtype signatures based on their expression profiles and built a
prognosticmodel, whichwas validated across all cohorts. Additionally,we
identified individual genes from the signatures as potential robust prog-
nostic targets, demonstrating equivalent prognostic power in the PDAC,
and confirmed the association of key targets with clinical prognosis and
immune suppression in our in-house cohort through immuno-
fluorescence (IF) staining and quantitative real-time polymerase chain
reaction (RT-qPCR) verification.

Results
Single-cell RNA seq characterizes the heterogeneity of NETosis
in PDAC Neutrophils
Based on the cohort described in the method section, the first discovery
cohort was utilized to comprehensively catalog the populations of each cell
type. After pre-processing and correcting the batch effect, 103, 116 cells
passed quality control and were used for the downstream analysis (Sup-
plementary Fig. 1a). A total of 13 cell typeswere identified according towell-
known cell type marker genes from previous studies22,23 (Fig. 1b).

To inspect the heterogeneity of NETosis in PDAC neutrophils, a
neutrophil gene signature consisting of 69 genes was generated and
divided into two parts: neutrophil activation and NETosis. Given that
NETs underlie the pro-cancer effects withinmost cancers, we first asked
whether NET signature can distinguish tumor samples from healthy
control in PDAC. The NET signature enrichment score was calculated
in the tumor and healthy group and showed an obvious difference,
which was in accordance with existing results21. However, when we
explored the tendency inner the NET signature, we surprisingly found
most genes had the same regulated trends with the NET signature,
however some single genes were inversely downregulated in tumor
groups (Fig. 1c). It suggested the potential of distinct functions or
heterogeneity during NETosis.

To retrieve neutrophils from the primary dataset, a total of 2, 624
tumor neutrophils were extracted from 39 patients to further investigate.
After correcting the batch effect, these cells were confirmed to be distributed
across all 39 patients with reasonable heterogeneity from each dataset
(Supplementary Fig. 1b). NMF and unsupervised clustering algorithmwere
utilized to identify 7 sub populations of neutrophils based on the NET
signature and take the most significantly different genes as the representa-
tive of NET positive subtypes (PDE4B, IL1B and TLR2), while the others
were defined as NET negative neutrophils (Fig. 1d, Supplementary
Fig. 1c and 1d). In addition, the NET score was calculated in the tumor and
control group, and the tumor group exhibited a higher NET score

(Supplementary Fig. 1e). To identify the expression profile of these NET
positive subtypes, three signatures were generated and can similarly dis-
tinguish the tumor from the control group (Fig. 1d). Wang et al. 18 repre-
sented a criterion that clustered neutrophils, andwe aligned ourNET-based
subtypes with their signatures (Supplementary Fig. 1f). We found
NET_PDE4B+ neutrophils were similar to a combination of TAN-2 and
TAN-3 from Wang et al., while other neutrophils didn’t exhibit paired
expression patterns, which might be affected by neutrophil capture process
and tumor heterogeneity.

The activation of Neutrophil exhibits metabolic and gene repro-
gramming specificity
Copious cell surface receptors have been shown to activate NETosis9. To
explore whether the heterogeneity of NET positive subtypes was formed by
distinct activation pathways inducing NETosis, we observed the relative
expression of different pathway activated receptors, involving SELPLG
(P-selectin), HMGB1 (platelets), TLR2 (bacteria), FCGR3B (immune
complex). Simultaneously, several pertinent genes related to NETosis were
measured including CLEC7A (ductin-1), and CYBB (NOX2) (Fig. 2a).
Besides the upregulated of CYBB in NET_Neg neutrophils, it also showed
significantly different expression patterns among different NET positive
subtypes, suggesting heterogenous NETosis induced conditions.

Of note, NADPH oxidase gene CYBB, a critical origin of ROS, was
detected upregulated in NET negative neutrophils (Fig. 2a). Relative
lower ROS stress with a significant difference was observed in NET
positive subtypes. In consideration of the ROS stress induced switch of
autophagy24 and ferroptosis17, we next asked whether there ROS stress
difference between different subtypes of neutrophils.We found the ROS
pathway activation of NET negative neutrophils was significantly higher
than other NET positive subtypes and we also observed higher ROS
levels in NET negative PDAC patients (Figs. 2b, 2c and Supplementary
Fig. 2a).

To explore the potential regulated mechanism, transcript factors (TF)
analysis was executed and revealed the different regulation target genes
between NET positive neutrophils and NET_Neg neutrophils. Neutrophils
in the NET positive subtype exhibited higher regulatory activity in
inflammatory and cell proliferation pathways, including EGR3, CHD2,
TGIF2, FOXO3, STAT5A and NFAT5 (Fig. 2d). It suggested an intrinsic
regulatory difference between NET positive and NET negative neutrophils.
We alsowonderedwhether representative geneswere vital connective in the
gene regulatory network, and their co-regulated TFs were selected to con-
struct theNETosis related gene regulatory network (Fig. 2e).We confirmed
that most NETosis genes with the ability to distinct tumor and normal
groups were jointly regulated by several TFs including REL, NFKB1, FOS,
BCL3, CREM, CEBPB, HIVEP2 and ETS2. It is worth mentioning that
representative genes were located very central to the NETosis related gene
regulatory network, which provided confidence to take these genes to
downstream analysis. Meanwhile, we found the activity of hypoxia, glyco-
lysis and oxidative phosphorylation was upregulated, which indicated a
ROS-related metabolic reprogramming in NET positive neutrophils (Sup-
plementary Fig. 2b, 2d).

Next, the higher ROS score in NET_Neg neutrophil suggests the
high-level ROS would lead to inhibition of autophagy rather than
NETosis. Through IF staining and live-cell ROS and NETosis fluores-
cence detection, we found significantly downregulated autophagy in
NET negative neutrophils, which had higher ROS levels than NET
positive neutrophils (Fig. 2b, c, f).

To explain the potential regulatory mechanism of autophagy, we
evaluated the activity of the mTOR pathway, which is widely reported to
inhibit autophagy25,26. The high activity of mTORprovided evidence for the
inhibition of autophagy in NET_Neg neutrophils (Fig. 2g, Supplementary
Fig. 2c). At the same time, we also found the upregulated of TNF-α via NF-
κB and inflammatory response pathway in NET positive neutrophils, sug-
gesting the different anti-tumor mechanism caused by NETosis (Supple-
mentary Fig. 2b).
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Fig. 1 | Single-cell transcriptomic analysis in PDAC discovery cohort. a Overall
design and workflow of experiment in this study; b UMAP reduced plot char-
acterizing the integrated cell map, consisting of 13 annotated cell types together with
representative marker genes; c The regulation of genes of NET signature in tumor

samples. The dotted dashed line indicated p = 0.01; dNMF reduction of neutrophils.
Three subtypes defined by NET signature were highlighted and the expression of
their representative genes (IL1B, PDE4B, and TLR2) was shown on the right side.
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NET induced immune suppressed by inactive interaction with
macrophage and T cell exhaustion
Given that immune suppression was partly induced by remodeling of
TME27, we further investigate the heterogeneity of interaction betweenNET

subtypes and macrophage. The interaction between macrophage and NET
negative neutrophils was significantly active compared with NET positive
subtypes (Supplementary Fig. 3a). To provide more evidence for the
interaction betweenneutrophils andmacrophages, we applied IF staining in

Fig. 2 | Characterization of gene and metabolic reprogramming of different
neutrophil subtypes. aDot plot exhibits the relative expression of the representative
NETosis activation genes and keymetabolic genes; bEvaluation of ROS level and the
activity of autophagy in PDAC patients; cMeasuring the ROS level in NET positive
and negative neutrophils, red color for ROS level and green for NETosis; d TFs
regulatory activity of different neutrophil subtypes; e NETosis related gene

regulatory network reveals the vital co-regulated TFs (marked by dark red) and their
target NETosis related genes (marked by the p-value of different between the tumor
group and normal group); f The scatter plot shows the percentage of LC3B+ MPO+

neutrophils (NET positive neutrophils in autophagy) and LC3B+MPO- neutrophils
(NET negative neutrophils in autophagy) in PDAC tumor tissues; g PI3K-AKT-
mTOR pathway activity observed higher in NET_Neg neutrophils.
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PDAC tissues, and identified the distance between NET positive neu-
trophils/ NET negative neutrophils and macrophages (Fig. 3a, b). The dis-
tance was indicated and calculated to count the neutrophils within 20um
and 40um from CD68+ macrophages (Fig. 3b, c). It was confirmed that
macrophages were surrounded by a greater number of NET negative

neutrophils thanNETpositive neutrophils (Fig. 3d, Supplementary Fig. 3b),
and it’s consistent with the result from transcriptome data.

To discover which signals predominately cause the inactive in NET
positive subtypes and askwhether therewasheterogeneity betweendifferent
positive subtypes, we visualized outgoing and incoming signal pathways
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(Supplementary Fig. 3c). Compared to NET negative neutrophils, NET
positive neutrophils were downregulated in several antigen-processing
pathways such asMIF, CCL andMHC-II, while the relative strength of IL1,
ICAM, CCL, CXCL and PECAM1 were inversely upregulated, (Fig. 3e,
Supplementary Fig. 3c and 3d).

Moreover, we surprisingly found the expression pattern of NET_P-
DE4B+ neutrophils and NET_IL1B+ neutrophils were similar, so it was
reasonable to investigate whether there existed a potential development
sequence of NET positive neutrophils (Fig. 3e). Hence, we constructed
pseudotrajectory and excitingly found the two lineages of NET (Supple-
mentary Fig. 3e). The pseudotrajectory showed the first lineage generated
from NET negative to NET_TLR2+, and another lineage was from NET
negative to NET_PDE4B+ and terminally ended with NET_IL1B+.
Meanwhile, we examined the correlation among IL1B, TLR2, and PDE4B
expression patterns. Consistent with our hypothesis, only IL1B and PDE4B
showed significant correlation while others didn’t (Supplementary Fig. 3f),
which provided confidence to define the isogeneity of NET_IL1B+ and
NET_PDE4B+ neutrophils.

Moreover, it is alsowidely acknowledged that the dysfunction of T cells
in PDAC TME contributed to immune suppression. So, the subsequent T
cell activationwas investigated independently. The correlationbetweenNET
signature scores, marker gene expression and T cell exhaustion scores was
testedwith the linearmodel in the validationcohorts (Fig. 3f).TheNETscore
showed a significantly positive correlation with T cell terminal exhaust,
suggesting a T cell dysfunction immune suppressed microenvironment.

To further validate the correlation between NETosis with T cell
exhaustion, we investigated the correlation between T cell exhaustion and
NET signatures in vitro. The expression of IL1B and TLR2 was inspected
with T cell exhaustion score in the same linear models. The correlation
between TLR2 and T cell exhaustion score was significantly higher than
IL1B (Fig. 3h). Hence, TLR2 was selected to observe potential immuno-
suppression in clinical patients. All tumor samples from the in-house cohort
were included, where the expression levels of TLR2 and genes related to T
cell exhaustion were measured. It was found that TLR2 is significantly
positively correlated with almost all genes associated with T cell exhaustion
as well as T cell exhaustion score (Fig. 3h, i).

Multi-omics prognostic model based on NET signature
To further analyze whether NET signatures were associated with clinical
outcomes in PDAC, validation cohorts were included to test the power of
prognosis. First, the RNA-seq expression matrix of the cohort from Cao
et al. was inspected. Thrillingly, theNET signature cannot act as an efficient
prognosis indicator, while the separated NET signatures of NET_PDE4B+
were determined as independent indicators for overall survival and the
NET_IL1B+, NET_TLR2+ signatures showed a potential trend despite not
reaching the threshold (p = 0.078) (Fig. 4a). The same result was observed in
the TCGA-PAAD cohort that the NET score is not an efficacy prognosis
feature with P-Value = 0.245. It provided evidence that the whole NET
signature, or all NET related genes, might not exerted a consistent effect to
predict clinical outcomes.

Fig. 3 | Heterogeneities of TME including neutrophil-macrophage interaction
and neutrophil induced T cell exhaustion. a Representative multi-color staining
showing CD66b (red, neutrophil marker), CD68 (purple, macrophage marker),
LC3B (light blue, autophagy marker), MPO (green, NETosis marker), and DAPI
(blue, nucleic acid dye) in PDAC tumor tissues, scale bar = 100 µm; b StrataQuest
software recognizes macrophages in tumor tissue by CD68 staining. Quantify the
number of neutrophils at different distances from macrophages: 0-20 μm (dark
green area), 20-40 μm (brown area), scale bar = 100 µm; c StrataQuest software was
employed to quantify the positional relationship between NET negative/positive

neutrophils and macrophages, scale bar = 50 µm; d The counts of NET positive/
negative neutrophils in 20 μm and 20-40 μm area from macrophages; e Dot plot
profiled ligand and receptor from neutrophils to macrophages, and the color of the
dots showed the connection strength; f Linearmodel profiles the correlation between
NET score and T cell exhaustion score. The left panel showed results from the
TCGA-PAAD cohort, while the right one showed the cohort from Cao et al.; g The
Linear model between TLR2 and IL1Bwith T cell exhaustion score in TCGA-PAAD
cohort; h and i Validation in PUMCH cohort patients by qPCR and profiling of
TLR2 with other T cell exhaustion markers.

Fig. 4 | Evaluation of NET signature-based prognosis model. a K-M survival
analysis reveals the potential of NET signatures. NET_IL1B+, NET_TLR2+,
NET_PDE4B+ score high group had more favorable outcomings, while NET score
cannot tell the difference in survival; bMulti-omics including transcriptome,

proteome, phosphoproteome and methylome data were integrated to prognosis the
survival time of patients. The color showed whether the pattern indicated favorable
(red) or unfavorable (blue) outcomes. Only adjusted P-value less than 0.01 data
was shown.
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Further multi-omics integration data from validation cohorts were
used to confirm the power of NET signatures in an even larger scope.
Transcriptome, methylome, proteome and phosphoproteome datasets
were retrieved with clinical data. To fit large-scale dataset, the grouping
criteria were reset to autofit with default parameters. Interestingly, we
verified the effect power of NET subtype signatures and confirmed the
inefficient prognosis power of the NET signature in most datasets
(Fig. 4b). It was worth noting that the association between phospho-
proteome and clinical outcomes showed no significance in the NET
signature, while a contrary efficient result between NET_TLR2+ and
NET_IL1B+, which indicated the intrinsically heterogenous influence
of NETs on the prognosis.

TLR2 had equivalent prognostic power to NET signatures
Considering the advantage and convenience of inspecting single gene rather
than multi-gene signatures in clinical application, we further wondered
whether single gene from signatures had the potential power to predict
clinical outcomes after constructing the prognosismodels with several NET
signatures.Given that three representative genes ofNET signatureswere the
most upregulated NETosis gene in each cluster from NMF reduction and
significantly made a distinction between tumor and normal group, they
were chiefly taken into consideration.

Before investigating clinical outcomes, the specificity of expression in
neutrophils was observed (Supplementary Fig. 4a). It was observed that the
expression of IL1B and TLR2 was specific to neutrophils while PDE4B was
poor in specificity and also not efficient in prognosing the outcome, so
PDE4B was dropped in the downstream analysis (Supplementary Fig. 4b).

Meanwhile, considering a fewmacrophages also expressed these genes,
to further determine whether the single gene can equivalently characterize
the expression status of neutrophils,we explored the correlationbetween the
expression of single gene, the infiltration level of neutrophils, macrophages
and purity of the tumor in TCGA cohort. Similar to the analysis of single-
cell, IL1B andTLR2 expressionwere significantly associatedwith purity and
neutrophil infiltration,while not correlatedwith infiltration ofmacrophages
(Fig. 5a, Supplementary Fig. 4c). Furthermore, spatial RNA sequencing
results also revealed adjunct rather than overlap between IL1B+, TLR2+

spots and macrophage-enriched spots marked by CD68+ (Supplementary
Fig. 4d).

All the above results indicated that IL1B and TLR2 were promising
equivalent prognostic factors in PDAC. Hence, we can investigate single
gene expression of IL1B and TLR2 in bulk sequencing results to infer the
expression pattern in NET_IL1B+ and NET_TLR2+ neutrophils.

To validate the prediction effectiveness, single genes were used as
independent prognosis factors. In excellent agreementwith the specificity of
IL1B andTLR2, single genes showedefficient prognostic power in validation
cohorts, and PDE4B was alike inefficient in predicting the outcomes
(Fig. 5b). Considering the location of these proteins, TLR2 is a membrane
receptorprotein,while IL-1β (encodedby IL1B) is a secretoryprotein,which
was poor in specificity in proteome validation.We also confirmed that IL1B
protein abundance was ineffective in distinguishing clinical outcomes
(Fig. 5b). Hence, we turned to TLR2 in multi-omics cohorts.

Consistent with transcriptome results, the expression of TLR2 was
linearly correlated with OS in validation cohorts (Fig. 5c), which suggested
the TLR2 expression was a promising target to predict the clinical outcome
at the early stage of PDAC.We also observed the prognosis power of TLR2
in methylome cohorts and a highly methylated TLR2 was associated with a
favorable outcome (Fig. 5b).

Next, we would like to evaluate whether the single gene of TLR2 can
predict the clinical outcome in the real world. The ICGA cohort was utilized
to inspect the correlation between the expression of TLR2 and the overall
survival of patients recorded inAustralia. Patients with higher expression of
TLR2 were found to survive 9 months shorter than another group (median
OS 11.2 months vs. 20.9 months), which meant the OS was reduced by
nearly half (Fig. 5d). We next collected the in-house cohort samples and
divided them into TLR2high and TLR2low groups. Consistent with our

hypothesis, the overall survival time and 1-year survival time were sig-
nificantly 6 months longer in the TLR2high group (Fig. 5e).

Discussion
TME in PDAC is both fascinating and challenging, composed of numerous
populations offibroblasts, dense extracellularmatrix, dysfunctional vascular
system and heterogenous suppressive immune cells3. Moreover, targeted
and immune-based therapies show very limited prospects since PDACs are
largely resistant to these agents and have lower response rates compared to
other cancers2,28. A major reason is that in the TME, T cells are devoid and
exhibit low activation and refractoriness to checkpoint blockade, aggra-
vating the adaptive immune6,29,30. Nevertheless, abundant neutrophils pro-
vide a promising target of immunotherapy and have been substantiated the
efficiency of tumor regression and extend survival, considering a prominent
myeloid cell infiltration in TME18,31–33.

Despite of the substantial neutrophil infiltration in PDAC, previous
studies scarcely illuminated the presence of neutrophils in the single cell
RNA-seq results. Such bias leads to unclear characterization of neutrophils
in PDAC although bulk RNA-seq revealed the association between neu-
trophil infiltration and unfavorable prognosis. Moreover, due to the short
lifetime of neutrophils, it also remains detection to clarify the subtypes of
neutrophils.

Here, we utilized the single-cell RNA sequence, spatial RNA sequen-
cing combinedwithmulti-omics data, revealing thepotential heterogeneous
induction and cytotoxicity mechanisms of NETosis, which indicated dif-
ferent clinical outcomes in several comprehensive cohorts.

Several studies had demonstrated the key role of neutrophils in the
TME, but the diverse functions including pro/anti-tumor, pro/anti-meta-
static were ambiguous and immune context depended34. In PDAC, neu-
trophil infiltration was associated with unfavorable prognosis and was
hypothesized to promote tumor growthandmetastasis resulting in a vicious
circle15,18. It has been widely reported that NETosis is a key pathway to exert
the functions in neutrophils35. Many stimuli can activate neutrophil
NETosis via different mechanisms such as immune complex, bacteria and
platelets9. Recently, several studies targeted NETosis manifested promising
results to reverse tumor growth as well as improve immunotherapy20,36. To
inspect whether NET is effective in predicting the clinical outcomes in
PDAC, we extracted the 2, 624 tumor neutrophils from the dataset and a
signature of 69 NET-associated genes was subsequently constructed with
neutrophil activation and NETosis genes (Figs. 1b, 1c and 1d). Compared
with healthy patients, the NET score in tumor patients was significantly
higher in accord with the distinct functions of NETosis in the TME (Sup-
plementary Fig. 1e). Interestingly, when comparing the single genes from
the signature between tumor and health samples, genes displayed an
inversed tendency (Fig. 1c). Upregulated of integrin, selectin and matrix
metalloproteinases while downregulated of ion channel, tectonin, suggested
the inner heterogeneity of NETs in PDAC neutrophils. Combined with
previous distinct activation of NETosis, we thereby hypothesize that neu-
trophil infiltration in PDAC TME can be activated by several PDCA TME
specific stimuli via different mechanisms and have a heterogenous impact
on clinical outcomes.

NMF was applied to dims reduction and three outstanding marker
genes from the NET signature were selected, including PDE4B, IL1B and
TLR2. Tracing back to the NET signature, IL1B and TLR2 were from the
NETosis subset, while PDE4B was from the neutrophil activation subset.
Pancreatic cancer is one of the leading cachexia tumors, approximately 70
percent of PC patients have cachexia and progress to unfavorable
outcomes37. Interleukin-1β (IL1B) secreted from neutrophils was reported
in pancreatic cancer and was found related to cancer cachexia by induing
upregulated expression of LCN2 in the Lcn2-KO mouse model38. Phos-
phodiesterase 4B (PDE4B) was reported as regulated by BHLHE40 which
was a direct regulator of the pro-tumor gene and played a key role in the
polarization of neutrophils in PDAC18. Toll-like receptor 2 (TLR2) can
regulate the immune environment, and was considered a promising target
therapeutic drug-delivery pathway for its pattern recognition function and
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had been studied in several tumors39,40. Besides, intestinal microbes could
migrate to the pancreas through the pancreatic duct and induce immune
response by toll-like receptors41, which might also contribute to the occur-
rence of PDAC.

Of note, a recent study byWang et al. proposed a criterion that divided
PDAC TME neutrophils into several types according to the glucose meta-
bolic states and provided outstanding gene markers of each subtype18. To
beginwith,weapplied these genes and invested the expressionpattern inour
dataset (Supplementary Fig. 1f). As mentioned before, neutrophils had
relatively low sequencing depth due to their rapid self-digestion. According

to the expression pattern, wematched our NET_PDE4B+ neutrophils with
TAN-2 and TAN-3, NET_IL1B+ neutrophils potential with TAN-3.
However, NET_TLR2+ and NET_Neg neutrophils unlikely matched
TAN-1 to TAN-2 from the previous study. RegardingNET_Neg, or TAN-1
like, neutrophils exhibited the resemble active glycolysis metabolic pathway
and hypoxia feature (Supplementary Fig. 1f, Supplementary Fig. 2d), con-
firming the similarity of such population. The unmatched neutrophils
suggested the neutrophils in the PDAC TMEwere instinct of heterogeneity
and drove us to explore the function and potential of the other neutrophil
population.

Fig. 5 | Evaluating the effectiveness and accuracy of the single gene
prediction model. a Immune infiltration analysis; b Selected single gene as prog-
nosis feature. The color showed whether the single gene was related to favorable
(red) or unfavorable (blue) clinical outcomes. TCGA and Cao et al. validation
cohorts were included; c A linear model was established by TLR2 expression and

overall survival, which suggested upregulated in TLR2 neutrophils lead to unfa-
vorable clinical outcomes; d K-M survival analysis validation in ICGC cohort; e The
expression of TLR2 in the inhouse cohort exhibited power to predict the overall
survival and 1-year survival.
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Hereafter, we examined the change of NETosis and its effect on the
PDACTME.NET_Neg neutrophils were found to express active glycolytic,
and oxidative phosphorylation pathways, which contributed to high
metabolic activity in response to the higher ROS stress (Fig. 2b, c and
Supplementary Fig. 2d). As comparable, the other neutrophils express a
moderate ROS stress, which may contribute to NETosis and eventually
transfer to distinct function and TME. Recent studies have widely reported
this contradictory standpoint that ROShadboth anti-tumor andpro-tumor
effects12,24. Chan et al. confirmed that NETosis was ROS-dependent in the
pancreatic adenocarcinoma mouse model42. We observed the higher
ROS and lower activity of autophagy in the NET negative neutrophils
(Fig. 2b, c and 2f). Hence, we concluded that under moderate ROS stress,
neutrophils are activated to form NETs in response to immune stimuli in
the microenvironment. In contrast, under high ROS stress conditions,
the internal environment of neutrophils becomes highly unstable, and the
upregulated mTOR signaling might inhibit autophagy while activating
other mechanisms of cell death such as ferroptosis17,25,26. However, the
precise mechanism should be further evaluated.

Suppressed immune cell communication is another pivotal reason for
immune desert PDAC TME43,44. NET_Neg neutrophils were found higher
activity to communicate with macrophage, while this communication
between NET positive neutrophils and macrophage was suppressed (Sup-
plementary Fig. 3a, 3c). Of note, CXCR2 was found highly expressed in
NET_IL1B+ and NET_PDE4B+ neutrophils, which was reported as a
tumor CXCL1 target gene and also can induce T cell terminated (Supple-
mentary Fig. 3c)45. At the same time, a recent study also observed the
expression of CXCL2 can induce the migration of neutrophils from the
peripheral circuit to TME and might account for the liver metastasis after
gemcitabine treatment, whichmight form feedforward recruitment of anti-
tumorneutrophils andmelatoninwas validated to induced the expressionof
tumor cells rather than macrophages to recruit the neutrophils by upre-
gulated CXCL242,46. The following observation provided sufficient evidence
for the key immune regulation role and the intrinsic heterogeneity of
NETosis.

We further suspect whether NET_IL1B+ and NET_PDE4B+
have a potential development relationship and confirmed by gene
expression, pseudotrajectory and defined NET_TLR2+ neutrophils as
a distinct terminal of NETosis (Supplementary Fig. 3e, 3f). According
to the previous study, NET_PDE4B+ , or TAN-2 like, neutrophils
located in the middle stage of neutrophil development without dis-
tinctive functional features18. Moreover, we observed the wide
expression of PDE4B in our scRNA-seq dataset (Fig. 4a), thereafter we
took IL1B and TLR2 and their NET signatures as vital consideration in
the subsequent construction of prognosis models. Other studies
characterized NETosis as suicidal NETosis and vital NETosis, which
were involved by CXCR2-ROS and TLR2 respectively47. We observed
the similar expression of CXCR2 as well as relatively activated NF-κB
pathway inNET_IL1B+ andNET_PDE4B+ neutrophils while the lack
of expression in NET_TLR2+ subtype, which provided more con-
fidence for us to set our neutrophil NETosis criterion and our basic
hypothesis (Supplementary Fig. 2b, 2c).

Although neutrophil infiltration has increasingly been invested to
perform PDAC prognosis, it’s still controversial whether NETosis
leads to favorable outcomes or not. We also confirmed the inapparent
survival of all NET signatures if not considering NET subtypes (Fig.
4a). Here, we based on comprehensive neutrophil subtypes, divided
according to the NETosis, and several NETosis signatures constructed
a prognosis model with several multi-omics datasets. We confirmed
the unfavorable overall survival of high NET_IL1B+ , NET_TLR2+
signature scores (Fig. 4a). Meanwhile, transcriptome, methylome and
proteome datasets exhibited almost similar prognostic efficacy in all
NET signatures. However, the phosphoproteome was reciprocal in
NET_IL1B+ and NET_TLR2+ signatures, which corresponded with
our hypothesis that different NETosis had intrinsic heterogeneity on
clinical outcomes.

Taking advantage of the specificity of IL1B andTLR2 in theneutrophils
(Supplementary Fig. 4a), we further discovered whether the single-gene
prognosis model had equilibrium efficacy of prognosis. The expression of
TLR2, IL1B exhibited similar and powerful prognosis ability in tran-
scriptome. However, as a secretory protein, IL-1β was poor in specificity to
link to neutrophils, while TLR2, a membrane protein, was suitable for
validation in proteome data. Another methylome cohort exhibited a tight
correlation between methylation of TLR2 and overall survival (Fig. 5b),
which was consistent with the finding that abnormal methylated would
influence the activation of neutrophils and lead to diseases48,49.

Moreover, TLR2was demonstrated to participate in the activation and
regulation of CD8+ T cell by serving as a co-stimulatorymolecule inmTOR
signaling and might ultimately regulate CD8+ T cell exhaustion under the
stress of immunotherapy50,51. The expression of TLR2 was found tightly
correlated with T cell terminal exhaustion and clinical outcomes. Further
validation in in-house patients exhibited 6 months longer survival expec-
tation in TLR2high patients, which extended the survival period by
nearly 50%.

Overall, we distinguished neutrophils by the criterion of NETosis and
observed the intrinsic heterogeneity of differentNETosis subtypes as well as
the dependency of appropriate ROS stress to induceNETosis.Moreover, we
characterized the immune suppression caused by inactive communication
betweenNETpositive neutrophilswithmacrophages and their contribution
to T cell exhaustion. Ultimately, we constructed a prognosis model to
evaluate the clinical outcomes based on NET signatures and provided
abundant evidence for the heterogenous neutrophil subtypes divided by
NETosis.

However, several limitations exist. Due to the extremely short lifetime
of neutrophils, we don’t validate the immune suppression mechanism
in vivo,whichwill be explored inour further exploration.Also, all patients in
this work were primary PDAC should be taken into consideration before
reaching the ultimateness.

Methods
Cohort selection
In house clinical specimens were collected from September 2020 to Sep-
tember2022, a total of 26 freshly frozen surgically resectedpancreatic cancer
specimens with prognostic information were collected from patients with-
out preoperative treatment at the Peking Union Medical College Hospital
(PUMCH). The diagnoses were confirmed by histopathology. The overall
survival datawere obtained through electronicmedical records or telephone
follow-up.

Furthermore, three independent cohorts with PDAC from pub-
lished literature were used to carry out integrative analysis. All the
individuals were treated naïve at the time of sequencing for the primary
tumor. The first cohort consisted of single-cell transcriptomics data
from CRA00116022, GSE15477852 and GSE21296623, downloaded from
TISCH53 andNCBI Gene Expression Omnibus (GEO) platform (https://
www.ncbi.nlm.nih.gov/geo/) respectively, which was used for discovery
purpose. The spatial RNA sequencing data was also downloaded from
GEO platform. The second cohort was extracted from The Cancer
Genome Atlas (TCGA) and the gene expression data, DNAmethylation
data and corresponding clinical information of the TCGA-PAADcohort
were downloaded from UCSC Xena54. The third cohort included gene
expression, proteome, phosphoproteome and methylation was down-
loaded from Cao et al. together with clinical information55. The Inter-
national Cancer Genome Consortium (ICGC) cohort (PACA-CA
project, 138 patients) clinical information and RNA expression data
were downloaded from the ICGC data portal. The latter three cohorts
were included to validate, or act as valid cohorts.

Ethics statement
This study was approved by the Institutional Ethics Committee of PUMCH
(Ethic code: I-22PJ487) in accordance with the ethical guidelines of the
Institutional Ethics Committee and with the 1964 Declaration of Helsinki
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and its later amendments or comparable ethical standards. Written
informed consent forms were signed and obtained from all participants.

RNA extraction and quantitative real-time polymerase chain
reaction (RT-qPCR) analysis
Total RNA was extracted from 26 freshly frozen pancreatic cancer speci-
mens from in house cohort by Trizol reagent (Invitrogen, 15596018). The
cDNA was synthesized by PrimeScriptTM RT Master Mix (TaKaRa,
RR036A) and the quantitative PCR was conducted by the TB Green Fast
qPCR Mix (TaKaRa, RR430S) according to the manufacturer’s protocol.
The primers used for quantitative PCR are summarized in Supplementary
Table 1. Each experiment was conducted three times. The mRNA expres-
sion of target genes was calculated using the 2-Δct method relative to the
housekeeping gene GAPDH. Then, the expression level was normalized by
using the scale function in R56.

NET signature construction
During NETosis, numerous key genes are proposed involving diverse
responses. Here we referred Zhang et al. construction of the NET signature
with two parts, neutrophil activation and NETosis21. In brief, a total of 69
genes were converged as the NET signature to estimate the NETosis and
identify the subtype heterogeneity of neutrophils in terms of NET (Sup-
plemental Table 2).

Single-cell RNA-seq data processing
Raw expression matrix from each dataset was imported into R software to
filter out low-quality cells ( > 10% mitochondria genes, <200 genes/cell or
>5000 genes/cell) and merged using the ‘Seurat’ R package (v4.3.0). Three
adjacent samples fromGSE212966were excluded for lowquality.Next, gene
expression levels were normalized and scaled to all genes. A total of 2, 000
highly variable genes were used to conduct PCA reduction dimension. To
correct the batch effect, the Harmony R package was used with the top 20
PCs. For primary analyses, unsupervised cell clusters were acquired by
graph-based clustering approach (The top 20 dimswere selected, resolution
=1.0), and visualizedbyUMAPdimensionality reduction.The clusterswere
subsequently annotated according to the expression of canonicalmarkers in
previous literature22,23. Marker genes of each cluster were identified by the
FindAllMarkers function under the criteria of log fold change larger
than 0.5.

Batch effect correction
All data were merged and the batch effect was corrected. First, the
ScaleData function (Seurat package) was used to eliminate potential
batch effects caused by gene expression. Then the Harmony algorithm
(RunHarmony function in harmony package V0.1.1) was further
applied to correct batch effects for each dataset, which was a widely
used, sensitive and accurate integration of single-cell data algorithm57.
Finally, when the neutrophils were subset from the whole dataset, we
used the SCTransform function (Seurat package) to eliminate batch
effects based on the labels of the datasets. The cell arrangement was
visualized before and after the batch effect correction to demonstrate no
clear batch effect.

Non-negative matrix factorization
Non-negativeMatrix Factorization (NMF)wasperformedusing theNMFR
package (v0.26) to identify underlying expression programs of NETs.
Neutrophils from tumor samples and genes fromNET signature with batch
correction were subset to NMF procedure and independent of patient
selection. For neutrophils, the NMF reduction was used for downstream
dimensionality reduction and visualization with all dims and resolution of
0.5 for fewer cells used than the primary dataset and to achieve stable cell
clusters, all other processes were the same as the pipeline described above.
Themarker genes were calculated and then examined as followsmethod: If
the top marker genes of the cluster were not found in the NET signature, it
was defined as a NET negative subtype. If it was found within the NET

signature, we defined it as a NET positive subtype marked by the
selected genes.

Generation and evaluation of NET signatures
To investigate theNETosis inbulk sequencingdatasets,wegenerated several
sub signatures according to the subtypes of NET positive neutrophils
(Supplemental Table 3). These signatures together with the NET signature
and T terminal exhaust signature fromZheng et al. 58 were input to perform
gene set variation analysis (GSVA)byGSVARpackage (v1.44.5), evaluating
the enrichment score.HALLMARK50gene sets downloaded fromMSigDB
(http://software.broadinstitute.org/gsea/msigdb) were investigated by
AUCell R package (v1.20.2). Tomatch the neutrophils defined in this work
with the previously reported subtypes18, marker genes of tumor associated
neutrophils were used to calculate the gene module score with the
AddModuleScore function in the Seurat package.

Construction of gene regulatory network
To generate a gene regulatory network, Single-Cell rEgulatory Network
Inference and Clustering (SCENIC) computational method was applied to
infer Gene Regulatory Networks (GRN) and cell types from single-cell
RNA-seq data59. Briefly, SCENIC generates a potential GRN based on the
co-expression between TFs and their target genes and then corrects false
positive GRN by enrichment score based on an experimental ChIP-Seq
based motif database. In this work, single cell RNA sequencing data was
processed in Python and pySCENIC (v0.12.0) was applied.

Cell-Cell communication analysis
Cellchat R package (v1.6.1) was applied to analyze cell-cell communication
based on ligands and receptors inferred, implemented with the normalized
expression matrix from Seurat with default database and parameters. The
netVisual_bubble function was used to visualize the communication
interactions between macrophages and neutrophils divided into different
subtypes.

Single-cell pseudotrajectory analysis
Slingshot R package (v2.4.0) was used to determine the single-cell pseudo-
time trajectory. The neutrophils expression matrix following NMF reduc-
tionwas input to Slingshot downstreamwith default parameters. The origin
cell cluster was set as NET negative neutrophils.

PROGENy analysis
Pathway RespOnsive GENes for activity inference from gene expression
analysis was conducted using the progeny R package (v1.18.0). The PRO-
GENy weights were calculated for respective pathway scores. The pathway
scores were scaled according to cell types or NET subtypes.

Live-cell visualization of NETosis and ROS
Neutrophils were isolated from 5ml whole blood from eight clinically
confirmed pancreatic cancer patients using EasySep™ HLA Chimerism
Whole Blood CD66b Positive Selection Kit (StemCell) following the man-
ufacturer’s instructions. Neutrophils were plated at 10,000 cells per well
(100 μl perwell) in serum-freeHam’s F-12Kmedium (Gibco) using 96-well
flat-bottom plates coated with 0.01% poly-l-ornithine solution (Sigma).
Then, 250 nM IncuCyte Cytotox Green Dye (Sartorius) and 5uMCellROX
Deep Red (Thermo Fisher) were added to measure NETosis and ROS,
respectively. IncuCyte Cytotox reagent fluoresces when binding to DNA,
allowing for real-time observation of NET release60. CellROXDeep Red is a
cell-permeant probe that detects intracellular superoxide anions and
hydroxyl radicals61. After incubation for 2 hours, the detection and quan-
tification of neutrophil fluorescence were taken by a PerkinElmer Opera
Phenix Plus high‐content screening system.

Multi-color immunofluorescence staining
We collected pathologically confirmed pancreatic cancer specimens
from 20 patients undergoing radical pancreatic cancer surgery from the
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Peking UnionMedical College Hospital (PUMCH) with the approval of
the Institutional Ethics Committee of PUMCH (Ethic code: I-22PJ487).
Twenty surgical pancreatic cancer specimens were fixed in formalin and
then embedded in paraffin. Multispectral IF staining was performed as
previously described62. These tumor tissue sections were incubated with
the following antibodies: anti-CD66b (Abcam, ab207718, dilute at
1:500), anti-Myeloperoxidase (Abcam, ab208670, dilute at 1:100), anti-
CD68 (Abcam, ab213363, dilute at 1:100), and anti-LC3B (Abcam,
ab192890, dilute to 1 µg/ml). Nuclear staining was performed with
ProLong Diamond Antifade mounting medium containing DAPI
(Invitrogen). Images of tissue specimens were obtained using the Tis-
sueFAXS Spectra Systems (TissueGnostics GmbH, Vienna Austria).
With the help of StrataQuest analysis software (Version 7.1.129, Tis-
sueGnostics GmbH, Vienna, Austria), we separated the multi spectral
image (5-color staining) and set a threshold to divide the positive cells for
analysis of cell number and location distribution.

Estimation of immune infiltration
The tumor Immune Estimation Resource database (https://cistrome.org/
TIMER) investigates the immune infiltrates in various cancer types
including PDAC and was applied to calculate the correlation between gene
expression and neutrophil or macrophage infiltration in the TCGA-PAAD
cohort. The CIBERSORT and TIMER results were used for macrophages
and neutrophils. The scatterplot showed the purity-corrected partial
Spearman’s correlationand statistical significance thatwereprovidedwithin
the datasets.

Statistical analysis
Statistical analyses were conducted by R software (v4.2.1). Two-tailed
unpaired student’s t-test was utilized to show the significant difference
between groups. A p-value of < 0.05was considered to indicate a statistically
significant result. Significant differences were noted as * p-value < 0.05, **
p-value < 0.01, and *** p-value < 0.001. Results were visualized using the
ggplot2 R package (v3.4.2). The Kaplan-Meier survival analysis was per-
formed by comparing the survival data of overall survival time and log-rant
test was applied. Survival modeling was undertaken using the survival R
package (v3.5-5) and the cutoff value was determined by the survminer R
package (v0.4.9).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The raw sequence data included in this study was retrieved from the Gen-
ome Sequence Archive (GSA, https://ngdc.cncb.ac.cn/) under the accession
number GSA:001160 and GEO database (https://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE154778, GSE111672 and GSE212966.
The TCGA-PAAD dataset was obtained from USCS Xena (https://xena.
ucsc.edu/). The ICGC cohort was obtained from the ICGC database ICGC-
PACA-AU cohorts.

Code availability
This study did not generate original codes. All software and algorithms used
in this study are publicly available and listed in theMethod section. R codes
used to analyze data and generate figures are available upon request.
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