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In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the
mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should
recapitulate the original tumor.We appliedDNAmethylation (DNAm) and copy number variation (CNV)
profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures,
considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D
cultures). We performed a t-SNE classification and identified differentially methylated regions in
tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media
and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles
from the parental ones. All divergent cells clustered together acquiring a common deregulated
epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated
genes shared among unfaithful cells converging on response to growth factors and migration
pathways, such as signaling cascade activation, tissue organization, and cellular migration. In
conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of
pBT-cells from parental tumors.

Central nervous system (CNS) tumors are among the most common can-
cers in patients aged 0–14 years1. Recent genomic and epigenomic profiling
analyses have provided remarkable insights into biology of pediatric brain
tumors (pBTs)2. Nonetheless, pBTs represent the deadliest childhood can-
cer worldwide and are associated with high morbidity with the consequent
and urgent need for therapeutic advances to improve the outcome and
quality of life of affected children3.

To this end, scientists take advantage of informative, stable, and faithful
model systems, exploring the mechanisms of the disease and testing new
targeted therapeutic approaches. Developing and optimizing such systems,
including in vitro models, represents a mandatory field of research.

Furthermore, the choice of cell culture medium for in vitro pBT biopsy
cultures must be taken into consideration, especially for drug screening
experiments4.

Much research in pBTs biology relies on experiments under stem cell
conditions, either as two-dimensional (2D) adherent cultures or as three-
dimensional (3D) neurospheres5–7. Recently, several groups validated a
more complex in vitro culture system of human cerebellar organoids as
reliable modeling for CNS studies8–10.

Genome-wide DNAm is a stable epigenetic process regulating the
diversified gene expression profiles characterizing cells and tissues in mul-
ticellular organisms. DNAm profiling is an informative tool that aids in the
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classification of CNS tumors and patient stratification, favoring a more
effective patient’s management11–13. It is increasingly incorporated in the
diagnostic process of CNS tumors, and it is a powerful tool to confirm their
pathological diagnosis14–16.

The current classification occurs using the DNAm-based CNS tumor
classifier (www.molecularneuropathology.org), which generates a cali-
brated score, representing the degree of match between the methylation
profile of the tumor of interest and predefined methylation classes (MC)17.
DNAm array data can also be used to evaluate the copy-number variations
(CNV), providing a good overview of gross structural alterations in the
tumor genome, that result in an abnormal number of copies of one ormore
genes such as high-level amplifications and deletions17. The CNV plot,
generated by the classifier, can be easily interpreted, and it is of considerable
added value in tumor entities that exhibit characteristic chromosomal
aberrations.

Recently, several research groups have provided useful information
about epigenetic differences between tissueswithmatching cell lines derived
from them18–22. They have shown that the cultured media and cell line
passage numbers could affect the epigenetic pattern23–25. These analyses
provide supporting evidence in favor of using cell lines as in vitromodels in
cancer research, although they focused on specific cell models and do not
give information on the most suitable cell culture method for faithfully
reproducing the parental tumor26–28.

At late passages, it is generally understood that clonal selection might
represent a relevant event; when this occurs, the culture might not be
representative of the parental tumoral cell population, so the experiments
can generate variable results27, leading to the alteration of cell line suscept-
ibility to external insult29. Similarly, different choices of media and additives
may have a profound effect on the cell phenotype and drive clonal selection,
affecting both the cell behavior and loss of intratumoral diversity30.

Taking advantage of a large availability of CNS tumor tissues and their
matching derived cell lines, and considering the lack of knowledge, we
decided to focus on DNAm status and CNV profiling of pBT-derived pri-
mary cultures in different conditions to validate their use as an informative
and faithful in vitro model system to represent the corresponding tumor
tissue.

Results
Brain tumor DNAm profiling and classification
We performed DNAm profiling of 241 samples (155 pBT tissues and 86
tumor-derived cell lines) (Fig. 1 and Supplementary Table 1) and compared
the results of the brain tumor classifier (v12.5) with the initial histopatho-
logical assessment. Considering the tumors cohort, the percentage of mat-
ches resulting fromthe comparisonbetween the twoclassificationswas99%.
Overall, the percentage of match with the 86 cell lines analyzed was 48%
(Table 1).

Fig. 1 | Flowchart of methylation based pBT ana-
lysis. The pipeline consists of cells and tumors
selection, raw data generation through Illumina
EPIC beadChip technology, brain tumor classifier
analysis and t-SNE classification, “Faithful vs
Unfaithful” definition. Each part is described in the
Materials and Methods section. Created by
Biorender.com.
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We defined the fidelity of the cell cultures compared to the classifica-
tion scores of the parental pBT according to the classification scores (Fig. 2
and Supplementary Table 1) dividing samples into three groups: (i)
unfaithful (score < 0.3), (ii) useful (0.3 < score < 0.84) and (iii) faithful (score
> 0.84) samples. Unexpectedly, considering both faithful and useful scores,
less than 50% of primary/commercial cell lines and organoids matched the
parental pBT classification (Fig. 2a). Specifically, a faithful score was
assigned in 24% (5/21) ofMB, 14% (3/22) of LGG, 18% (3/17) ofHGG, 42%
(10/24) of DMG cell cultures, while a useful score was assigned in 48% (10/
21) ofMB, 12% (2/17) ofHGG, 25% (6/24) ofDMG, and100% (2/2) of EPN
cell cultures (Fig. 2a).

Primary cell lines that recapitulatepaired tumor tissue showeda similar
classifier score in the corresponding MC, revealing that they were not
markedly impaired in culture system. Half of the cultures were unfaithful
andwere included, regardless of the tissue of origin, in themeningiomaMC
(20.9%)with suboptimal rawandcalibrated scores,CIC-rearranged sarcoma
MC (1.2%), or resulted unclassifiable (27.9%) (Supplementary Table 1). Of
note, LGG cells were enriched in unfaithful samples compared to the whole
cell cohort (p-value = 0.005) (Fig. 2a).

To characterize the unfaithful cell lines in more detail, we performed
further comparisons based on (i) time of culture (early/late); (ii) culture
method (serum/serum free); and (iii) dimensional culture condition (2D
vs 3D).

Analyzing cell culture over time, the consistentMCwasmaintained in
a substantial percentage of the “early” cells compared to the “late” ones (p-
value = 0.1) (Fig. 2b left and Supplementary Table 2).

The evaluation of the impact of culture conditions showed that con-
sistentMCwas maintained in a substantial proportion of those grown with
serum-free conditions, while a higher proportion of cells maintained in
serum cultures diverged in their DNAm profile (p-value = 0.029) (Fig. 2b
center, and Supplementary Table 2).

Considering the “dimensional culture conditions”, 3D cells were
more consistent in the MC than 2D cells even if not reaching a
statistical significance (p-value = 0.099) (Fig. 2b right and Supple-
mentary Table 2).

The analysis of the DNAm profile of five commercial cell lines
demonstrated that three of them maintained the expected MC.
Notably, among the four MB commercial cell lines, DAOY, a 2D-
serum-late culture, did not classify in any MC by the brain tumor
classifier. Similarly, one HGG cell line (KNS42), assessed at late
passages and cultured as 2D in the presence of serum, resulted
unfaithful. D341 and D283 cells were analyzed as serum-late cultures
in semi-suspension (2D/3D). For both, the brain tumor classifier
assigned the consistent MC with a useful score. CHLA cells were
analyzed as 3D-serum-late culture and classified as medullomyo-
blastoma with useful score (details in Supplementary Table 1).

The classification scores of 56 tumor tissues with their paired cell lines
and the classification scores of 30 cell lines not paired with their tissue of
origin are reported in Supplementary Fig. 1.

Copy number variation analysis
To further characterize pBT-derived primary cell lines, we analyzed
genome-wide DNAmpatterns coupledwith structural variants (CNV).We
identified coincident, similar or different CNV profiles, comparing the
original tumor with respective cell cultures and considering the three dif-
ferent variables (serum/serum free; early/late, 2D vs 3D) (Supplementary
Table 3). The following statistical analyses were performed grouping coin-
cident and similar profiles in a single category of “maintained” CNV pro-
files. We observed maintained CNV profiles in a sizable portion of serum-
free cell cultures compared to the ones cultured with serum (p-value =
0.661). Furthermore, a maintained profile was observed in most of 3D
compared to 2D cell cultures (p-value = 0.589). Finally, a maintained CNV
profile was observed in a similar portion of both “early” and “late” cell
cultures (p-value = 0.905). Of note, when considering only coincident CNV
profiles, we found them significantly increased in serum-free vs serum cell
cultures (p-value = 0.005) (Fig. 3a and Supplementary Table 4).

Through a quantitative analysis (Supplementary Fig. 2a), we observed
that cell lines with different CNV tended to have a lower mean number of
genome-wide CNVs than their tissue counterparts of the same histology.
This difference was statistically significant in DMG (p-value = 0.023), HGG
(p-value = 0.005), LGG (p-value = 0.005), and MB (p-value = 0.025).

We also plotted the cumulative CNV profiles of tumors, grouped by
histology (Supplementary Fig. 2b, panels labeled with “1”), and the
respective cell lines with different profiles (Supplementary Fig. 2b, panels
labeledwith “2”). From this visual comparison,we appreciated that different
cells show a flatter profile than their tissue counterparts.

Combining DNAm and CNV data we observed six different condi-
tions between cell cultures and tumors consideringmaintained or unfaithful
DNAm, and coincident, similar or different CNV (Table 2, Supplementary
Table 3, and Fig. 3a).

DNAmethylation data processing and sample clustering
To characterize the genome-wide DNAm profiles of the patient-derived
cell lines, all samples were analyzed using an in-house developed pipeline
for Illumina EPIC BeadChip data. After applying quality filters (see
Methods) 676,852 probes remained for the analysis of the study cohort.
Neither PCA nor MDS showed the presence of any outlier sample, and,
after normalization, the expected bimodal beta value distribution was
observed for all 241 samples. SVD analysis showed no significant com-
ponent (PC) correlating with technical sources of variation (i.e. Material,
Slide, Slide position), excluding the occurrence of relevant batch effects
(data not shown).

Table 1 | Entire cohort of 241 pediatric brain tumor samples, including 155 tumors and 86 derived cell cultures, and comparison
between the initial histopathological assessment and the results of the brain tumor classifier (v12.5)

Tissues Cells

Histopathological
assessment

Samples Paired
with cells

Only
tissues

Tot Faithful +
Useful (%)

Paired with
tissues

Only
cells

Organoids Commercial Tot Faithful +
Useful (%)

MB 82 5 56 61 61 (100) 8 0 9 4 21 15 (71)

LGG 67 13 32 45 43 (95) 20 2 0 0 22 3 (14)

HGG 39 8 15 23 23 (100) 15 1 0 1 17 5 (29)

DMG 37 6 7 13 13 (100) 11 13 0 0 24 16 (67)

EPN 11 2 7 9 9 (100) 2 0 0 0 2 2 (100)

MNG 4 0 4 4 4 (100) 0 0 0 0 0 0

TOTAL 241 34 121 155 153 (99) 56 16 9 5 86 41 (48)

For each pediatric brain tumor category (tissues and cells), the proportion of classifier results that match histopathological data is reported. Faithful: classifier score > 0.84; Useful: classifier score between
0.3 and 0.84.
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As shown in Fig. 4 and S3, t-SNE outlined clear segregation
among different methylation clusters for most of tumor samples. The
analysis showed also a different clustering of the cell lines depending
on the culturemedia and passages. UnsupervisedHDBSCAN analysis
of the t-SNE projection showed that 220 samples were assigned to 16
distinct and valid clusters, according to DBCV analysis (all clusters
with validity indexes > 0.25), whereas 15 were classified as noise
points (cluster #0, Supplementary Fig. 3, and Supplementary
Table 5).

Among the 8 primary MB-cell lines, 5 displayed a methylation profile
not segregating with tissues: two cell lines with serum (”early” and “late”),
one “early” cell line serum free-2D, and two “late” serum free-3D. On the
other hand, all the engineered group 3MB organoids were distributed close
to the consistent human specimens. By contrast, three of the four com-
mercial MB cell lines (D283, D341, CHLA) clustered near MB tissues,
whereas DAOY was found to be unfaithful also in terms of t-SNE location.
Interestingly, the HGG cell lines KNS42 clustered together with DAOYand
close to HGG tissues.

Three out of the 22 LGG cell lines segregated with the corresponding
tissues (all were 2D-” early” and serum cells). On the other hand, 19 LGG cell
lines did not cluster with corresponding tumor specimens and were dis-
tributed in two different clusters: 2 cell lines were near the cluster of serum
free-2D cell lines (cluster #14), 15were close tomeningioma samples (cluster
#15), and2 in the cluster #0 (SupplementaryFig. 3 andSupplementaryFig. 4).

Analysis of the DNAm profiles of the 16 HGG serum-free cell lines (6
cell lines 2D and 10 cell lines 3D) showed that 4 “early” 2D cultures, 1 “early”
3Dcultures, and7 “late”3Dculturesdidnot clusterwith their parental tissues.

Analyzing the 24DMGprimary cultures, within the 18 serum-free, 2D
cell lines (12 “early” and6 “late”), themethylation clusteringwasmaintained
by6 “early” and4 “late” cell lines,while among the 6 serum-free 3Dcell lines,
only one “late” cell lines did not segregate with the corresponding tissue.

Lastly, both serum-free “early” cell lines from EPN clustered with the
corresponding tissues.

Several divergent cell cultures (n = 22) were located close to menin-
gioma samples, and 19 of them classified as a stable cluster (#15) (Supple-
mentary Fig. 3, Supplementary Fig. 4, and Supplementary Table 5).
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Fig. 2 | Percentage of match through the brain tumor classifier. a Distribution of
the scores for whole cohort (bottom panel) and for each tumor category (MB, LGG,
HGG,DMGand EPN) (upper panel). Cell cohort is analyzed through the “classifier”
and is divided according tomethylation score in three classes: (i) unfaithful (samples
are not assigned in the MC and/or a score lower than 0.3); (ii) useful (0.3 <
score <−0.84) (samples are assigned in the right MC with a score between 0.3 and

0.84); (iii) faithful (>0.84) (samples are assigned in the right MC with a score higher
than 0.84). The color intensity of the pie charts reflects the difference in score. Two-
tail p-value = 0.005 (Fisher’s test) versus the whole cohort. b Comparison of cell
score distribution for each cell cultures category (culture method, time and
dimensionality). P-value = 0.0029 (Chi-squared test) refers to Faithful plus Useful vs
Unfaithful categories, details in Supplementary Table 3.
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Genome-wide differentially methylated regions in cell lines
in pBTs
Based on the distribution and relations among samples over the 2D-
structure of methylation data, we set up different strategies to identify sig-
nificant DNAm differences among groups. Since all the divergent cell lines
clustered together, we hypothesized a shared selective pressure leading to a

common deregulated epigenetic signature. To investigate this assumption,
we compared samples that were part of separate HDBSCAN clusters.
Hereafter, we will refer to these analyses as DCA1 andDCA2 (DMR cluster
analysis 1 and 2).

DCA1 aimed to assess molecular differences underlying all the
unfaithful cells (clusters #14 and #15) with respect to most tumor samples
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and the respective faithful derived cell lines (mainly part of clusters #9, #12,
#13) (Supplementary Fig. 3).

DCA2 aimed to investigate molecular differences between unfaithful
serum free-2D cell lines (cluster #14) and meningioma-like cells (cluster
#15) (Supplementary Fig. 3).

To investigate more specifically the methylation differences
between faithful and unfaithful cell cultures, we also defined

supervised groups regardless of the HDBSCAN clustering by col-
lecting cells into custom groups based on their fidelity. Further DMR
analyses were therefore performed between these groups of cells
belonging to the MB, LGG, HGG, and DMG tumor classes to identify
specific enriched pathways. Details about test/reference group com-
position and number of DMRs found for each of the 7 DMR analyses
performed are reported in Supplementary Table 6.

Fig. 3 | Comparison of Copy Number Variation data in paired primary cells and
tissues. a The color intensity of the histograms reflects the three categories of
similarity between the CNVof each cell line with corresponding tumor, according to
the correlation score: coincident (top tertile), similar (middle tertile), and different
(lower tertile). p-value = 0.005 (Chi-squared test) refers to coincident plus similar vs
different categories, details in Supplementary Table 4. b Condition 1: HGG_T8
versus HGG_CSFL8c_3D. Both classified as diffuse hemispheric glioma, H3 G34-
mutant MC, and conserved the same CNV. Condition 2: LGG_T11 versus
LGG_CSE11_2D. The classifier assigned the sample to the low-grade glioma,MYB/
MYBL1 MC. The CNV plot revealed a 6p deletion in the tumor. The derived cell
displayed consistent DNAm levels, along with the 6p deletion. Condition 3:

DMG_T1 versus DMG_CSFE1_2D. Both faithfully classified as diffuse midline
glioma H3 K27-alterated. The parental tumor CNV profile exhibited PDGFRA
amplification, and FGFR1 deletion, while the cell line lost all genetic alterations.
Condition 4: HGG_T1 tumor matched the MC of diffuse pediatric-type high-grade
glioma, H3-wildtype and IDH-wildtype with a suboptimal classifier score. It dis-
played a complex CNV. HGG_CSFE1b_3D maintained the same CNV but had no
matchingMC.Condition 5:MB_T3 versusMB_CSFL3_3D.MB_CSFL3_3D showed
an unfaithful MC and conserved bothMYCN andMDM2 amplifications. Condition
6: HGG_T4 matched the MC of diffuse pediatric-type high-grade glioma, H3-
wildtype and IDH-wildtype with an optimal classifier score. It displayed a complex
CNV profile. HGG CSFE4a_2D had no matching MC and lost the same CNV.

Table 2 | Different conditions for the pBT tissues with corresponding cell lines combining DNAm and CNV

Condition DNAm CNV profile Observed cases (%) Representative cases

Tissue (T) Cell line*

1 Maintained Coincident 25 HGG_T8 HGG_CSFL8c_3D

2 Maintained Similar 6 LGG_T11 LGG_CSE11_2D

3 Maintained Different 5 DMG_T1 DMG_CSFE1_2D

4 Unfaithful Coincident 9 HGG_T1 HGG_CSFE1b_3D

5 Unfaithful Similar 33 MB_SHHB_T3 MB_CSFL3_3D

6 Unfaithful Different 22 HGG_T4 HGG_CSFE4a_2D

Tumor tissues (T) and cell lines (C) are namedwith the tumor acronymandprogressive numbers, *Cell lineswere namedaccording to the nomenclature below: primary cultures (C), either as serum-free (SF)
or serum-supplementedmedium (S) and considering early (E) and long (L) passages in culture, in both two-dimensional (2D) and three-dimensional (3D) conditions. Different cell lines method cultures are
indicated with italic letters.
DNAm DNA methylation, CNV copy number variations, LGG low-grade gliomas, HGG high-grade gliomas, DMG diffuse (pontine) midline gliomas H3 K27M-altered,MB medulloblastoma.

Fig. 4 | Global structure 2D projection of
methylation data. t-SNE analysis of DNAm data of
155 tissues and 86 tumor-derived cell lines. The
color has been shaded for those cells whose time in
culture is “late”. Points shape was used for distin-
guishing tumor tissues from cell lines and for spe-
cifying both cells culture media and cells culture
method.
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An initial gene set enrichment analysis over DMRs was performed to
test for bothGO terms andKEGGpathway enrichments, and for “Hallmark
gene sets” of the Human MSigDB database.

We obtained 32 significant hallmark gene sets for the DCA1 analysis
and 25 gene sets for theDCA2 analysis. Amean of 9 enriched gene sets were
instead found significant over the MB, LGG, HGG, DMG cell groups
(Supplementary Table 7). Among them, the “EPITHELIAL_MESENCH-
YMAL_TRANSITION” gene set turned out to be significantly enriched in
all seven analyses (DCA1, DCA2, MB, LGG, HGG, DMG). Similarly,
“MYOGENESIS” was significant in all the groups except for MB. All the
significant Hallmark gene sets detected are reported in Supplementary
Table 8.

The GO enrichment analysis for the Biological Process allowed us to
obtain 1,174 and 658 enriched terms for the DCA1 and DCA2, respectively
(Supplementary Table 7). By collecting genes from all significant GO terms
of the missMethyl output, 2,945 genes were found, on average, for the four
cell type groups and 8917 for theDCA1/2 analyses. In parallel, to focus only
on those genes with a high degree of hyper-/hypo- methylation, we asso-
ciated each DMR with its methylation level (Δβ) so that we could create
separated hypo-/hyper-methylated gene lists to be submitted to cluster-
Profiler. Notably, in the missMethyl output significant hypomethylated
genes were in greater number than significant hypermethylated genes (378
average hyper- vs. 539 average hypo-methylated genes; Supplementary
Table 7).

Moreover, clusterProfiler detected amedian of 154 enrichedGO terms
in the analysis of hypomethylated genes, and only 33 with the hyper-
methylated genes. Only the LGG enrichment analysis showed opposite
results, i.e., 388 GO terms resulted from hypermethylated genes (764) and
92 terms from hypomethylated genes (611). This difference was no longer
observed after the semantic similarity analysis (Fig. 5 and Supplementary
Fig. 5).

We also investigated DNAm levels for genes belonging to significantly
enrichedGOs,finding amarked unbalance towards hypomethylation in the
MB, HGG, and DMG analyses (median: 271 hypomethylated vs 57

hypermethylated). This was not true for clusters #14 and #15 taken together
(DCA1), as well as for the LGG cell group in which hypermethylated genes
were in greater number (376 hyper- vs. 259 hypo-methylated genes). All
these data are collected in Supplementary Table 7.

Finally, we used these lists of hypo-/hyper-methylated genes to
investigate whether there were shared active biological processes among the
4 unfaithful tumor-derived cell types according to t-SNE clustering (Fig. 6):
we identified 22 shared genes (Fig. 6a), all hypomethylated, which were
tested for GO enrichment. This analysis resulted in the identification of 10
biological processes whose activation is likely associated with altered
expression patterns of cultured cells compared to the tumor of origin. Of
note, this final set of hypomethylated genes are shared among unfaithful
cells converging on response to growth factors and migration pathways: (i)
signaling cascade activation (e.g., “zymogen activation” and “transmem-
brane receptor protein serine/threonine kinase signaling pathway”), (ii)
tissue organization pathways (e.g., “mesenchyme development”, “angio-
genesis” and “morphogenesis of an epithelium”), and (iii) cellularmigration
(“ameboidal-type migration”) (Fig. 6b).

Discussion
Tumor research extensively uses model systems to investigate processes
contributing to oncogenesis and disease progression as well as to identify
potential therapeutic pathways in the preclinical setting. However, in many
cases, thedifficulty in culturingprimary cells that retain the primary tumors’
genetic and epigenetic features, as well as the sparse number of available
samples, could limit the implementation of pBT in vitro model systems31.
Hence, there is an urgent need for developing models that faithfully reca-
pitulate pathophysiology.

Recently, researchers have proposed variousmethods to determine
the similarity of cancer models to natural tumors using genomic,
transcriptomic, epigenomic, or ensemble molecular profiles32–35. Here
we evaluated different cell culture parameters and developed a pipeline
to assess the fidelity of our models using molecular traits, such as CNV
and DNAm (Fig. 6c). Moreover, we described the functional relevance

DMG

Fig. 5 | Heatmap plots of Gene Ontology terms enriched in unfaithful cells.
EnrichedGO terms and related genes reflecting the differentialmethylation patterns
in unfaithful cells of the MB, HGG, LGG, and DMG cell lines. The enrichment
analysis shown here was performed with hypomethylated genes that fall in DMRs;

for GO terms associated with hypermethylated genes see Supplementary Fig. 5. The
Δβ value, obtained from average β-values of CpGs contained in DMRs, was used in
place of fold change as a measure of methylation levels.
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of these molecular profiles, highlighting common pathways involved in
growth and differentiation of cultured cell lines. Our findings showed
that cell lines cultured under stem cell enriching conditions (serum-
free, 3D) andmaintained in culture early passages are characterized by a
higher degree of faithfulness, both in terms of DNAm and CNV profile,
with respect to the counterparts maintained in 2D cultures, presence of
serum, and for longer passages.

It is increasingly clear that 2D cultures do not mirror many primary
tumor types, favoring clonal selection and genetic mutations, and that this
effect is emphasized aftermultiple passages in culture, suggesting that long-
term cultures can trigger processes leading cells to rearrange their DNAm
status. To address this issue, 3D cultures, such as brain tumor spheroids and
organoids, have recently been adopted thanks to the capability of thismodel
to bettermimic the physical and biochemical features of a solid tumormass,

Fig. 6 | Overlap of hypomethylated genes among the tumor-derived cell lines and
final model. a Relations among the sets of hypomethylated genes of the 4 types of
unfaithful tumor-derived cells and (b) GO terms resulting from Over-
Representation Analysis over the 22 genes* shared among the 4 sets (http://www.
webgestalt.org). *ABL1, ACTG2, BCL9L, CALD1, CD4, CLEC14A, CLEC3B,
COL16A1, COL1A2, DDR2, EDNRA, EMILIN1, FES, FGF1, FMN1, FXYD1, LTBR,
PHLDB1, SMAD3, SP100, STARD13, TAGLN. c Illustration of the process steps
followed in the analysis of the cell samples presented in the study. Briefly, primary
pBT cell cultures can be cultured in vitro under different conditions: 2D or 3D, in

presence or absence of serum in culture media and at early or late passages. Analysis
was conducted using Illumina BeadChip technology, enabling the acquisition of dual
information encompassing DNAm and CNV profiles. The samples underwent
classification utilizing the Brain Tumor Classifier and visualized in different clusters
using t-SNE visualization. Based on methylation scores and CNV profiles, samples
were systematically categorized into six different conditions, providing researchers
with valuable tools to assess the faithfulness of their cell culture models before
embarking on in vitro experiments. Created with BioRender.com.
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also in pBT36. Several studies have shown that 3D culturing provides amore
physiological environment compared to 2D cultures, allowing proper cell-
cell and cell-ECM interactions37. Consistently, all unfaithful tumor cells (i.e.,
MB, HGG, LGG, and DMG) in our study had a similar epithelial-
mesenchymal transition pattern.

The concept of monolayer/2D culture is closely related to time in
culture and the number of passages; in fact, long passages cultures may
induce, as an adaptivemechanism, a selection process of cells that allows the
loss of certain tumor subpopulations and clonal expansions. An example is
3Dmodels fromglioblastoma that are geneticallymore representative of the
primary tumor cells compared to 2D cultures (both cultured in serum
medium), and that aremore stable over time. On the other hand,molecular
profiles of cells grown in 2D cells have changed considerably and progres-
sively over time38.

Furthermore, the serum is commonly used in traditional 2D
culture as a source of growth factors and nutrients, and in many cases,
it is advantageous to cell growth even if some studies have demon-
strated that it modulates proteins and gene expression38,39. In our
experience, the presence of serum is not advantageous for cell growth
as tumor-spheres because it induces differentiation, slowing down
cell proliferation. Indeed, the presence of serum in the culture med-
ium is another variable that is closely related to the fidelity of cellular
models. Serum supplementation in cell cultures produces biological
adverse effects on the global gene expression40 likely depending on an
aberrant DNAm pattern. In line with these observations, our data
suggest that serum significantly affects cell epigenetic features and
reveals that the signaling cascade activation linked to the presence of
growth factor in serum media is one of the main biological processes
enriched in the unfaithful cell models.

Notably, LGG cell cultures exhibited the highest divergence (14%) and
the most consistent cells at early passages (2/3). The distinctive behavior
observed in LGG cell cultures can be attributed to specific characteristics of
their proliferative capacity. Primary LGG cells exhibit a notably low pro-
liferative rate, limited to a finite number of divisions in culture, after which
the cells enter a phase of growth arrest and initiate replicative senescence.
This senescenceprogram is triggeredby an aberrant activationof theMAPK
pathway, a hallmark feature of these tumors, and of the p16 pathway41.
Hence, late-passage LGG cells may not faithfully represent the authentic
tumor cells that undergo senescence. Instead, these cells likely constitute a
population of supportive cells sustained in culture due to the presence of
serum in the media. Coherently, 94% of our late-passage LGG cell cultures
result unfaithful. This consideration is crucial in interpreting our experi-
mental data and underscores the importance of considering the specific cell
culture conditions. On the other hand, EPN, MB, and DMG cell cultures
were 100%, 71%, and 67% consistent with primary tumors, respectively. All
the EPN and DMG cell cultures tested were maintained in serum-free
conditions, like the faithful MB cell lines which were grown predominantly
in serum-free and 3D conditions. Our results suggest that “early”, 3D,
serum-free cells are themost reliable, andmainly that the presence of serum
is the variant that discriminates consistent cells vs unfaithful ones in a
significant way.Moreover, we observed that the “different” cells had a lower
overall number of CNVs and a flatter profile than the tumors of the same
histological type. We explain the observed difference in CNV patterns
between tumors and tumor-derived cell cultures in part due to tumor het-
erogeneity. Tumors are composed of different cell types at distinct stages of
differentiation. Cell cultures could select only a subset of clones/cell types,
resulting in a more homogeneous cell population. Of note, it should be
considered that the biopsy fragment used to generate the cell cultures is
necessarily different from the one used for diagnosis. This issue is particu-
larly critical for highly heterogeneous tumors, such as DMG42. Notably, in
our study, DMGprimary cells retained the faithfulMC,most likely because
histone mutation was an early event in tumorigenesis shared by all primary
tumor cells43. However, in line with the biological heterogeneity of this
tumor type (biopsy or culturing selection of individual subclone), twoDMG
cell lines derived from tissue T1 showed a striking loss of genetic alterations.

In conclusion, culture media, dimensionality, and passage number
affect DNAm and CNV patterns. By comparing genes involved in the
changed genome-wide DNAm patterns, we appreciated a significant
enrichmentof cellular processes andpathways correlatingwith the culturing
method, highlighting the need to optimize culture conditions to maintain a
coherent methylation profile in vitro. We strongly recommend serum-free
and 3D cultures as they more frequently preserve the biological and
molecular characteristics of the tumor of origin. Our study demonstrates
that DNAm could be a useful tool for testing quality control of cell culture
techniques and strategies, especially when paired with other methods such
as DNA sequencing (for clonality detection) or bulk- or single-cell-RNA
sequencing (to highlight changes in cellular heterogeneity). In conclusion,
we advise its use when undertaking in vitro pBT studies.

Methods
Samples
In this study, a total of 241 genome-wide DNAm profiles were analyzed
(Table 1 and Supplementary Table 1). We evaluated 155 different pediatric
brain tumor tissues (T), clinically and histologically confirmed, for which
high-quality DNA was available. Thirty-four samples of the entire tissues’
cohort were studied together with their derived cell lines (one or more cell
lines for each tumor), the remaining 121 tissues did not have corresponding
cells. The tissue cohort included61medulloblastomas (MB)divided into the
four principalmolecular subgroups: 10 and 17 tumorswith activation of the
WNT and Sonic hedgehog (SHH) pathways, respectively; 13 tumors clas-
sifiedwithin theMB-Group 3 and 21 tumors belonging to theMB-Group 4.
We included a total of 81 glial tumors with several histotypes and 9 epen-
dymomas (EPN). For easier execution of analyzes and interpretation of
results, taking into consideration the type and numbers of the available
primary cell lines, we decided to subdivide the glial tumors into low-grade
gliomas (LGG, n = 45), and pediatric-type diffuse high-grade gliomas
(n = 36). We further subdivided the latter into diffuse (pontine) midline
gliomas H3 K27M-altered (DMG) (n = 13) and all the remaining high-
grade gliomas subtypes (HGG) (n = 23). Lastly, we included 4meningiomas
(MNG) as a control group. The specific nomenclature for each tumor,
according to 2021 WHO classification of Tumors of the Central Nervous
System44 is reported in Table 1 and S1. The cell cohort included a total of
86 samples: 5 commercial cell lines, 9 organoids, 56primary cells pairedwith
corresponding tissues and 16 primary cell cultures without tumors (see
Supplementary Table 1 and Fig. 1). Cell cultures were named according to
the nomenclature below: primary cultures (C) in both two-dimensional
(2D) and three-dimensional (3D) conditions, either as serum-free (SF) or
serum-supplemented medium (S) and considering early (E) and long (L)
passages in culture. Tumor tissues and cell lines are named with the tumor
acronym and progressive numbers. The experimental workflow is outlined
in Fig. 1.

Cell cultures
pBT samples used for cellular models’ generation were obtained from
patients operated at the BambinoGesùChildren’sHospital under approvals
by the Ethical Committee of Bambino Gesù Children’s Hospital [Protocol
n° 1680_OPBG_2018 (28.12.2018); Protocol n° 1863_OPBG_2019,
(01.08.2019); Protocol n° 3024_OPBG_2023 (01.02.2023); Protocol n°
21LB, Study Number 730/2013]. All samples were collected with written
informed consent from the patients’ parents or legal guardians and in
compliancewith all relevant ethical regulations, including theDeclarationof
Helsinki.

Patient-derived MB/HGG stem-like cells (SLC) were obtained from
primary human MBs and maintained in stem-cell medium (SCM), as
previously described45: DMEM/F12 (Gibco) supplemented with 0.6% glu-
cose, 25mg/ml insulin, 60mg/ml N-acetyl-L-cysteine, 2 mg/ml heparin,
20 ng/mlEGF, 20 ng/ml bFGF (Peprotech), 1%penicillin-streptomycin and
B27 supplement without vitamin A (Gibco).

Patient-derived LGG cells were isolated and maintained in culture as
previously reported46,47. Briefly, LGGcell lineswere cultured in 2D in culture
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“Method a”: normal human astrocytes (NHA) complete medium (Lonza):
ABMTM basal medium (CC-3187) supplemented with growth factors,
cytokines); or culture “Method b”: samples were mechanically processed,
washed twice with phosphate-buffered saline (PBS) and re-suspended in a
media containingDMEM(Thermo Scientific) supplementedwith 10% fetal
bovine serum (Thermo Scientific), L-glutamine (EuroClone), penicillin/
streptomycin (EuroClone), sodium pyruvate 100mM (EuroClone)48,49.

MBcell lines (DAOY,D283,D341, andCHLA-01-Med)were obtained
from the ATCC50. The lines were grown in Eagle’s Minimum Essential
Medium (EuroClone) supplementedwith 10% (DAOY) or 20% (D283 and
D341) heat-inactivated fetal bovine serum (FBS, Gibco), 1% sodium pyr-
uvate, 1%NEAA, 1% L-glutamine, and 1% penicillin-streptomycin. CHLA-
01-Med cells were cultured in Dulbecco’s modified eagle medium: nutrient
mixture F-12 (DMEM/F-12, Gibco) medium with B-27 supplement
(Gibco), with 20 ng/ml EGF, 20 ng/ml bFGF (Peprotech), in addition to 1%
L-glutamine and 1% penicillin-streptomycin.

KNS42 cells, established humanHGG cell lines51 were purchased from
the Japanese Collection of Research Bioresources Cell Bank. Cells were
maintained in DMEM/F12 medium supplemented with 10% heat-
inactivated fetal bovine serum (FBS, Gibco), 1% L-glutamine, and 1%
penicillin-streptomycin52.

Patient-derived HGG and DMG cell lines were established and
maintained in culture as previously described42,53. Briefly, theywere cultured
in a serum-free medium “Tumor Stem Media (TSM)”: Neurobasal (-A)
(Invitrogen), and DMEM:F12 (Life Technologies) in a 1:1 ratio, supple-
mented with HEPES, NEAA, Glutamaxx, sodium pyruvate, and
B27 supplement without vitamin A (Invitrogen), 20 ng/ml human-EGF,
20 ng/ml humanbFGF, 10 ng/mLhumanPDGF-AAand10 ng/mLPDGF-
BB (Shenandoah) and 2 ng/mL heparin (Stem Cell Technologies). Cells
were also grown in TSM under 2D adherent cultures on laminin
(“Method c”).

Medulloblastoma organoids were derived from human iPSC cells as
described9 and cultured as previously reported54,55.

We considered the threshold of 15 days/ 5 passages (p5) todefine “late”
LGG and MB primary cell lines. Indeed, LGG cells showed a fast-growing
phase during the first 15 days (generally corresponding with p5) before
slowing down and activating a senescent phenotype46,47. Similar data were
observed in MB cell cultures (unpublished data).

For HGG and DMG, we considered “late” cells that have been in
culture for more than 30 days and have passed passage 10.

All analyzed cell line samples were derived from growing and healthy
cultures (Fig. 7), andweremycoplasma-free andmaintained in a humidified
atmosphere containing 5% CO2 at 37 °C.

DNA extraction
MagPurix extraction kit ZP02009 (Zinexts, Life Science Corporation) with
Zinexts automated system was used for DNA extraction from formalin-
fixed paraffin-embedded (FFPE) tissue specimens. Tumor areas with the
highest tumor cell content (≥70%) were selected for DNA extraction. DNA
extraction from organoids was previously described9; MagPurix extraction
kit ZP02005 (Zinexts, Life Science Corporation) with Zinexts automated
DNA extraction was used for cell cultures.

DNAmethylation profiling
DNAm profiling was performed after signed written consent was obtained
from the patients’ parents or legal guardians in accordance with the Bam-
binoGesùChildren’sHospital EthicalCommittee (Protocol n° 1556-OPBG,
01/15/2019), in compliance with all relevant ethical regulations including
the Declaration of Helsinki. Samples were analyzed on Illumina iScan
microarray platform using Illumina Infinium Human Methylation EPIC
BeadChip arrays in accordance with the manufacturer’s protocols as pre-
viously described56. Briefly, 500 ng or 250 ng of DNA were used as input
material for cell lines and FFPE tissues, respectively. DNA quantification
was performed with the Qubit® dsDNA BR Assay Kit (Thermo Fisher
Scientific). Bisulfite conversion was facilitated with the Zymo EZ

Methylation Kit (Zymo Research Irvine) followed by purification with
ZymoDNAClean Kit (ZymoResearch Irvine). DNA from FFPE tissue was
treatedwith the InfiniumHDFFPERestoreKit prior tohybridization to the
Infinium BeadChip (Illumina). To minimize systematic bias, the samples
were randomly distributed onto the BeadChips, which hold eight samples
per array. The sample methylation data were categorized using the brain
tumor classifier v12.5 (, accessed on 06/01/2023)57, which also generated the
copy number variation (CNV) plots. Data analysis was performed as pre-
viously described9,13. IDAT files were imported into RV.4.0.5 to be analyzed
with fit-for-purpose packages. A series of probe-filtering steps and checks
for a batch effect were performed to assess data quality. To this aim, probes
with detection p-value > 0.01 and those with less than 3 beads in at least 5%
of samples were removed. Afterward, probes containing SNPs at or near the
CpG sites, located on X/Y chromosomes and those known to cross-react
with multiple genome locations, according to Nordlund et al.58. were
excluded. The presence of batch effect and/or outliers was assessed by
principal component analysis (PCA) performed over all filtered probes as
well as by checking the similarity of samples based on the top 1000 most
variable probes by Multidimensional scaling (MDS). Beta values were then
normalizedusing theBetaMixtureQuantile dilation (BMIQ)Rpackage59.A
further check for any sample deviating from the characteristic beta value
bimodal distribution was performed to confirm the absence of outlier
samples. Singular value decomposition (SVD) analysis60 was carried out to
estimate both technical and biological sources of variation in our experi-
ments. The champ.SVD() function61 with default parameters was used for
this analysis, setting covariates as follows: Sample group (Tumors/Cells/
Organoids), Sex, Age, Tumor Classification (DMG/EPN/HGG/LGG/MB/
MNG), Sample material (FFPE/frozen), Time of culture (early/late), Slide,
Slide position.

Unsupervised dimensionality reduction was applied to the whole
normalized methylation dataset to explore relations among the different
tumors and cell types. The original structure of data was not perturbed,
considering that the relatively small size of our cohort allowed handling data
without the use of any feature selection technique62. Referring to the t-SNE
protocol by Kobak and Berens63 20-component PCA initialization was
performed, followed bymultiple t-SNE to determine which value of hyper-
parameters resulted in the best cluster aggregation/separation. We varied
perplexity ranging from 5 to 100, theta from 0.1 to 1, and early exaggeration
iterations (e.e.i.) from 100 to 500. A thorough visual comparison of results
led us to set as final hyper-parameters theta=0.5, e.e.i.=200, perplexity=15.
The snifter v1.4.0 R wrapper (https://rdrr.io/bioc/snifter/) of the python
openTSNE library for the fast interpolation-based t-SNE was used to per-
form the analysis62,64.

t-SNE cluster definition and stability were assessed by hierarchical
density-based spatial clustering of applications with noise (HDBSCAN),
available in the dbscanRpackage v1.1865,66.We set theminimumcluster size
parameter to four, equal to the number of samples that make up the minor
group of tumor tissue type which is meningioma. Cluster stability was
evaluated using the density-based clustering validation (DBCV) metric67.

Differentially methylated regions (DMR) analysis took advantage of
DMRcate v2.8.1R package68 using log2 transformed beta-values (M-values),
FDR < 0.05, the gap between significant probes set to 1000 bp, and 7 as the
minimumnumber ofCpGsper region. For each sample of the test group,we
calculated the difference between the beta values of that sample and the
average beta values over samples of the reference group. Bymaking averages
both over the probes within the DMR and samples of the test group, we
could therefore assign each DMR a unique value (Δβ) which reflects
methylation difference. These analyses were performed only over DMRs
localized inpromoter regions and/orfirst exon (TSS200,TSS1500, 1stExon).
We considered >10% of |Δβ| as the threshold for hypo- and hyper-
methylated DMRs. The missMethyl R package v1.28.0 allowed us to assess
the identifiedDMRs for significant gene and pathway enrichments using all
CpGs as background, taking advantage of Wallenius’ noncentral hyper-
geometric test68.GeneOntology (GO)andKEGGpathwayenrichmentwere
tested with the GOregion function of missMethyl, whereas the gsaregion
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function was used to performGSAwithHallmark gene set testing provided
by theMolecular SignaturesDatabase (MSigDB) v7.1. Furthermore, the lists
of significant geneswere extracted from themissMethyl output to apply two
additional methods for pathway enrichment discovery bymeans of Fisher’s
exact test, that is, the clusterProfiler v4.069 (enrichGO function, using
ont=BP and qvalueCutoff = 0.05 parameters) and WebGestalt 2019 (ORA
analysis, functional db=GO) tool70. The redundancy of enriched GO terms
was reduced by means of the simplify function with a similarity cutoff 0.3/
0.4, depending on the number of terms.

CNV analysis by DNA methylation arrays
WeperformedCNVanalysis onDNAmarraydata of primary cell lineswith
paired corresponding tumor tissues, using R package Conumee (https://
bioconductor.org/packages/devel/bioc/vignettes/conumee/inst/doc/
conumee.html)57.

First, we normalized the combined intensity values of both ‘methy-
lated’ and ‘unmethylated’ probes comparing them to a set of copy-neutral
controls, processed with the same array type as our samples, obtained
through package CopyNeutralIMA (https://bioconductor.org/packages/
CopyNeutralIMA). Then, we combined the intensities of neighboring
probes resulting in 25,752 “bins” (regions with a homogenous signal
intensity, a minimum size of 50 Kb and a minimum of 15 probes) per
sample. To evaluate CNV similarity, we calculated the correlation value
between the bins of each cell line and its paired tissue. According to the
correlation values to their tissue of origin, we defined samples in the lower
tertile as “different”, in the second tertile as “similar”, and in the top tertile as
“coincident”. We also used conumee to generate whole-genome CNVplots
to facilitate visual inspection of the results and detect segmental alterations.
To examine how cell lines with “different” profiles diverged from tumor
tissues of the same histology, we compared the mean number of regions
where the absolute log2R value was higher than 0.1, and generated cumu-
lative genome-wide CNV plots for sample groups of interest with package
GenVisR71.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Genome-wide DNAm array raw data have been deposited in NCBI’s Gene
Expression Omnibus (GEO - GEO Series accession number GSE225810)
and are accessible through https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE225810.

Code availability
The software used in this study is publicly available with software packages,
versions and parameters described in detail in the Methods section.
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Fig. 7 | Representative brightfield images of primary patient-derived cell lines.
a The DMG primary cells were cultured adherent on 2D (laminin) (left panel; scale
bar 100 µM) or in 3D like neurospheres (right panel; scale bar 100 µM); both at late
passages (p25). b DMG primary cells were cultured adherent on 2D (laminin) (left
panel; scale bar 100 µM) or in 3D like neurospheres (right panel; scale bar 500 µm) in
stem cell culture condition. The 2D cells are at early passages (p5) while the 3D cells
are at late ones (p20). c The HGG primary cells were cultured adherent on 2D
(laminin) at two different time points (p2 vs p13) (scale bar 100 µM). d The LGG
primary cells were cultured adherent on 2D (in serummedium) at two different time
points (p2 vs p15) (scale bar 100 µM). Images were acquired at Leica DMi8 at ×10
magnification and at Leica DM2500 microscope at ×20 magnification.
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