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Regulated cell death (RCD) plays apivotal role in various biological processes, including development,
tissue homeostasis, and immune response. However, a comprehensive assessment of RCD status
and its associated features at the pan-cancer level remains unexplored. Furthermore, despite
significant advancements in immune checkpoint inhibitors (ICI), only a fraction of cancer patients
currently benefit from treatments. Given the emerging evidence linking RCD and ICI efficacy, we
hypothesize that the RCD status could serve as a promising biomarker for predicting the ICI response
and overall survival (OS) in patients with malignant tumors. We defined the RCD levels as the RCD
score, allowing us to delineate the RCD landscape across 30 cancer types, 29 normal tissues in bulk,
and 2,573,921 cells from 82 scRNA-Seq datasets. By leveraging large-scale datasets, we aimed to
establish the positive association of RCD with immunity and identify the RCD signature. Utilizing 7
machine-learning algorithms and 18 ICI cohorts, we developed an RCD signature (RCD.Sig) for
predicting ICI response. Additionally, we employed 101 combinations of 10 machine-learning
algorithms to construct a novel RCD survival-related signature (RCD.Sur.Sig) for predicting OS.
Furthermore,weobtainedCRISPRdata to identify potential therapeutic targets.Our study presents an
integrative framework for assessing RCD status and reveals a strong connection betweenRCD status
and ICI effectiveness. Moreover, we establish two clinically applicable signatures and identify
promising potential therapeutic targets for patients with tumors.

Cell death is a fundamental biological process that accompanies various life
phenomena, including growth, development, aging, and disease. It can be
categorized into related cell death (RCD) and accidental cell death (ACD)
depending on the triggering mechanism. Unlike ACD, RCD is a controlled
and sequential form of cell death that operates through specific molecular
mechanisms, under genetic regulation, and can be modulated through
pharmacological or genetic interventions. In 2018, the Nomenclature
Committee on Cell Death established guidelines encompassing morpho-
logical andbiological aspects of cell death, identifying 12modes of cell death,
such as necroptosis and immunogenic cell death1. Recent advancements
have unveiled additional types of cell death that play crucial roles. These
include autosis, cuproptosis, anoikis, disulfidptosis, alkaliptosis, oxeiptosis,

and mitotic cell death. Throughout cancer progression, cell death has been
identified to function at various stages, and resistance to cell death is con-
sidered akey featureof cancer2. Importantly, cell death is intricately linked to
the response and tolerance of cancer treatments, such as radiotherapy and
immunotherapy. High-energy ionizing radiation, for instance, exerts its
antitumor effects by inducing ferroptosis, thereby enhancing the sensitivity
of tumors to IR therapy3,4. Intriguingly, ferroptosis can induce a suppressive
immune microenvironment by influencing the migration and polarization
of tumor macrophages, consequently reducing the efficacy of immune
checkpoint blockade5.

Immunotherapy has emerged as a groundbreaking approach in cancer
treatment, establishing itself as the “fifth pillar” alongside radiation therapy,
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chemotherapy, surgery, and targeted therapy. It serves as a new treatment
option for patients with advanced cancer6. Various immunotherapy stra-
tegies are currently employed, including lytic virus therapy, cancer vaccines,
cytokine therapy, pericyte transfer, and immune checkpoint inhibitors
(ICI)7. Throughout tumor development and progression, cancer cells have
evolved multiple mechanisms to evade immune surveillance, including the
co-inhibition of immune receptors, i.e., immune checkpoints8. ICIs reacti-
vate immune cells by blocking the co-inhibitory signaling pathways,
enabling them to effectively target tumor cells. This therapy has demon-
strated positive efficacy and promising potential in clinical practice9. The
anti-CTLA-4 and anti-PD-L1 antibodies have received approval for the
treatment of various progressive cancer types, including melanoma10, non-
small cell lung cancer11, and renal clear cell carcinoma12.

While ICIs have significantly advanced the field of immunotherapy in
oncology, several challenges remain. Many patients do not benefit from
ICIs, with response rates ranging from15% to 30% inmost solid tumors and
45-60% in melanoma and MSI-H tumors9. The incidence of immune-
related adverse events (irAE) is notably high and represents a limitation of
ICIs. Given the above, the active development of predictive biomarkers to
identify patients who could benefit from ICIs treatment or to predict the
occurrence of irAE is of utmost value to improve the current landscape of
ICIs treatment.

This study represents the first extensive evaluation of RCD levels at a
cancer-wide scale, integrating 18 types of RCD and multiple RCD-
associated genes. It introduces a tumor RCD measure known as the RCD
score and establishes a strong association between RCD, ICI outcomes, and
prognosis of tumor patients through an in-depth analysis of large-scale data.
Significantly, we have constructed two gene expression signatures, RCD.Sig
and RCD.Sur.Sig. The former successfully predicts ICI response across
multiple cancer types, while the latter accurately predicts prognosis in
patients with various cancer types.

Results
Integrative delimitation of RCD levels in cancers and normal
tissues
A graphic abstract and overall framework flow of this study were presented
in Figs. 1 and 2, respectively. Among the 18 RCD signatures collected from
previous studies, the number of genes ranged from 5 to 3449, with corre-
sponding proportions ranging from 0.1% to 46.2% (Fig. 3a). The intersec-
tion of the 9 signatures revealed 3 genes, including TP53, BCL2, and BAX,
suggesting the presence of common nodes and hubs between RCD mod-
alities. This finding may partially explain the mutual regulation and influ-
ence between cell deathmodalities and their ability to interconvert in highly
heterogeneous tumor microenvironments (TME). The RCD scores were
artificially defined as the sumof the ssGSEA scores of all 18 RCD signatures.
These scores were used to assess the overall level of RCD signaling in
individual samples as a whole, providing a comprehensive dimension of
analysis. Several approaches were utilized to demonstrate the robustness
and practical value of the RCD score. RCD score was calculated in tumor
samples from TCGA and normal tissue samples from GTEx to investigate
RCDactivity across 30 cancers and their corresponding normal tissues. The
overall level of RCD in low-grade glioma (LGG), glioblastoma (GBM), and
testicular cancer (TGCT) was comparatively lower than in other cancers
(Fig. 3b).

At the pan-cancer level, the disulfidptosis signal, with the highest sum
of the scores, appeared to be the core RCD type in the tumors (Fig. 3c).
Disulfidptosis and autophagywere themost enriched cell death signature in
18 cancer types and in 6 cancer types, respectively (Fig. 3d).

In all tumors, there was a positive correlation between the majority of
RCD modes; however, netotic cell death and oxeiptosis showed a negative
correlation with other modes of RCD in some cancer types (Fig. 3e).
Regarding the association with the RCD score, netotic cell death and
oxeiptosis were negative or not significant inmost cancer types, while other
RCDmodes showed a significant positive correlation orwere not significant
(Fig. 3f).

We also collected transcriptomic data fromcancer cell lines of different
tumor types and estimated the RCD level across these tumors based on the
cell line data (Supplementary Fig. 1A). The levels of RCD varied con-
siderably between cell lines of different cancer origins. Moreover, the het-
erogeneity of RCD was not only observed in tumors but also in normal
tissues (Fig. 3g). The RCD level was highly elevated in most cancers,
including LGGandGBM(Fig. 3h, i). Furthermore, theRCDscore increased
with increasing glioma grades (Fig. 3i).

The association between RCD levels and functional pathway signals
and genomic variations was also investigated at the pan-cancer level. RCD
scoreswere negatively associatedwithDNArepair,MYC-related genes, and
cell cycle signaling, while positively associated with metastasis, stemness,
and inflammation (Supplementary fig. 1B–E). These results were consistent
with the notion that failures inDNA repair, exceptional expression ofMYC
transcription factor family members, or abnormal assembly of oncogenic
signaling hubs can trigger cell death13–16.

Genomic instability, a common characteristic ofmost cancer cells, was
observed in multiple RCD types, such as autophagy17, apoptosis18,
ferroptosis19, pyroptosis20, and necroptosis21. However, the specific rela-
tionship between genomic instability and RCD levels requires further
investigation.Here, we explored the correlation between the RCD score and
copy number variation (CNV) score, tumormutational burden (TMB), and
intra-tumor heterogeneity (ITH). The RCD level was negatively associated
with the CNV score in most cancer types (Supplementary Fig. 1F). Fur-
thermore, the RCD level was significantly positively associatedwithTMB in
colon cancer (COAD), thymoma (THTM)andbreast cancer (BRCA),while
it was significantly negatively associated with TMB in prostate cancer
(PRAD), head and neck cancer (HNSC) and lung squamous cell carcinoma
(LUSC) (Supplementary Fig. 1G). The median values analysis revealed a
positive association between the RCD level and ITH (R = 0.51, p value =
0.00434) and TMB (R = 0.67, p value = 0.0000495), while showing no
association with the CNV score (R =−0.14, p value = 0.471) (Supplemen-
tary Fig. 1H–J).

In summary, RCD levels exhibited heterogeneity at the pan-
cancer level in both tumor and normal tissues. Notably, RCD levels
were higher in tumors compared to normal tissues, particularly in
gliomas. The robustness of the RCD score, along with the highly
positive correlation between the RCD score and ITH/TMB, and the
negative correlation between the RCD score and CNV score in most
cancer types, suggests that CNV is more likely to be increased in
samples with low RCD levels. Therefore, the RCD level, as an
effective complement to TMB and ITH, may serve as another
important biomarker for tumor ICI therapy.

Cancer type-specific association of RCD levels with tumor
immunity
Tumor immunity plays a critical role in tumor prognosis and development.
We investigated the impact of RCD-level heterogeneity on cancer prognosis
using datasets from TCGA and validated our findings with independent
datasets. Our results demonstrate that the heterogeneity of RCD level may
significantly impact clinical outcomes in various tumors, particularly in
brain tumors. Therefore, RCD-level heterogeneity could serve as a feasible
and robust predictor for prognosis in several cancers (Supplementary
Fig. 2A–F).

To explore the influence of RCD level on tumor immunity, we
employed several approaches. Immune markers such as PD-L1 expression
have been recognized as predictive of ICI responsiveness and improved
clinical outcomes22. Therefore, we examined the association between RCD
scores and the expression of immune checkpoints, including CD274,
CTLA4, and so on. Our results suggest a positive correlation between RCD
scores and the expression of these genes. Additionally, we assessed the
relationship between RCD levels and the activity of TLSs, regulatory T cell,
T-cell activation, T-cell survival, class I MHC, immunosuppression, and
myeloid cell chemotaxis. Significantly positive associations were observed
(Fig. 4a).
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Furthermore, we examined the infiltration immune cells at the pan-
cancer level using the MCP-counter algorithm and the CIBERSORT cell
deconvolution method. The results revealed that immune cell populations
defined by the MCP counter exhibited an increasing trend from immune
depletion to immune-enrichment as RCD levels increased. However, the
association between RCD levels and infiltrating immune cells, as estimated
by CIBERSORT, showed a more complex relationship. Antitumor-related
immune cells such asM1macrophages, activatedmemory CD4 T cells, and
resting dendritic cells demonstrated a strong positive correlation with RCD
scores, whereas classical tumor-promoting immune cells like M2 macro-
phages were negatively associated with RCD levels (Fig. 4a).

Additionally, we assessed the correlation between RCD scores and
immune characteristics in individual cancer types. We found a highly
positive relationship between RCD scores and ESTIMATE scores, stromal

scores, and immune scores across various cancers. Conversely, an inverse
association was observed for the tumor purity (Fig. 4b). The infiltrating
immune cells calculated by the MCP counter showed a highly positive
correlation with RCD scores in nearly all cancer types (Fig. 4c).

To evaluate the potential crosstalk between RCD levels and immune
cells, as estimated byCIBERSORT, we examined their impact on prognosis.
In the high and low RCD subgroups, 12 and 19 immune cell types,
respectively,were significantly associatedwithOS(Fig. 4e–g, supplementary
table 1). Interestingly, most immune cell types in adaptive immunity
exhibited a protective effect onOS,whereas the opposite trendwas observed
in innate immunity (Fig. 4e).

Understanding the two cooperative and complementary immune
systems, namely innate immunity and adaptive immunity, is crucial for
developing effective immunotherapies that can overcome tumor-induced
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Fig. 1 | Graphic abstract of this study.Comprehensive evaluation of regulated cell death and integrated development of pan-cancer signatures to predict overall survival and
immune checkpoint inhibitor response.
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immune suppression and target tumors for elimination. We compared the
RCD levels in adaptive immunity and innate immunity, as estimated by the
CIBERSORT algorithm. Our findings indicate that the RCD level in
adaptive immunity is significantly higher than in innate immunity. Addi-
tionally, using purified immune cell lines, we calculated RCD scores across
19 immune cell lines, categorizing them into innate immune cells and
adaptive cells based on their functions (Fig. 4i, supplementary Fig. 3A, B).
Interestingly, the RCD level in adaptive immunity was lower than in innate
immunity, contradicting the results obtained from CIBERSORT (Fig. 4j).
One possible explanation for this apparent contradiction is that the
alteration of RCD levels is influenced by the immune microenvironment,
which shapes the immune response and impacts tumor development and
progression.

DirectpositiveassociationofRCD levelswith theeffectivenessof
tumor ICI
The expression of immune checkpoint molecules on tumor cells and
immune cells in the TME can influence the response to ICI. Targeting these
checkpoints with ICI can release the brakes on the immune system and
enhance antitumor immune responses8. In this study, we aimed to inves-
tigate the association between RCD levels and the expression of immune
checkpoint in each cancer type.Our analysis revealed a significantly positive
correlation between almost all checkpoint genes and RCD levels across
different cancers (Fig. 5a).

Furthermore, we examined the activity of 29 signatures, categorized
into four groups: anti-TME, pro-TME, angiogenesis fibrosis, andmalignant
cell properties. The results demonstrated a significant positive relationship
between these signatures and RCD levels across most cancers (Fig. 5b).
Notably, the approaches to enhance the efficacy of tumor ICI therapy pri-
marily focus on increasing tumor immunogenicity, enhancing antigen
presentation, promoting immune activation, and so on23. Here, we inves-
tigated the relationship between the seven steps in the antitumor immune

cycle and the RCD level in individual cancer types (Fig. 5c). The analysis
suggested a significant positive association between RCD levels and all steps
of the antitumor cycle across most cancers. Moreover, when considering
1793 immune-related genes,we observed that themajority of the geneswere
significantly associated with the RCD levels in almost all solid cancers. A
similar trend was observed for the 92 immunity contexture signatures
(Fig. 5d).

To foster a comprehensive understanding, we integrated the CD274
gene expression andPD-L1 protein expression, aswell as theCYT score and
PD-L1 protein expression. The analysis revealed a significant positive
relationshipbetweenRCDlevels and these indicators in several cancer types,
such as LGG and GBM (Fig. 5e, f). Additionally, we collected some sig-
natures associatedwith immune response and investigated their association
with RCD levels in individual cancer types (Fig. 5g). Across most cancer
types, a significant positive correlation was observed between these sig-
natures and RCD levels.

Objective response rate (ORR), a metric used in clinical trials
and cancer research to measure the effectiveness of a particular
therapy in inducing tumor shrinkage, was analyzed in relation to
RCD levels. Our findings indicated a significant positive association
between RCD levels and ORR (Fig. 5h). Furthermore, consistent with
previous observation, RCD levels showed a positive correlation with
TMB, higher TMB is often associated with increased neo-antigen
formation, rendering the tumor more recognizable to the immune
system24. However, a seemingly controversial result emerged, indi-
cating a positive correlation between RCD levels and ITH. ITH can
influence the response to ICI, and a higher level of ITH can com-
plicate the ICI response and hinder consistent and durable
outcomes25.

To further elucidate the relationship between antitumor-
infiltrating immune cells, RCD levels, and ITH, we divided patients
into four distinct subgroups based on median RCD score and median

Fig. 2 | Overall methodology. The workflow of a comprehensive analysis of the RCD landscape across cancers utilizing multi-omics data.
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ITH score. The subgroups include high RCD-high ITH (HRHI), high
RCD-low ITH (HRLI), low RCD-high ITH (LRHI), and low RCD-
low ITH (LRLI). The analysis of immune cell infiltration estimated by
the MCP counter revealed higher levels of infiltration in the high
RCD subgroup compared to the low RCD subgroup (Supplementary
fig. 3C). Similarly, in the comparison between high ITH and low ITH

subgroups, seven out of ten immune cell types exhibited higher
infiltration in the high ITH subgroup (Supplementary fig. 3D).
Furthermore, the comparison of immune cell types among the four
subgroups showed that tumors with high RCD levels displayed sig-
nificantly better antitumor immunity, irrespective of ITH levels
(Supplementary fig. 3E).
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Additionally, we evaluated the relationship between RCD levels and
ICI outcomes, with the scRNA-Seq data from the GSE115798 (Melanoma,
SKCM). Considering the absence of responders in this dataset and the
inclusion of treatment-naïve patients who may include potential respon-
ders, we analyzed 24 patients, including 11 non-responders (NR) and 13
patients with naïve treatment (NT), after excluding patients with no
malignant cells. The cells with high RCD scores weremainlymalignant cells
andwere enriched in theNR subgroup (Fig. 5i–k). TheRCDscore in theNR
subgroup was significantly lower than that in the NT subgroup (Wilcoxon
rank sum test, p < 0.001, Fig. 5l). In the high RCD subgroup, the proportion
of cells from the NR subgroup was higher compared to the low RCD sub-
group (Chi-square test, p < 0.001, Fig. 5m). These results were further
validated using scRNA-Seq data from the GSE123813 dataset, which con-
sisted of a BCC cohort including 4 NRs and 6 responders (Wilcoxon rank
sum test, p = 0.067, supplementary Fig. 4A–D).

Collectively, our results provide compelling evidence for a highly
positive correlation between RCD levels and the effectiveness of tumor ICI
therapy. Specifically, higher RCD levels are associated with an increased
likelihood of ICI efficacy.

Development and comprehensive description of the RCD.Sig
We hypothesized that a simplified RCD.Sig, used to estimate the level of
RCD in tumors, could enhance the effectiveness of ICI prediction due to its
significant correlation with immunity and ICI response. Our four-step
framework, described in detail in the methods section, resulted in 1955 and
4188 candidate genes, respectively (Fig. 6a, b). The intersection of these gene
sets yielded the RCD.Sig, comprising 285 genes (Fig. 6c).

To investigate the functional significance of the 285 genes in RCD.Sig,
we conducted functional pathway enrichment analysis using REACTOME,
KEGG, and BP data from GO terms. These genes exhibited enrichment in
pathways related to RCD, such as death receptor signaling, apoptosis, and
anoikis. Additionally, they were enriched in multiple pathways associated
with immunity, including interleukin-6 signaling, PD-1 signaling, and
T-cell activation (Fig. 6d–f).

We found that the ssGSEA score of RCD.Sig positively corre-
lated with both TMB and ITH, while showing no association with
CNV (Fig. 6g, h, supplementary fig. 5A). Stemness-related properties,
such as enhanced DNA repair mechanisms and resistance to apop-
tosis, have been implicated in resistance to ICI. To explore the
association of RCD.Sig with stemness, we investigated their correla-
tion using 26 stemness-related signatures (Supplementary fig. 6A–C).
The analysis provided partial evidence of a positive association
between RCD level and stemness, with 19 out of 26 signatures
demonstrating a positive correlation (Supplementary fig. 6B).

Furthermore, we evaluated the association of RCD.Sig with immunity
(Fig. 6i, j, supplementary fig. 5B–E). These results exhibited a remarkable
resemblance to the analysis of the RCD score, suggesting that RCD.Sig can
be used to assess the RCD level.

In summary, we successfully developed a simplified RCD.Sig to eval-
uate the RCD level, which can facilitate the construction of further models
for improving the prediction of ICI efficacy.

Construction and comparable assessment of the predictive
model for ICI response based on the RCD.Sig
Given the dramatic correlation between theRCD level and the ICI response,
we aimed to explore the potentially predictive value of the RCD.Sig for ICI.
We collected 18 bulk-level transcriptomic cohorts treated with ICI,
excluding samples without pre-treatment. As mentioned previously in the
methods section, we trained models using seven machine-learning algo-
rithms, obtaining seven trained models. We subsequently calculated and
compared the area under the curve (AUC) of thesemodels in the validation
dataset (Fig. 7a). The AUC ranged from 0.56 (logitBoost) to 0.72 (SVM)
(Fig. 7b). The model trained with the support vector machine (SVM)
algorithm, with the highest AUC, was identified as the predictive model for
ICI response (Fig. 7c).

To evaluate the performance of the optimal model, we tested it in the
testing, SKCM,andnon-small cell lung cancer (NSCLC)datasets,withAUC
values of 0.65, 0.77, and 0.75, respectively (Fig. 7d–f). To explore the per-
formance of the predictive model for OS in cohorts treated with ICI, we
performed a log-rank test after dividing the patients into high-risk and low-
risk groups based on the prediction results of the optimal model. The
patients in the high-risk group had worse OS than those in the low-risk
group in the validation dataset (HR: 7.54, p: 0.0181), testing dataset (HR:
2.08, p: 0.2981), and SKCM dataset (HR: 2.41, p: 0.00041) (Fig. 7g–i).

Furthermore, we evaluated the robustness of the predictive model
using individual testing cohorts, with the AUC ranging from 0.58 to 0.85
(Fig. 7j). We compared the performance of the optimally predictive model
with 13 published signatures, indicating that the RCD.Sig-based model
exhibited extraordinary superiority and consistently high predictive effec-
tiveness across most cohorts (Fig. 7k, supplementary table 2).

Overall, the predictive model for ICI response based on RCD.Sig
demonstrated remarkable robustness and superiority compared to pre-
viously published signatures across various cancer types.

Using CRISPR screening data to determine candidate ther-
apeutically relevant targets from RCD.Sig
To identify potentially important targets, we analyzed 17 datasets derived
from the collected 7 CRISPR cohorts. These datasets evaluated the effects of
knocking out 22,505 genes on antitumor immunity. Additionally, we
gathered 989 CRISPR cell lines with CRISPR essentiality revealed by large-
scale knockout screens (CERES) scores for 17,645 genes for analysis (Sup-
plementary Fig. 7A–F). Among these datasets, the top 10% of genes in the
CRISPR cell line data and the immune response CRISPR datasets included
29 genes and 41 RCD.Sig genes, respectively (Supplementary Fig. 7C, D).
Notably, five genes (WDR83, TLN1, MCL1, ACTR3, and ACTR2) were
present in both the 29 genes and the 41 genes (Supplementary fig. 7E).

Fig. 3 | Integrative quantification of regulated cell death levels in cancers and
normal tissues. a The 18 regulated cell death signatures in this study. Three genes,
including TP53, BCL2, and BAXwere screened out in 9 RCD types. bThe circle heat
map shows the average of the RCD score in individual cancer types. The average
RCD score, cancer types, and tissue types were shown from the outer to the inner
side. The RCD score was scaled by zero-mean normalization (Z score). c The heat
map shows the RCD score and the ssGSEA scores of individual samples in TCGA.
The RCD score was defined as the sum of the ssGSEA score of the 18 RCD. The right
panel was the bar plot showing the sum of the ssGSEA score of all samples in TCGA.
d The right panel shows the proportion of ssGSEA score of each RCD across the
cancers in TCGA. The middle panel shows the RCD type, which had the highest
proportion across the cancers. The left panel shows the RCD types with the highest
proportion of RCD types among all cancers. For example, of a total 30 cancers,
disulfidptosis had the highest proportion of 18 RCD types in 18 cancer types. e The

heat map shows the Spearman correlation between any two of the 18 RCD types for
the 30 cancers. CD1 contained 18 types of RCDwith the exception of pyroptosis, and
CD 2 contained 18 types of RCDwith the exception of alkaliptosis. fThe bubble plot
shows the Spearman correlation of the RCD score and the ssGSEA score of the single
RCD type. The p values < 0.05 were considered significant, while the opposite was
considered non-significant. g Average RCD score across the normal tissues in the
GTEx databank. The darker the blue, the larger the sample size. h In most cancers,
comparedwith adjacent normal solid tissue (blue), the RCD score in primary tumors
(red) was higher, with utilization of the Wilcoxon rank sum test. **** represented
p < 0.0001. *** represented p < 0.001, ** represented p < 0.01. * represented
p < 0.05. iCompared with the normal brain cortex, the RCD score of the LGG,GBM,
and glioma (LGG-GBM) was significantly higher in the GTEx and TCGA databases.
And the RCD score increased with grade. For Wilcoxon rank sum test, “****”,
“***”, “**”, “*” represented p < 0.0001, p < 0.001, p < 0.01, <0.05, respectively.
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Then, we compared the expression of these genes, except MCL1,
between the NR and the NT group in the GSE 115978 dataset. The
percentage of cells expressing these genes was significantly lower in
the NT group (Chi-square test p < 0.001, Supplementary fig. 7F).
Additionally, we assessed the potential value of these five individual

genes in OS and the ICI response using a combined cohort (Sup-
plementary Fig. 8A, B).

In summary, we identified five hub genes fromRCD.Sig usingCRISPR
screening data. Knocking out these genes impaired tumor cell fitness and
enhanced antitumor immunity.
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Development andvalidationof thepredictivemodel forOSbased
on the RCD.Sig
Given the significant association of the RCD level with clinical outcomes,
particularly OS, we developed a simplified signature named RCD.Sur.Sig.
This signature was based on the RCD.Sig genes and aimed to accurately
predict the prognosis at the pan-cancer level. The construction of
RCD.Sur.Sig involved the leave-one-out cross-validation (LOOCV) fra-
mework, which comprised 101 combinations of ten machine-learning
algorithms, as previously described in themethods section (Fig. 8a).Within
the LOOCV framework, we optimized the combination of stepwise Cox
regression (both) and RSF based on the highest mean C-index to construct
the model (Fig. 8b, supplementary table 3).

Following stepwise Cox regression analysis, we selected 71 genes as the
RCD.Sur.Sig,whichwere thenutilized todevelop thepredictivemodel using
the RSF algorithm. In all datasets, patients with a high-risk score exhibited
significantly worse OS compared to those with a low-risk score (Log-rank
test p value < 0.001, Fig. 8c–f). Additionally, we assessed the predictive
performance of the model for clinical outcomes in individual cancer types
(Fig. 8g, h, supplementary Fig. 9A–C, supplementaryTable 4). In theTCGA
total dataset, the model demonstrated powerful and robust prediction
effectiveness across cancer types (Supplementary Fig. 10, 11A). Notably, the
risk score calculated by the model was a significant risk factor for OS, in 29
out of 30 cancer types (Supplementary fig. 11B). Furthermore, we tested the
robustness of themodel using external independent datasets such asCGGA,
GSE15459, and GSE76427. These tests confirmed that the model exhibited
stable performance, indicating its ability to handle different conditions
without significant degradation in accuracy or performance metrics (Sup-
plementary Fig. 11C–E, 12A, B). By conducting a meta-analysis of 23
cohorts, we calculated the comprehensive combined HR, which demon-
strated that the risk score was a significantly risky factor for OS (compre-
hensive combinedHR: 3.51, p value < 0.001, Fig. 8i, supplementary table 5).
To identify themost valuable targets forOSprognosis and facilitate targeted
drug development or clinical application, we selected core genes from
RCD.Sig using a sevenmachine-learning framework at the pan-cancer level,
specifically in TCGA-LGG and TCGA-GBM (Supplementary Fig. 13A–D).
Some genes, such as SLC43A3 and FOSL1, were identified as potential
targets (Supplementary Fig. 13E, F).

Collectively, we obtained a 71-gene RCD.Sur.Sig, and developed a
powerful and robust model for predicting OS. This model consistently
performed well across different scenarios and datasets. Moreover, we
identified some core prognostic genes, such as SLC43A3 and FOSL1.

Discussion
RCD refers to a complex series of processes by which cells in an organism
undergo self-destruction in a controlled manner1. It plays a crucial role in
various biological processes, such as development, tissue homeostasis, and
immune response. There are several types of RCD, including apoptosis,
necrosis, autophagy, and pyroptosis.However, a comprehensive assessment

of the status and associated features of RCD at the pan-cancer level remains
unexplored1. In this study, we explored the potential association between
RCD and immunotherapeutic response and observed a significant corre-
lation betweenRCDand ICI outcomes.Notably, RCDwas found to occur in
almost all solid tumors, and a positive correlation between RCD and
enhanced antitumor immunity was observed in several cancer types.
Motivated by these findings, we hypothesized that a positive correlation
between RCD and ICI effectiveness is prevalent across a wide range of
cancers. To test this hypothesis, we performed a comprehensive integrative
analysis to identify genes significantly associated with RCD in malignant
cells. This analysis yielded a pan-cancer RCD signature, referred to as
RCD.Sig, which comprised genes that demonstrated a strong correlation
with RCD. We conducted meticulous investigations to validate the pre-
dictive power of RCD.Sig, and remarkably, it outperformed previous pre-
dictive signatures in multiple cohorts, predicting response to ICI based on
RNA-Seq data from independent ICI treatments. We also investigated the
RCD score with the spatial transcriptomic data of glioblastoma, indicating
that RCD were heterogeneous in terms of spatial location (Supplementary
Fig. 14).

Additionally, we examined the connection between RCD and the
clinical prognosis of oncology patients. In order to better guide precise
treatment decisions and predict prognosis across different cancer types, we
identified genes highly correlated with patient prognosis at the pan-cancer
level using RCD.Sig. This analysis resulted in the development of a pan-
cancer RCD survival signature, named RCD.Sur.Sig, which showed sig-
nificant predictive value. Of note is that RCD.Sur.Sig performed excep-
tionallywell in predicting the prognosis of oncology patients acrossmultiple
independent datasets. To the best of our knowledge, this study represents
the first extensive evaluation of RCD levels at a cancer-wide level. We
achieved this by integrating 18 RCD types and multiple RCD-
associated genes.

This multi-parameter index takes advantage of the shared character-
istics among different cancer cell types, surmounting the limitation of
lacking RCD-specific biomarkers. It provides a standardized measure for
comparing RCD levels across different cancer types. Interestingly, we
observed that RCD scores were lower in adjacent normal tissue and
increased with clinical parameters associated with aggressive phenotypes.
These positive correlations with tumor malignancy and aggressiveness
suggest a malignant nature of RCD resistance in tumors, which aligns with
the well-documented phenomenon of RCD resistance observed in a wide
range of malignancies26. Furthermore, we identified heterogeneity in RCD
scores across different tissue types, immune cell types, and tumor types,
among others. By employing mathematical metrics to quantify RCD levels,
our findings provide a valuable framework for gaining further insights into
the regulation of RCD within the TME. This framework can guide further
experimentation and identification of potential biomarkers.

Regarding the enrichment analysis of RCD.Sig genes, we found sig-
nificant associations with various biological functions such as TNF

Fig. 4 | Cancer type-specific association of RCD levels with tumor immunity. The
RCD score exhibited strong relevance with tumor immunity. a The heat map
showing the Spearman correlation of RCD score and tumor immunity including the
TME defined by theMCP-counter Z scores, the infiltrating immune cells defined by
the CIBERSORT algorithm, expression of gene signatures associated with the
functional orientation of the immune TME, expression of genes linked with the
immune checkpoints. Based on the median RCD score, the pan-cancer cohort of
TCGA was divided into two subgroups, named the high RCD subgroup and the low
RCD subgroup. The difference of the tumor immunity, as mentioned previously
between the high RCD subgroup and low RCD subgroup was estimated with the
Wilcoxon rank sum test. “****” indicated the p value < 0.001, and “N” indicated the
p > 0.05, which was considered as nonsense. b Spearman correlations (color)
between RCD scores and the ESTIMATE score, immune score, and stromal score
investigated by ESTIMATE algorithm for individual TCGA cancer types.
c Spearman correlations (color) between RCD scores and the infiltrating immune
cells estimated by MCP-counter algorithm for individual TCGA cancer types.

d Spearman correlations (color) between RCD scores and the absolute abundance of
22 immune cell types estimated by CIBERSORT for individual TCGA cancer types.
eHRs represent the association between the 22 known immune cell types and OS in
the high RCD subgroup and low RCD subgroup. Red indicated higher risk, blue
indicated lower risk, and gray indicated nonsense. f Kaplan–Meier curves of OS
between the subgroups stratified by the infiltration of several representative immune
cells in the high RCD subgroup. g Kaplan–Meier curves of OS between the sub-
groups stratified by the infiltration of several representative immune cells in the low
RCD subgroup. h The difference in the RCD score between the adaptive immune
cells and innate immune cells estimated by CIBERSORT algorithm was investigated
by the Wilcoxon rank sum test. i The box plot showing the RCD scores of the
multiple purified immune cells. j The graph shows the difference in the RCD score
between the adaptive immune cells and innate immune cells extracted from the
purified immune cell lines. The Wilcoxon rank sum test was performed to estimate
the difference.
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signaling, RAS mutation signaling, etc. The TNF signaling pathway plays a
dual role in regulating cell death, promoting apoptosis under certain con-
ditionswhile inducingnecrosiswhen the apoptotic pathway is blocked. RAS
mutations are known to have a significant impact on cellular signaling
pathways, including those involved in regulating cell death processes like
apoptosis, autophagy, and senescence27. These molecular changes

contribute to the development and progression of cancer by influencing cell
fate decisions, and promoting cell survival and proliferation. RCD as well as
other regulated cell fates (e.g., senescence), are closely linked to stemness28.
Thesemechanisms play a role in stem cellmaintenance, differentiation, and
fate determination, and ultimately influence tissue development, home-
ostasis, and disease progression28. The interplay betweenRCDand stemness
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is complex and stringent, ensuring a balance between proper tissue function
and self-renewal and differentiation of stem cell populations. RCD.Sig
exhibited a positive correlation with most of the stemness features in dif-
ferent cancer types. These results suggest that RCD.Sig encompasses genes
strongly and specifically associated with cancer stemness. RCD.Sig serves as
a concise representation of RCD levels across multiple dimensions and
demonstrates a positive correlationwith increased antitumor immunity and
ICI response, similar to the RCD score. As a novel biomarker, RCD.Sig was
compared to previously published ICI predictive signatures, and our results
demonstrated the significant superiority of RCD.Sig in predicting ICI
response and differentiating patients with varying survival outcomes across
different cohorts.

Similar toMiranda et al.’sfindings,we discovereda positive correlation
between RCD. Sig and stemness, TMB and ITH. It is noteworthy that high
TMB is linked with high RCD29. Despite TMB being a well-recognized
biomarker for ICI, many patients with high TMB are unresponsive to ICI30.
Our findings suggest that RCD could serve as a valid rationale for the
immune resistance of high TMB tumors. Our analysis revealed a strong
positive correlation between the RCD score and antitumor immunity in
both low and high ITH tumors. This provides a possible explanation for the
immune resistance observed in high ITH tumors. However, we found no
significant correlation between the CNV and RCD scores in pan-cancer
studies. This highlights the importance of investigating the impact of CNV
in the context of specific tumor tissues.This point is consistentwithprevious
research that demonstrates a significant relationship betweenCNV and ICI
in many types of cancer, but it should be noted that the direction and
intensity of this associationmaynot be universal across all cancer typeswith
regard to tumor immunity31–33.

Furthermore, this study revealed a negative correlation between RCD
and MYC-related genes, DNA repair, and the cell cycle pathway, and a
positive association with stemness, inflammation, and metastasis. It is
important to note that cells experiencing irreparable damage during the cell
cycle may pause at checkpoints for DNA repair. However, if the damage
remains unaddressed, RCD can be triggered to eliminate these compro-
mised cells34. The oncogene MYC has been shown to regulate cell pro-
liferation and apoptosis. Overexpression of MYC suppresses RCD, such as
apoptosis, and promotes cell proliferation, which contributes to cancer
development35. Conversely, decreased MYC levels can trigger RCD. In
terms of the positive correlation between RCD and inflammation, inflam-
mation can induce RCD in cells as a protective mechanism. On the other
hand, sustained inflammation may disrupt RCD, promoting cell survival
and potentially creating a pro-tumorigenic microenvironment36. Emerging
evidence indicates a bidirectional association between RCD and stemness37.
RCD regulates stem cell populations by removing damaged cells or main-
taining homeostasis. However, stem cells can withstand RCD, promoting
their survival and contributing to tumor initiation and progression. The

interplay of apoptosis and metastasis is complex38. Reduced apoptosis may
assist the survival of migrating cancer cells duringmetastasis38. However, in
somecases, increased apoptosismaypromote the engraftment and spreadof
metastatic cells to distant organs38. These correlations emphasize the intri-
cate involvement of RCD in influencing stemness, inflammation, and
metastasis within the complex context of cancer biology.

Our study analyzed the intricate correlation between RCD and
immunity, encompassing immune cell infiltration, immune checkpoint
genes, and immune features. We provide potential evidence that RCDmay
serve as a biomarker for predicting ICI response. We found a significant,
positive relationship between RCD score and M1 macrophage in nearly all
solid tumors, while naive CD4 T cells exhibited the opposite effect. M1
macrophages are significant in their contribution to antitumor immunity
and the inhibition of cancer progression, through activities such as tumor
suppression, initiation of immune responses, tissue remodeling, antigen
presentation, and promotion of inflammation39. There are conflicting views
on the topic. Furthermore, naive CD4 T cells may also play a crucial role in
triggering and regulating the immune response against cancer, by orches-
trating various immunemechanisms to identify, respond to, and potentially
eradicate cancer cells40. In reality, the immunemicroenvironment of tumors
is a delicate interplay between antitumor and pro-tumor factors. The
intricate relationship between RCD and the infiltration of two distinct
antitumor immune cells demonstrates the complexity of the TME. We
discovered that almost all immune checkpoint genes were favorably asso-
ciatedwithRCD in almost all solid tumors. This indicates theTME employs
immune checkpoint molecules to evade immune surveillance and mitigate
immune responses against the tumor, leading to a poor prognosis41. The
K-M curves with RCD scores across tumors reinforced this.

The significance of biomarker research lies in its potential to improve
our understanding of diseases, enable early detection and facilitate perso-
nalized medicine, in particular by enabling the development of combina-
torial strategies to overcome immune resistance. Given the strong
correlation between RCD.Sig and ICI outcomes, as well as the link between
RCD and tumor cell death, we utilized CRISPR datasets of cell lines and
immune response cohorts to explore potential drug targets for RCD.Sig.We
identified the potential therapeutic biomarkers including MCL1, TLN1,
ACTR2, ACTR3, andWDR83.MCL1, one of the highest-ranking RCD.Sig
genes in both datasets, are essential for cell growth, survival, and pro-
liferation, and play a role in the tumor immune microenvironment42–44.
MCL1’s regulatory role in cell survival extends to immune cell populations,
influencing their viability, activation, and functional outcomes44. Over-
expression of MCL1 has been associated with resistance to T cell-mediated
cytotoxicity in various cancer cell types and mouse xenografts, through
regulationof themitochondrial apoptotic pathway andactivationof theNF-
κB pathway45. Further research on these five genes will contribute to the
development of ICI therapy.

Fig. 5 | Identification of a positive association between the RCD score and
immunotherapy response. a The circle heat map showing the association between
the RCD score and the gene expression of the immune checkpoints in individual
cancer type, with Spearman correlation. From inside to outside of the circle heat
map, the vertical axis with a black arrow indicated the different cancer types, which
were annotated in by the x axis of plot B. b The heat map depicting the Spearman
correlation between the RCD score and the ssGSEA score of 29 microenvironment
signatures across multiple cancers. c The heat map indicating the correlation
between the RCD score and the activity of the 7-step antitumor immune cycle signals
across multiple cancer types. d The upper panel showing the proportions of sig-
natures significantly correlated with the RCD score in 92 immune contexture sig-
natures. The bottom panel showing the proportions of genes significantly correlated
with theRCD score in 1793 immune-related genes. The cancer typeswere ordered by
increasing proportions of RCD score-related signatures in 92 immune micro-
environment signatures. e Significant of the Spearman correlations of RCD score
with gene expression of CD274 (x axis) andPD-L1 protein expression (y axis) at pan-
caner level. The orange indicated that both two p values were <0.05. The yellow
indicated that the CD274-related p values were <0.05, while the PD-L1-related p

valueswere not <0.05. And the blue indicated that both the two kinds of p valueswere
not <0.05. f Significant of the Spearman correlations of RCD score withCYT score (x
axis) and PD-L1 protein expression (y axis) at pan-caner level. g The heat map
depicting the Spearman correlation between the RCD score and ssGSEA scores of
the immunotherapy response signatures. h Spearman correlation of median RCD
score and the objective response rate of each cancer types. i UMAP plot of the
identified cell types in GSE115798 (SKCM). Different colors represented the dif-
ferent cell types. j UMAP plot of the identified cells colored by the RCD score. The
RCD score was calculated as described in methods. k UMAP plot of the identified
cells colored by the immunotherapy response. lThe difference inRCDscore between
the NR and NT in SKCM cohort. The center of the box pot was the median values,
the bounds of the box were the 25% and 75% quantiles. Wilcoxon rank sum test was
used for estimating the difference. NR non-responder, NT naive treatment. m The
difference in the proportion of the NT and NR between in high RCD subgroup and
the low RCD subgroup. The chi-square statistic test was used and the cells were
divided into a high RCD subgroup and a low RCD subgroup based on the median of
the RCD score.
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We acknowledge certain limitations in our study. First, we defined the
RCD score based only on the summation of the ssGSEA score at the bulk
level and GSVA score at the single-cell level of the 18 signatures. Whether
there is amore optimal algorithm to describe the overall level of RCD in the
real world warrants further discussion and debate. Although GSVA
demonstrates superiority in UMI-based single-cell data compared to other

enrichment algorithms, the presence of dropout events may affect the
accuracy of RCD score calculations. Second, additional external indepen-
dent datasets are required to validate the two predictionmodels to enhance
the reliability and generalizability of the study. Third, an investigation into
the biological mechanisms underlying the relationship between RCD levels
and tumor ICI therapy is required. Incorporating experimental validation
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and functional analysis of key genes involved in immune evasion and
treatment resistance shouldbeperformed toprovidedeeper insights into the
processes at play. Fourth, while this study identified several potential targets
with practical clinical applications based on RCD levels using various
strategies, specific experiments to validate them were not conducted. Vali-
dation experiments will be our next step in future research, and more wet-
lab work needs to be done to identify the 12 signaled core genes, especially
experiments related to GBM. Fifth, we used the AUC as the metric for
analyzing the data from 18 immunotherapy cohorts that are imbalanced
(296 (28%) responder, 763 (72%)non-responder), as the previous studyhad
done46. When using the AUC as an evaluation metric, it is essential to be
aware that it canbeoverly optimistic in the context of an imbalanceddataset.
Therefore, it might be more appropriate to consider using the Matthews
Correlation Coefficient (MCC) as the evaluation metric for handling an
imbalanced dataset. Finally, in this study, we provided evidence for a
positive correlation betweenRCDscores and the effectiveness of ICI, but the
relationship between the RCD scores and immune response was not
comprehensively explored, which should be further investigated.

Methods
Gathering and preprocessing the RCD signatures
We compiled a comprehensive collection of 18 signatures of RCD by uti-
lizing various databases and published literature1,47–54. The specific strategies
employed for collecting these signatures are summarized in supplementary
table 6. To ensure a more comprehensive and accurate representation of
RCDsignals,we processed signatures fromdifferent sources bymerging sets
for each type of RCD.The total number of signatures for eachRCDtypewas
as follows: alkaliptosis (n = 7), anoikis (n = 29), apoptosis (n = 642), autosis
(n = 1826), cuproptosis (n = 72), disulfidptosis (n = 16), entotic cell death
(n = 15), ferroptosis (n = 788), immunogenic cell death (n = 3449), lysoso-
mal cell death (n = 295), mitotic cell death (n = 1695), mitochondrial per-
meability transition (MPT)-driven necrosis (n = 204), necroptosis
(n = 315), netotic cell death (n = 8), oxeiptosis (n = 5), parthanatos (n = 309)
and pyroptosis (n = 624). The detailed results were provided on the Github
(https://github.com/zwxiangya/RCDscore).

Pan-cancer bulk-sequencing transcriptomic datasets and
preparation
The multi-omics, including transcriptomic data, CNV data, and
matched clinical medical information, from The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression(GTEx)55 were
obtained from UCSC XENA databank (https://xenabrowser.net/
datapages/)56. The RNA-seq data transformed by log(x+ 1),
somatic mutation data, and copy number variation data calculated
via the GISTIC2 method were generated from the illumine platform,
illumine platform, and Hiseq illumine platform, respectively. Samples
from patients without survival time or survival status, as well as
samples from normal patients, were excluded. Only solid cancer
types were included, while patients with acute myeloid leukemia
(LAML), pheochromocytoma and paraganglioma (PCPG), and lym-
phoid neoplasm diffuse large B-cell lymphoma (DLBC) were deleted.
Eventually, 9890 tumor samples from 30 solid cancers with multi-
omics data were obtained for further analysis.

The tumor mutation burden (TMB) data and the intra-tumor het-
erogeneity (ITH) data of the TCGA samples were downloaded from the
cBioPortal website (https://www.cbioportal.org), and the corresponding
literature57. Additionally, the transcriptome and the clinical information of
CGGA-325 (n = 325) and CGGA-693 (n = 693), including patients with
low-grade glioma and glioblastoma, were downloaded from the Chinese
GliomaGenomeAltas (http://www.cgga.org.cn/)58. Patients without overall
survival (OS) data were excluded. RNA-seq data and clinical information
(n = 232) of LIHC samples were obtained from the ICGC-LIRI-JP cohort
(https://www.icgc.gov/). Transcriptomic data and survival information of
GSE16011 (Glioma, n = 117)59, GSE108474 (Glioma, n = 247)60, GSE76427
(Liver hepatocellular carcinoma, n = 115)61 and GSE15459 (Stomach ade-
nocarcinoma, n = 192)62 were gathered from Gene Expression Omnibus
(GEO), excluding patients without OS. The objective response rate (ORR)
data for anti-PD-1/PD-L1 therapy of 21 cancer types in TCGA were
gathered from Joo Sang Lee et al. (Supplementary Table 7)63. Data for
tumors with an ORR value of 0 were removed. Specifically, data for both
COAD_MSS and PAAD tumors were excluded from the analysis process
with ORR data.

Pan-cancer single-cell RNA sequencing datasets and
preparation
To identify the RCD signature (RCD.Sig), we obtained 82 scRNA-
sequencing datasets, includingmalignant cells and other cell types from the
TISCH website (http://tisch.comp-genomics.org/)64. The 82 single-cell
sequencing dataset comprised 840 patients with a total of 2,573,921 cells. It
encompassed 29 cancer types including basal cell carcinoma (BCC), breast
invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colorectal
cancer (CRC), glioblastomamultiforme (Glioma), head andneck squamous
cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), medullo-
blastoma (MB), merkel cell carcinoma (MCC), neuroendocrine tumor
(NET), non-small cell lung cancer (NSCLC), ovarian serous cystadeno-
carcinoma (OV), pancreatic adenocarcinoma (PAAD), skin cutaneous
melanoma (SKCM), stomach adenocarcinoma (STAD), uveal melanoma
(UVM), cervical squamous cell carcinoma and endocervical adenocarci-
noma (CESC), esophageal carcinoma (ESCA), hepatoblastoma (HB),
nasopharyngeal carcinoma (NPC), oral squamous cell carcinoma (OSCC),
kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),
prostate adenocarcinoma (PRAD), synovial sarcoma (SS), gastrointestinal
stromal tumor (GIST), pleuropulmonary blastoma (PPB), small cell lung
cancer (SCLC) and thyroid cancer (THCA) (Supplementary table 8).

Collection and procession of cohorts with ICI
To develop and rigorously evaluate a robust RCD.Sig-based classifier for
predicting the response to ICI, we conducted a comprehensive and sys-
tematic collection of 18 cohort datasets comprising pre-treatment samples
treated with immune checkpoint inhibitors. These datasets encompassed
transcriptomic data alongwith corresponding clinical information, sourced
from published studies and publicly available resources10,22,65–77. The 18
cohorts included a total of 1,059 patients (296 responders, 763 non-
responders) with 8 cancer types, including glioblastoma (GBM,n = 1), head
and neck squamous cell carcinoma (HNSC, n = 1), lung squamous cell
carcinoma (LUSC, n = 1), melanoma (n = 8), non-small cell lung cancer

Fig. 7 | Development and evaluation of the immunotherapy response
predictive model. a The workflow of development of the model based on the
RCD.Sig with 7machine-learning algorithms. The basic steps including the training,
validation and testing of the model. In the training set, 80% of 866 samples from 12
cohorts were used as the training dataset to perform the model tuning. In the
validation set, the SVM algorithm with the highest algorithm was considered the
optimal RCD.Sig model for immunotherapy response. And in the test dataset
including 176 samples from 6 independent cohorts, we tested the performance of the
final model. b Comparison of the AUC of the multiple model developed by 7 used
machine-learning algorithms in validation dataset. The SVM algorithm, the AUC of
which was 0.72, was considered the optimal model. c–f ROC plot showing the

performance of the optimal RCD.Sig model in validation dataset, testing dataset,
SKCM dataset, and NSCLC dataset, in which the AUC of the final RCD.Sig model
was 0.72, 0.65, 0.77, and 0.75, respectively. g–iK–Mcurves show the difference in the
overall survival between the patients with high risk and patients with low risk. The
patients with high risk and the patients with low risk were defined as the patients
with “NR” and “R” predicted by the optimal RCD.Sigmodel. jROCplot showing the
performance of the optimal RCD.Sigmodel in individual testing dataset, the AUC in
which was range from 0.58 to 0.85. k The heat map comparing the performance of
the optimal RCD.Sig with other 13 immunotherapy response models in multiple
cohorts. All the models were ordered by the AUC in validation dataset.
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(NSCLC, n = 3), renal cell carcinoma (RCC, n = 1), gastric adenocarcinoma
(GC, n = 1), urothelial carcinoma (UC, n = 2). For cohorts where the
number of samples was greater than the number of patients, we randomly
selected one counterpart of each patient to be included in the analysis as the
final sample. Concerning the treatment of immune checkpoint inhibitors,
there were four approaches; including anti-PD-1 (n = 12), anti-PD-L1

(n = 2), anti-CTLA-4 (n = 2), and combination of ICI (n = 2). The batch
effects were removed by the Combat algorithm with the R package “sva”. 6
of 18 cohorts, named Zhao_GBM_pre_aPD1 (n = 17), Snyder_-
UC_pre_aPD1 (n = 25), Hugo_SKCM_pre_aPD1 (n = 26),
Jung_NSCLC_pre_aPD1 (n = 27), Van_SKCM_pre_aPD1 (n = 36) and
Kim_GC_pre_aPD1 (n = 45), were utilized as the independent testing
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dataset (n = 176). The others (n = 866) were randomly split into two data-
sets, used as the training dataset (80%, n = 693) and validation dataset (20%,
n = 173).Detailed informationon these ICI cohorts has been summarized in
supplementary table 9.

Immunotherapy response signatures
To enhance the description of our model developed using RCD.Sig for
predicting immunotherapy response, we collected 13 prediction signatures
from the existing literature, and compared our model with these existing
signatures acrossmultiple dimensions to assess the superior performance of
our model66,78–88. The 13 signatures included IFNG (n = 6), T cell-inflamed
GEP (n = 18), PD-L1 (PD-1 expression by IHC), LRRC15+CAF (n = 14),
NLRP3 inflammasome (n = 30), cytotoxic (n = 4), immuneCells (n = 108),
T-cell exclusion (n = 203), CRMA (n = 8), IMPRES (n = 15, Gene pairs),
IPRES (n = 16), TRS (n = 6) and IMS (n = 24). The details of which have
been summarized in the supplementary table 10.

Stemness-related signatures
To further investigate the correlation between RCD.Sig and stemness, a
characteristic that has been shown recently to be highly relevant in cancer
treatment with ICI, we collected 26 stemness-related gene lists from various
sources, using the StemChecker tool (http://stemchecker.sysbiolab.eu/)89.
The number of genes in these lists varied from 17 to 982. Further details
regarding these gene lists can be found in supplementary table 11.

Purified immune cell line data
Raw transcriptomic data and corresponding annotation information for
115 purified immune cell lines, comprising 16 datasets and encompassing
19 different immune cell types, were obtained from the GEO databank
(GSE8059, GSE59237, GSE49910, GSE39889, GSE28726, GSE28490,
GSE27291, GSE23371, GSE13906, GSE25320, GSE27838, GSE28698,
GSE37750, GSE42058, GSE51540, GSE6863)90–105, and preprocessed as
described in the original literature106. Related information has been sum-
marized in the supplementary table 12.

Obtaining the tumor cell line data
Transcriptome data and corresponding annotation data of human cancer
cell lines were obtained from the Broad Institute-Cancer Cell Line Ency-
clopedia (https://portals.broadinstitute.org/ccle/)107. Additionally, datasets
containing the CERES score for 17,645 genes across 989 cell lines were
downloaded from the DepMap portal(https://depmap.org/portal/)108. The
CERES (CRISPRessentiality revealedby large-scale knockout screens) score
is a metric used to evaluate the likelihood of a gene being essential for cell
survival. It is derived from CRISPR-Cas9 genome-wide screening experi-
ments, where individual genes are systematically knocked out to observe
their impact on cell viability and proliferation. Genes with high negative
CERES scores are considered more likely to be essential for cell survival,
while genes with positive scores are regarded as less critical or even
potentially dispensable. By ranking the 17,645 genes based on the mean
CERES scores across 989 cell lines, we identified the top 10 genes with low

CERES scores as important genes for cell survival. Further details regarding
these data can be found in supplementary table 13.

Immune CRISPR-screening datasets
To identify hub genes within RCD.Sig for further analysis and pro-
vide evidence supporting the application of therapeutic targets, we
collected a total of 7 CRISPR/Cas9 screening datasets from public
literature109–115. These datasets were further divided into 17 datasets
based on cell type and experimental conditions. The scores obtained
from these cohorts were used to gauge the independent effects of
genes on tumor immunity. Genes in top rank of the cell lines, the
absence of the targeted, which lead to decreased cell viability or
growth, were likely essential for cellular survival under the tested
conditions, while genes in bottom rank of the cell lines had little
impact on cell fitness. Similarly, the genes in top rank of the
immunotherapy cohorts, the absence of which would improve anti-
tumor immunity, were genes associated with resistance to the
immunotherapy, while the genes in the bottom rank, related with the
sensitivity to the immunotherapy, lead to immunosuppression after
knockout. Specifically, a lower score for a gene indicates a stronger
immune response when that gene is knocked out, while a higher
score suggests a weaker immune response upon gene knockout.
Similar to the CERES scores, we ranked the 20,000+ genes based on
their mean scores across all cohorts. The top 10% of genes with the
lowest scores were considered as the core genes for immunotherapy.
The survival information and the source of these cohorts were
summarized in supplementary tables 14 and 15.

Collecting the signatures of immunity and functional pathways
To provide a comprehensive and multi-layered description of the associa-
tion between RCD and immunity, we assembled an integrated collection of
immune-related signatures. These signatures include immune-related
genes, immune checkpoint genes, etc. We obtained 1,793 immune-related
genes from ImmPort (https://www.immport.org/), which were categorized
into 17 pathways116 (Supplementary Table 16). Additionally, immune
checkpoint genes (n = 75, supplementary table 17)117, immunity contexture
signatures (n = 92, supplementary table 18)57, signatures of cancer single-cell
state (n = 14, supplementary table 18)118, anti-cancer immune cycle sig-
natures (n = 7, supplementary table 18)119, T cell-inflamed GEP signature78,
CAF signature120, TAM M2 signature120, IFNG signature120,
CD8 signature120, CD274 signature120, TLS signature121, TLS-melanoma
signature121, T cell dysfunction signature120, T cell exclusion signature120 and
MDSC signature120 were collected from the previous and summarized in
supplementary table 18.

Moreover, we downloadedHALLMARK signatures andC6 oncogenic
signatures from the MsigDB (https://www.gsea-msigdb.org/gsea/msigdb)
to investigate the correlation between RCD and tumor-related functional
pathways. The average of transcriptomic expression of GZMA and PRF1
was considered as the CYT score. The ITH data of the pan-cancer was
summarized in supplementary table 19.

Fig. 8 | Development and evaluation of the overall survival predictive model.
aTheworkflow of development of the overall survival predictivemodel based on the
RCD.Sig with 101 combinations of 10 machine-learning algorithms. The details
were summarized inmethods. bThe left panel was a heat map, showing the C-index
of 101 combinations in training dataset, testing dataset 1 and testing dataset 2. The
right panel was two bar plots, showing the mean C-index of the testing datasets and
the mean C-index of the three datasets. The stepcox [“both”]+RSF with the highest
mean C-index was considered as the final RCD.Sig survival predictive model.
c–f K–M curves comparing the overall survival between the patients with high risk
and the patients with low risk in training. dataset, testing dataset 1, testing dataset 2,
and TCGA, which was an amalgam of training dataset, testing dataset 1, testing
dataset 2. The risk score was calculated by the optimal survival predictivemodel. The

patients in the cohort were divided into high-risk group and low-risk group based on
the median of the risk score. g The correlation of the risk score computed by the
optimal survival predictive model and the clinical outcomes, including OS, DFI,
DSS, and PFI, in TCGA, using the univariate Cox regression analysis and the log-
rank test. The p value < 0.05 and HR > 1 was considered as risky. The p value ≥ 0.05
was considered as nonsense. “N/A” indicated that the corresponding data was
missing. h The forest plot showing the univariate Cox regression result of the risk
score in all TCGA dataset. TCNS tumors of central nervous system, TT thoracic
tumors, TDST tumors of digestive system, BT breast tumor, TUS tumors of urinary
system and male genital organs, TFRO tumors of female reproductive organs, TEO
tumors of endocrine organs, TO tumors of others. I Meta-analysis of the compre-
hensive prognostic performance of the risk score in these 23 cohorts.
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RCD score calculation
To comprehensively evaluate the level of regulated cell death across tumor
and normal tissues or cell lines at a bulk level, we employed single-sample
gene set enrichment analysis (ssGSEA). The ssGSEA is a computational
methodused in genomics to assess the enrichment of predefined gene sets in
individual samples. This technique is an extension of Gene Set Enrichment
Analysis (GSEA), calculating separate enrichment scores for each pairing of
a sample and gene set. It helps understand the biological relevance of gene
sets in the context of individual samples, providing insights into pathway
activities andmolecular characteristics at a single-sample level. This analysis
allowed us to assess the activity of the 18 RCD gene sets in individual
samples. The RCD score for each sample was calculated as the sum of the
ssGSEA score of the 18 RCD gene sets.

RCD score in bulk level ¼
Xi¼18

i¼1

ssGSEA scoreðiÞ

For scRNA-Seq datasets, the RCD score was determined by summing
theGene SetVariationAnalysis (GSVA) scores of the 18RCDgene setswith
the R package “GSVA” for each single cell. The GSVA is a computational
method used in genomics to assess the variation of predefined gene sets
across samples. It transforms a gene-by-sample gene expressionmatrix into
a gene set-by-sample pathway enrichment matrix, providing a more
detailed understanding of biological pathways’ activities within individual
samples. It has been extensively applied to perform functional enrichment
analyses for scRNA-seq data122,123. This approach accounted for the com-
paratively poor gene capture rate in single cells and the high rate of dropout
data, ensuring accuracy in RCD activity evaluation.

RCD score in single cell level ¼
Xi¼18

i¼1

GSVA scoreðiÞ

In order to facilitate further analysis, we divided the samples into two
subgroups low-RCD and high RCD. This division was based on themedian
RCD score of the samples.

Evaluation and description of the robustness and practicality of
the RCD score
Several approaches were utilized to demonstrate the robustness and prac-
tical value of the RCD score. Firstly, we calculated the RCD score in tumor
samples from TCGA and normal tissue samples from GTEx to investigate
RCD activity across 30 cancers and their corresponding normal tissues.
Spearman’ s correlation test was used to assess the correlation between the
RCDscore and single RCD signal activity, represented by the ssGSEA score,
across different cancer types. Additionally, the interconnection among
individual RCDs was investigated in the 30 cancers. The difference in RCD
scores between tumor and normal tissue samples was evaluated using the
Wilcoxon rank sum test, considering p values < 0.05 as significant.

Secondly,weobtained the ssGSEAscores of hallmark signatures and c6
oncogenic gene sets from MsigDB for all TCGA samples. We then inves-
tigated the Spearmancorrelations between theRCDscore and these ssGSEA
scores across the different cancers. A similar approach was applied to cor-
relate the RCD score with cancer single-cell states. For the hallmark sig-
natures, an alternative and complementary approach was used to assess the
correlation with the RCD score. Samples were sorted based on the RCD
score within each tumor type, and the top 35% and bottom 35% of samples
were analyzed for gene expression differences. Differential genes identified
were then subjected to GSEA analysis of hallmark signatures.

Thirdly, we calculated the Spearman correlations between the RCD
score and the TMB and CNV score. To indicate the level of the gene copy
number variation,wedefined theCNVscore as the sumof squared values of
the copy number variation.

Lastly, the predictive capability of the RCD score across cancers was
assessed using univariate cox regression and survival analysis. The cut point
for cohorts was determined based on themedian of the RCD score, and the

analysis was validated using several independent datasets, includingCGGA,
GSE16011, and GSE108474.

Computational calculation of RCD-related immune
microenvironment
Immune signatures of TLSs, regulatory T cells, T cell survival, classIMHC,
immunosuppression and myeloid cells chemotaxis were obtained from the
literature, and their corresponding scores were calculated based on a pre-
vious study124.

To investigate the levels of immune cells, we utilized the ESTIMATE
algorithm,MCP-counter andCIBERSORT. The R package “IOBR” and the
gene expression matrix were used as inputs125. Specifically, the ESTIMATE
algorithm was employed to assess the levels of immune cells, stromal cells
and tumor purity. These were represented by the immune score, stromal
score and ESTIMATE score, respectively. CIBERSORT, with 22 signatures,
was used to determine the absolute abundance of 22 immune cell types,
including both adaptive and innate immune cells.MCP-counterwas used to
estimate the level of tumor-infiltrating leukocytes.

The Spearman correlation between the RCD score and the immune-
related scores was computed, and the difference in immune-related scores
between the high RCD subgroup and the low RCD subgroup was investi-
gated using the Wilcoxon rank sum test.

We collected 29 tumormicroenvironment signatures and 7 antitumor
immune cycle signatures from previously published studies. These sig-
natures were applied to the ssGSEA algorithm to calculate the Spearman
correlation with the RCD score.

Evaluating the correlation of the RCD score and the ICI response
We gathered ICI response signatures and estimated their corresponding
signal activity using the ssGSEA algorithm. Additionally, we calculated the
Spearman correlation between the RCD score and ssGSEA score of the ICI
response signatures across different cancer types.

The objective response rate (ORR) is ametric used in clinical trials and
cancer treatment to evaluate the effectiveness of a therapy in shrinking or
eliminating tumors. The Spearman correlation between the RCD score and
the ORR was computed using the median RCD score for each individual
cancer type along with the available ORR data.

To explore the relationship between the RCD score and ICI response,
we obtained two scRNA-sequencingdatasetswith ICI response information
from the GEO database. The datasets were GSE 115978 (melanoma)81 and
GSE123813 (BCC)126. Only malignant cells from the scRNA-Seq data with
ICI response were included in the analysis.We used the R package “Seurat”
(version 4.0.2) to investigate the relationship.

In the melanoma scRNA-Seq dataset, we included 24 patients, con-
sisting of 11 non-responders and 13 treatment-naïve patients, excluding 7
patients without malignant cells. In the BCC scRNA-Seq dataset, we
included 10 patients, with 6 responders and 4 non-responders, excluding
one patient with abnormal mutation and transcriptomic profile. After cal-
culating the RCD score for each single-cell, we compared the differences in
RCD score among different types of ICI response.

Identification of the RCD Signature (RCD.Sig)
We employed a four-step framework to identify RCD score-related genes at
both the bulk and single-cell levels. First, we performed Spearman corre-
lation tests to identify genes significantly correlated with the RCD score in
each individual dataset. Genes with a p value < 0.05 and an absolute
Spearman correlation >0 were considered as significantly correlated genes.

Second, we conducted a differential analysis. At the bulk level, we
identified differentially expressed genes between the high RCD subgroup
and the lowRCDgroupusing theWilcoxon rank sum test (p < 0.05). For the
single-cell level, we identified differentially expressed genes specifically in
malignant cells compared to other cells within each dataset (logFC
>0.25, p < 0.05).

Third, the genes satisfying both the first and second steps in each
dataset were extracted and named Gn.
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Fourth, the geometricmeanof theSpearmancorrelationwas calculated
for each gene across the datasets.Geneswith a geometricmean of Spearman
correlation >0.35 or >0.2were identified as RCDcandidate genes in the bulk
or single-cell level, respectively.

Finally, the RCD.Sig was defined as the intersection of the RCD can-
didate genes identified in both the bulk and single-cell levels.

Development and evaluation of the machine-learning model for
predicting the ICI response
To assess the predictive performance of the RCD.Sig for ICI response, we
employed seven machine-learning methods: Naive Bayes (NB), AdaBoost
Classification Tree (AdaBoost), cancerclass, random forest (RF), boost
logistic regression (“LogiBoost”), k-nearest neighbors (“KNN”) and support
vector machine (“SVM”). Nested cross-validation (CV) was utilized for
benchmarking these methods.

Theperformance of the trainedmodelswas evaluatedon the validation
dataset, and the model with the highest AUC was selected as the optimal
RCD.Sigmodel for the prediction of ICI response. Independent test datasets
were then used to assess the performance of the optimal model.

Furthermore, we compared the predictive performance of theRCD.Sig
model with 13 previously published ICI response models. This comparison
was conducted on the validation set, the combined test set, the NSCLC set,
the SKCM set, and six individual test sets.

Development and evaluation of the machine-learning model for
predicting the OS
To construct the RCD.Sur.Sig model (RCD.Sig-based model for the OS),
using transcriptomic data from 9890 samples and the RCD.Sig, we
employed a novel computational framework that involved multiple
machine-learning algorithms. Here are the details of the methodology:

Data preprocessing: Samples inTCGAwithoutOS information orwith a
survival time of 0 were excluded, resulting in the inclusion of a cohort of
9750 samples. These samples were randomly split into three cohorts,
training cohort (50%, n = 4868), testing set 1 (30%, n = 2916) and testing
set 2 (20%, n = 1966).
Feature Selection: Univariate Cox regression analysis and log-rank
survival analysis were performed on the entire TCGA cohort of
9750 samples to identify geneswithin theRCD.Sig that exhibited potential
prognostic prediction. These genes were selected for further analysis.
Model construction: The LOOCV frameworkwas applied, involving 101
combinations of 10 machine-learning algorithms, including Ridge,
CoxBoost, survival forest (RSF), partial least squares regression for Cox
(plsRcox), generalized boosted regressionmodel (GBM), Lasso, stepwise
Cox, elastic network (Enet), supervised principal components (SuperPC)
and survival support vector machine (survival-SVM). The aim was to
identify the optimal model with the best mean C-index in the testing
datasets.
RCD.Sur.Sig development: The RCD.Sur.Sig was created by combining
the stepwise Cox regression analysis, which identified the most valuable
and prognostic genes within the RCD.Sig, and the RSF, which aided the
development of the survival prediction model using the RCD.Sur.Sig.
The log-rank score splite-rule, based on the log-rank scores, was strictly
implemented as described in a published study127. Specifically, assuming
the ranks of the orderedvariables (T,δ) asX1 < X2 <…<Xn, the log-rank
scores are as follow:

al ¼ δl �
XδðTÞ

k¼1

δk
N � γk Tð Þ þ 1

where

γk Tð Þ ¼
XN

l¼1

x Tl ≤Tk

� �

is the number of dead patients before or at time Tk.

RCD:Sur:Sig risk score ¼ M x; bð Þ ¼
P

xj ≤ b
aj � R1�a

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 1� R1

N

� �
S2a

q

where �a and S2a are the mean and the variance of al [l = 1,2,3…n], and the
optimal split is determined by maximizing |M x; bð Þ| across x and b.

We conducted survival predictive performance testing of the
RCD.Sur.Sig model using external and independent datasets as mentioned
previously. Additionally, a comprehensive hazard ratio analysis was done to
elucidate the combined prognostic predictive performance of the
RCD.Sur.Sigmodel across 23 cohorts. This analysis was carried out through
a prognostic meta-analysis using the R package “meta”.

For feature selection, we implemented a novel computational frame-
work based on sevenmachine-learning algorithms to identify the hub genes
within RCD.Sig across pan-cancer, low-grade glioma and glioblastoma.
Initially, we employed univariate Cox regression analysis and log-rank
survival analysis to filter out the prognostic genes within RCD.Sig. Subse-
quently, we utilized seven machine-learning algorithms, namely SVM,
Boruta, XgBoost, Lasso, RF, Enet, and CoxBoost, to further refine the
selection and identify the hub and core genes. These genes were determined
by intersecting the genes identified by the aforementioned algorithms in
pan-cancer, LGG and GBM, respectively.

Investigation of the RCD score with spatial scRNA-Seq data of
glioblastoma
Processed spatial transcriptomic data were downloaded from R package
SPATAData (https://github.com/theMILOlab/SPATAData) and analyzed
by R package SPATA2. For the spatial scRNA-Seq datasets, the RCD score
was determined by summing the Gene Set Variation Analysis (GSVA)
scores of the 18 RCD gene sets with the R package “GSVA” for each single
cell. This approach accounted for the comparatively poor gene capture rate
in single cells and the high rate of dropout data, ensuring accuracy in RCD
activity evaluation.

RCD score in single cell level ¼
Xi¼18

i¼1

GSVA scoreðiÞ

Statistical analysis
All statistical analyses in this study were conducted using R software (ver-
sion 4.1.3). The Wilcoxon rank sum test and Kruskal-Wallis test were
employed to investigate differences between two subgroups or amongmore
than two subgroups for continuous variables. The Chi-Square test was
utilized to assess differences in categorical data.

The Benjamini-Hochberg correction method was applied to obtain
adjusted p values. All p values were two-sided. All relevant data used in this
study was summarized in supplementary table 20.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
No new data were generated as part of this study. All data used in this study
were sourced from the public domain online. All relevant data used in this
study was summarized in supplementary Table 20.

Code availability
Additionally, all key codes utilized in this study and the raw data for every
figure are available on Github (https://github.com/zwxiangya/RCDscore).
Other codes used in the current study could be available by contacting the
corresponding author.
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