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Remodeling the tumor-immune
microenvironment by anti-CTLA4
blockadeenhancedsubsequent anti-PD-1
efficacy in advanced nasopharyngeal
carcinoma
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YuxiangMa 1,6, HuaqiangZhou 2,6, Fan Luo3,6, Yang Zhang1,6, Changbin Zhu4,Weiwei Li4, ZhanHuang4,
Jingbo Zhao5, Jinhui Xue1, Yuanyuan Zhao2, Wenfeng Fang2, Yunpeng Yang2, Yan Huang2, Li Zhang2 &
Hongyun Zhao 1

Sequential immunotherapy has shown certain advantages in malignancy. Here, we aim to evaluate the
efficacy of sequential anti-CTLA-4 and anti-PD-1 treatment for recurrent or metastatic nasopharyngeal
carcinoma patients (R/M NPC). We retrospectively analysis 2 phase I trial of ipilimumab and
camrelizumab in Chinese R/M NPC patients. These patients were initially treated with ipilimumab, a
CTLA4 blockade, followed by anti-PD-1 treatment. We observed a durable tumor remission in these
patients (mPFS: 12.3 months; mDoR: 20.9 months). Multimodal investigations of biopsy samples
disclosed remodeling of tumor-immune microenvironment triggered by ipilimumab. In responders, we
found increased tumoral PD-L1/PD-L2 expression and T-cell infiltration after ipilimumab treatment,
accompaniedby reducedstromaandmalignant cell components. Incontrast, non-respondersexhibited
increased B-cell infiltration and increased peripheral CD19+B cells, suggesting a defective transition
from memory B cells to plasma cells. This study proposes that sequential therapy can potentially
enhance treatment efficacy in chemotherapy-resistant NPC patients and provides insights into how
preexisting anti-CTLA4 blockade can influence subsequent anti-PD-1 efficacy by remodeling the TME.
Additionally, our results highlight the need for therapeutic strategies targeting naïve/memory B cells.

Nasopharyngeal carcinoma (NPC) is a common type of malignancy in
south China and southeastern Asia1. The outcome for patients with
recurrent or metastatic (R/M) NPC is poor, with a median overall survival
(OS) of about 22 months in the era of chemotherapy2. In recent years, the

rapid development of immunotherapy has brought a new light to the
treatment ofNPC.There are several regulatory agency–approved anti-PD-1
agents indicated for the treatment of R/M-NPC (nivolumab, pem-
brolizumab, camrelizumab, toripalimab, and tislelizumab)3–8. Whereas the
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overall response rate to anti-PD-1/PD-L1 monotherapy in previously
treated patients with R/M-NPC is only 20–30%6,7,9,10, which is not sufficient
to improve clinical outcome in most patients. One effective strategy to
improve outcome of immunotherapy is to combine anti-PD-1/PD-L1 with
anti-CTLA-4blockades.However, the recently reported clinical trial of anti-
CTLA-4 and anti-PD-L1 combination therapy in R/M NPC demonstrated
an unsatisfactory results, with 38% objective response rate (ORR) and
5.9 months median duration of response (mDoR)11.

To address this limitation, as displayed by previously trials in mela-
noma, sequential administration of anti-CTLA4 followed by anti-PD-1
treatment might synergize the effect of these two drugs and make the
potential toxicity more controllable12,13. In a cohort of 271 patients with
melanoma, treatment with sequential anti-CTLA-4 and anti-PD-1 was
associatedwith a better survival outcome thanmonotherapywith anti-PD-1
or anti-CTLA-4, anti-PD-1 followed by anti-CTLA-4 or dual
immunotherapy12. Until now, there are no study of sequential immu-
notherapy in NPC patients. The exploration of its potential application has
not been explored to date.

The heterogeneity of tumor-immune microenvironment (TME)
results in differences in response to immunotherapy among patients14. The
TME is generally divided into “immune desert”, “immune excluded” and
“inflamed”phenotypes. The inflamed tumormicroenvironment is enriched
with activated T cells and myeloid cells, and has chemokine, interferon
signaling expression. In contrast, in “cold tumors”, that is, immune desert
TME, there are only a small number of immune cells or suppressive sub-
populations,while effector immune cells cannot effectively infiltrate into the
tumor microenvironment and are only distributed in the peripheral
stroma15,16. Remodeling the tumor-immunemicroenvironmentmay further
improving immunotherapy for cancer. Previous research indicated that
anti-CTLA-4 immunotherapy might re-shape the cellular composition
within TMEand affect the following anti-PD-1 treatment outcomes12,17. For
example, all PD-1 blockade responders with metastatic melanoma showed
an increase in TCR clonality due to prior CTLA-4 blockade, however, the
effect of anti-CTLA-4 onTMEhas not been further analyzed in this study18.

Here, we reported 8 R/M NPC patients who were prior treated with
ipilimumab, and subsequently treatedwith camrelizumab (all the caseswere
from 2 phase I study: NCT02516527 and NCT02721589)9,19. Tumor tissue
specimens from 8 patients were selected for RNA sequencing and multiple
immunofluorescences. We identified immune subtype-specific signatures
associatedwithprognosis and sought to explore themechanismsunderlying
anti-CTLA-4 and anti-PD-1 sequential therapy in patients with NPC.

Results
Patient characteristics and clinical efficacy of sequential cam-
relizumab treatment with prior ipilimumab intervention
There were 19 patients with advancedNPC receiving Ipilimumab treatment
(Fig. 1). In total 8 Ipilimumab pre-treated patients received sequential anti-

PD-1 treatment (Fig. 2a). Baseline characteristics were summarized in
Supplementary Table 1. Median age was 42 years (range 23–69 years) and
most patients aremale (n = 6, 75%). Livermetastases are found in 6 patients.
There were 5 patients with ECOG PS of 0 and 3 with ECOG 1. The average
prior treatment line was 3.25. Among these patients, 5 received 10mg/kg
and 3 received 3mg/kg ipilimumab. Overall, 6 patients who obtained partial
response (PR) to camrelizumab were classified as responders, with median
DoR of 20.9 months; two patients who showed PD to camrelizumab were
classified as non-responders (Fig. 2b). Sequential anti-PD-1 treatment had a
median PFS of 12.3 months andmedian OS of 34.7 months (Fig. 2c, d). Till
the last follow-up (2022-11-02), all patients had ceased therapy. The overall
incidence of immune-related adverse events (irAEs) was low in 8 patients
during camrelizumab treatment, 12.5% (1/8) of patients had grade 3 toxicity.
Only 1 patient discontinued treatment due to toxicity and 5 was due to PD.

Higher PD-L1/PD-L2 expression at baseline or up-regulation
after ipilimumab related to sensitivity of subsequent camrelizu-
mab treatment
Higher PD-L1/PD-L2 expression at baseline was found among responders
(Fig. 3a, P1, P3, P5). Moreover, expression of PD-L1/PD-L2 was constantly
up-regulated due to prior ipilimumab treatment in responders (Fig. 3a, P4,
P6, P7). Similarly, mainly NPC cell, but not CD68+CD86+ M1 and CD68+

CD206+ M2 macrophage-derived PD-L1 protein was increased in tumor
samples from responders (Fig. 3b and Supplementary Fig. 1). Diminished
PD-L1 expression was observed in non-response patients after ipilimumab
treatment at transcriptional level (Fig. 3a). Meanwhile, PD-L1 expression,
H-score as well as positive rate, was increased in each representative patient
after ipilimumab treatment, however the increase in responders was even
greater (Fig. 3c). Especially, in P2, upregulation of other immune check-
points indicated therapeutic opportunities of ICIs might targeting these
molecules (Fig. 3a). Multilabel immunofluorescence (mIF) assay were also
tested in the other four patients only had tumor tissue sample post-
ipilimumab treatment (Fig. 3d and Supplementary Fig. 2). Similarly, PD-L1
expression was higher in patients who responded to camrelizumab than in
those who did not (Fig. 3e).

Ipilimumab-induced remodeling of the TME in camrelizumab-
response patients
P7 was treated with ipilimumab and sequentially camrelizumab for about 9
months till drop-out due to stomatitis. The corresponding CT demon-
strated that his efficacy evaluation of sequential ICIs was PR (Fig. 4d). Anti-
tumor immunity signatures, such as anti-tumor cytokines, T cell, and
effector cell traffic-related genes, and somepro-tumor immunity signatures,
such as MDSC and checkpoint inhibition related genes were enriched after
ipilimumab treatment. While tumor stroma, malignant cells, and tumor
angiogenesis-related genes were downregulated (Fig. 4d). Similar TME
remodeling patternwere observed inP4 (Fig. 4b) andP6 (Fig. 4c). Following

Fig. 1 | Framework of the study. Flow diagram illustrating the patients included in the analytical process.
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camrelizumab treatment, continually reduced plasma EBV DNA copy
number was observed (Supplementary Fig. 3), and the decline was related
with the best response to camrelizumab (PR).

However, the immune remodelingphenomenonwasnotobvious inP8
and P2, and their efficacy evaluation of sequential ICIs was PD respectively
(Fig. 4a and Supplementary Fig. 4). As for gene expression patterns in TME,
the enrichment of the anti-tumor immunity signatures such as anti-tumor
cytokines, T cell, effector cell traffic and checkpoint inhibition were not
obvious in P8. However, in P8, signatures of the protumor cytokines,
malignant cells, and tumor angiogenesis showed the tendency to enrich in
tumor microenvironment post-ipilimumab treatment (Fig. 4a, e). As
noticed, signatures of myeloid cells (includingmacrophages, dendritic cells,
neutrophils, and myeloid-derived suppressor cells) were prominent to be
upregulated in all post-ipilimumab treatment samples regardless of
response to camrelizumab (Fig. 4e, f). For P2, due to the lack of specimen
before ipilimumab treatment, the changes in TME could not be compared,
only the TME analysis results before camrelizumab treatment are shown in
Supplementary Fig. 4d. In addition, pre- and post-ICIs treatment plasma
EBV DNA copy number was increased during camrelizumab treatment
(Supplementary Fig. 3d, e), and the increase was related with poor response
to camrelizumab (PD). These data demonstrated that the response to
camrelizumab treatment was associated with the TME remodeling of prior
ipilimumab treated NPC.

Intra-tumoral accumulation of CD4+ and CD8+ T cells after ipili-
mumab therapy correlated to the efficacy of subsequent treat-
ment of camrelizumab
Subsequently, the potential changes in both CD4+ and CD8+ T effector cell
activation in the TME during treatment were examined. mIF on FFPE
samples with antibodies of CD4, CD8α, FOXP3, Granzyme B, and pan CK
(Fig. 5a and Supplementary Fig. 5) were applied to analyze the tumor
regions of pre- andpost-ipilimumab treatment for 4patients (P6, P7, P4 and
P8). The proportion of activated CD4+T effector cells (CD4 andGranzyme
B positive) and activated CD8+ T effector cells (CD8 and Granzyme B

positive) was found to be higher among patients who responded to cam-
relizumab (Fig. 5b, c). As shown inFig. 5b, the proportion of activatedCD4+

T effector cells increased in the tumor region after ipilimumab treatment in
one respond patient (P7), and decreased in the tumor region after ipili-
mumab treatment in one non-respondpatient (P8). As shown in Fig. 5c, the
proportion of activated CD8+ T effector cells increased in the tumor region
after ipilimumab treatment in all the 4 patients. mIF assays were also con-
ducted in four additional patients without paired tumor tissue samples
before ipilimumab or before camrelizumab treatment (Fig. 5d and Sup-
plementary Fig. 6). Similarly, the proportion of both activated CD4+ (Fig.
5e) and CD8+ T effector cells (Fig. 5f) in the tumor region was higher in
patients who responded to camrelizumab than in those who did not. These
are preliminary findings and more comprehensive studies with larger
sample sizes are needed to definitively establish this relationship.

Ipilimumab-induced manifested B cell infiltration in tumor tissue
as well as in peripheral blood from anti-PD-1 non-responder
A trend of more B cell infiltration can be observed in the NPC TME of non-
responders after ipilimumab treatment. (Fig. 4). B cell subtype analysis in
patients with paired samples provided further insights into the alteration of
infiltrated B cell populations. Expression of B cell-related markers CD19,
CD20, and BLK was decreased in response patients (P6, P7, and P4) but
increased in non-response patients (P8) after ipilimumab treatment (Fig. 6a).
B cell subtypes were estimated by CIBERSORT for each patient. After ipili-
mumab treatment, as for response patients, P6 had intrinsically higher
plasma B cell and elevated naive, memory B cell; P4 had elevated plasma and
exhausted naïve, while no change was found in memory B cell; P7 had
elevated plasma B cell, while no obvious change was found in naïve and
memory B cell. However, non-response patient (P8) had an obviously enri-
chedmemory B cell and exhausted plasma B cell (Fig. 6b). After ipilimumab
treatment, the expression of B cell-related genes (CD19, MS4A1, and BLK)
were highly expressed innon-response patients (Fig. 6c).Higher frequency of
naïve andmemoryB cell and lower level of plasma cell can be found in tumor
tissue of non-responders compared with those of responders (Fig. 6d).
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Notably, analysis of B cell subtypes in peripheral blood before and
during sequential ICIs treatmentwas concordantwith thefindings in tumor
samples (Fig. 6e). Comparing the data pre- or post-ipilimumab treatment,
the percentage of circulating CD19+ B cell in the response group decreased
or slightly increased, but the percentage of this B cell subtype in the non-
response group increased obviously (Fig. 6f). We also observed changes in
other circulating immune cells, including CD4+, CD8+T cells andNK cells.
In general, though dynamics of these peripheral circulating immunes could
be observed along with CD19+ B cells, patterns of dynamic changes in each
patient were highly heterogeneous and not associated with responses to
Camrelizumab. (Supplementary Fig. 7).

Discussion
Here, sequential ipilimumab and anti-PD-1 immunotherapy were investi-
gated to treat patients with advanced relapsedNPC based on 2 phase I study.
We first observed a favorable efficacy in these sequential treatment settings.

Furthermore, potential mechanisms underlying the response to treatment
was explored. Ipilimumab putatively induced tumor and immune micro-
environment remodeling contributing to the response of sequential anti-PD-
1 treatment. Bulk RNA sequencing of biopsy samples showed that TMEwas
remodeled from immune-excluded/desert to immune-inflamed tumor in
responders, including enriched pro-tumor immunity signatures and anti-
tumor cytokines, increased density of effector T-cell in tumor-infiltrating
lymphocytes (TILs), and elevated PD-L1 expression. While enriched naive
memoryBcell andplasmaBcell deficiencywere observed innon-responders.

In recent years, multiple anti-PD-1 antibodies have shown clinical
efficacies in prior chemo-failed R/M NPC patients, with single-agent effi-
ciencies of 20% to 30%6,7,9,10. The limitations of PD-1/PD-L1 monotherapy
efficacy have ushered in the explosion of dual immunotherapy. Among
them, the combination of PD-1 antibody nivolumab + CTLA4 antibody
ipilimumab has been granted several FDA indications as of now. In a single
arm phase II study of combination therapy in RM-NPC, there is 38%
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objective response rate11. In this study, we explored this sequential approach
by connection of 2 phase I trials for the first time and observed a favorable
efficacy compared with existing data. The proportion of PR patients was
higher than the 20–30% reported in the previous studies using anti-PD-1

monotherapy and ~38% of anti-CTLA-4 and anti-PD-L1 combination
therapy.

Although combination therapy strategies have been approved in fields
such as melanoma, toxicity issues remain a significant consideration in
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Fig. 4 | CT images and tumormicroenvironment of patients in response andnon-
response group. a–d CT images of pre-ipilimumab, pre-camrelizumab, and post-
camrelizumab for P8, P4, P6, and P7. Molecular Functional Portrait (potentially
targetable genes, signaling pathways, and cellular processes related to each of 29
TME gene expression signatures created by Bagaev et al.49) of pre-ipilimumab (B1)

and pre-camrelizumab (B2). e Heatmap of 29 immuno-related signatures of pre-
ipilimumab and pre-camrelizumab for P8, P4, P6, P7. f The Enrichment score of B
cells and Immune Suppression by Myeloid Cells in tumor region pre-and post-
ipilimumab treatment of the aforementioned four patients.
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clinical practice. Combination therapy is associated with increased toxicity,
often requiring dose adjustments. For instance, the approved first-line
treatment dose for advanced melanoma combines 1mg/kg of nivolumab
with 3mg/kg of ipilimumab.Nevertheless, this combination approach has a
relatively high adverse event rate, with a 55% incidence rate of grade 3–4

adverse events related to treatment observed in the CheckMate 067 study20.
Even when the ipilimumab dose was reduced to 1mg/kg in the CheckMate
511 study, 34% of patients still experienced treatment-related grade 3–4
adverse events. The impact of this dose adjustment on efficacy remains to be
assessedduring follow-up21. Importantly, in principle,CTLA-4mediates the

Fig. 5 | Ipilimumab treatment induced CD4+ and CD8+ T cells activation and
tumor accumulation. a Representative multiplex immunofluorescence image of
FFPE samples obtained from patients P6, P7, P4, and P8 pre-and post-ipilimumab
treatment. CD4 (red), Pan-CD8A (purple), GZME (yellow), FOXP3 (green), Pan-
CK (turquoise), and DAPI (blue). The proportion of CD4+ b and CD8+ T cells c in

tumor of the aforementioned four patients in a. d Representative multiplex
immunofluorescence image of FFPE samples obtained from patients P2, P5, P1, and
P3 before ipilimumab treatment or before camrelizumab treatment. The proportion
of CD4+ e and CD8+ T cells f in tumor of the aforementioned four patients in d.
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suppressionofT cell activation in the antigen-presentationphase,while PD-
1mediates immune suppression in the antigen-eliminationphasewithin the
tumor22. The CTLA-4 inhibitor primarily functions during the immune
escape initiation phase and does not require continuous use. This temporal
characteristic suggests that sequential therapy, administering anti-CTLA4
followed by anti-PD-1 treatment, could potentially synergize the effects of
these two drugs, making the toxicity more manageable. Previous trials in
melanoma support this, showing that sequential therapy was associated
with better survival outcomes than monotherapy and dual
immunotherapy13. Therefore, sequential therapy may offer a more effica-
cious and safer alternative for NPC patients.

Previous studies revealed the heterogeneity of immune cell infiltrations
in treatment-naive NPC patients23,24. Especially, intra-tumoral T cell

infiltration largely impacts the efficacy of immunotherapy25,26. Furthermore,
a high density of TILs was associated with favorable survival outcomes in
NPC patients27,28. Previous studies have shown that anti-CTLA-4 treatment
depleted intertumoral Treg cells via antibody-dependent cellular cytotoxi-
city, followed by anti-PD-1 significantly elevated the frequency of granzyme
B+CD8+ and CD4+ cytotoxic T lymphocytes in mouse model12,29. In
metastatic melanoma, all PD-1 blockade responders showed an increase in
TCR clonality due to prior CTLA-4 blockade, however, the effect of anti-
CTLA-4 on TME has not been further analyzed18. In the current study,
intra-tumoral accumulation of CD4+/CD8+ T cells after ipilimumab
treatment were found in samples with remarkable clinical benefit from
sequential camrelizumab treatment. These increased intra-tumoral CD4+/
CD8+ cells might be the final effectors contributing to tumor eradication
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under the sequential activation from anti-PD-1 blockade. Thus, prior ipi-
limumab induction may trigger intra-tumoral recruitment of CD4+/CD8+

T cells from peripheral blood or tumor parenchyma switching tumor
microenvironment from immune-excluded/desert to immune-inflamed
status, so called from “cold” to “hot” status. TME is critical for tumor
development, invasion and metastasis, and its immune-inflamed state sig-
nificantly affects the antitumor effects of drugs. Many investigators have
demonstrated that better antitumor outcomes can be achieved by targeting
therapeutic strategies that remodeling the tumor microenvironment30–32.
Our Bulk RNA sequencing of biopsy samples confirmed such inflamed
TME changes that anti-tumor immunity signatures and some pro-tumor
immunity signatures were enriched, while tumor stroma, malignant cells,
and tumor angiogenesis related geneswere downregulated after ipilimumab
treatment. But further studies are needed to clearly elucidate the mechan-
isms by which ipilimumab treatment leads to T-cell infiltration into
the TME.

Tumor-infiltrating B cells have been detected in various solid tumors,
and tumor progression is influenced by the interaction of B cells and T
follicular helper cells33. However, the direct role of B cells in modulating the
efficacyof cancer therapy remains controversial. Previous reports found that
B cells were associated with prolonged survival, and showed a dual effect on
recurrence and tumor progression34. On the one hand, they negatively
regulate tumor activity through secreting immunoglobulins (Igs) to pro-
mote the T cell response and directly kill cancer cells, and on the other hand,
they positively regulate tumor activity by producing immunosuppressive
cytokines35. Thus, B cells in NPC-associated TME were analyzed in this
study. In the present study, after ipilimumab induction, expression of B cell
lineage marker genes such as CD19, CD20, and BLK was decreased in
response patients but increased in non-response patient. Similar trends in B
cell changes were also observed in peripheral blood. In parallel, a higher
frequency of naive and memory B cell in tumor tissue of non-response
patientswas also observed.Nevertheless, it was interesting to find a depleted
plasma cell signature in non-response patients. In line with our findings,
recent data showed that tumor-infiltratingBcells, especially plasmacells can
support antitumor immune responses36. In non-small cell lung cancer
intratumoral plasma cell subsets can be used to predict the efficacy of
atezolizumab37. Similar results were found in renal cell cancer, where
intratumoral B cell maturation and antibody production was associated
with response to immunotherapy38. Combining our results and existing
evidence suggests that TME contains a heterogeneous population of B cells
with functionally distinct subsets, contributing to both pro- as well as anti-
immune responses. The variousTMEmaydeterminewhetherB cells serve a
pro- or an antitumorigenic function. However, this study did not directly
evaluate the proportion of B cells in tumor tissue, thus further studies,
particularly in prospective trials, are needed to validate our results from the
sequencing analysis. In general, TME was remodeled from immune-
excluded/desert to immune- inflamed status in camrelizumab-response
patients. While, the presence of B cell signature, especially naive and
memory B cell were associated with insensitivity of camrelizumab treat-
ment. Therefore, anti-B-cellmolecules or putative agents promoting plasma
cell differentiation may serve the optimal strategies for patients who were
resistant to anti-PD-1 treatment in the future.

Some researchers found that PD-L1 overexpression is common in
NPC patients39. And clinical trials, such as KEYNOTE-028 proved that anti
PD-1 antibody had antitumor activity and a manageable safety profile in
RM-NPC patients with PD-L1-positive7. In addition, PD-L2 is one of the
important ligands in the PD-1 signaling pathway. It encodes a protein that
can bind to PD-1, thereby exerting the effect of inhibiting the function of
immune cells. Previous studies have suggested that combined analysis of
PD-L1 and PD-L2 can better predict the efficacy of immunotherapy40,41. In
this study, we found that higher PD-L1/PD-L2 expression at baseline or up-
regulation after ipilimumab were associated with responding to anti-PD-1
treatment. Meanwhile, the up-regulation of PD-L1 was found mainly in
tumor cells by multiple immunofluorescences. Therefore, we consider that
ipilimumab upregulated PD-L1 or PD-L2 on the surface of tumor cells,

setting the conditions for subsequent anti-PD-1 treatment42. In addition, we
also found that in non-response patients, although PD-L1 was not up-
regulated, other immune checkpoints, such as TIGIT and BTLA43–46, had a
high level of expression. At present, relevant pre-clinical studies and clinical
trials for these checkpoints are underway.

The study was limited by a small sample size and the majority of the
results were based on retrospective observational data. We were unable to
establish control groups such as single-drug and concurrent treatment. The
possibility of selection bias exists because not all patients who received
ipilimumab also received camrelizumab. Therefore, more in-depth studies
are needed to reveal the heterogeneity of the NPC TME, and to explore the
factors that influence the response to immunotherapy.

In conclusion, the current study demonstrated that after failure of first-
line platinum-based chemotherapy and second-line chemotherapy, some
patients with advanced NPCmay benefit from sequential anti-CTLA4 and
anti-PD-1 immunotherapy. Expression profile analysis suggested that TME
remodeling in these patients after ipilimumab treatment. For non-response
patients, our results have also provided novel insights that novel therapeutic
strategies should be developed to target naive/memory B cell or promote
plasma cell differentiation.

Methods
Patient samples and treatment strategy
The ipilimumab phase I trial19 (NCT02516527) enrolled patients with
advanced solid tumor who failed on at least two lines of systemic
treatment (including platinum-based doublet chemotherapy), ECOG
PS of 0–1, adequate organ function, and without CNS metastases,
autoimmune disease. Eligible patients received 3 or 10 mg/kg ipili-
mumab treatment every 3 weeks up to 4 cycles or progressive disease
(PD), then enter maintenance phase, every 12 weeks, starting at week
24 until PD. We consecutively collected the treatment information of
those NPC patients in this ipilimumab phase I trial and received
subsequential anti PD-1 treatment trial (NCT02721589). The washout
period should be 4 weeks or longer. Tumor samples prior ipilimumab
or prior anti PD-1 or at resistance were obtained for RNA-seq, and
matched peripheral blood was collected (Fig. 1). Written informed
consent was obtained from all participants. Ethical committee
approval was obtained from the Institutional Review Board of Sun
Yat-sen University Cancer Center (SL-B2021-445-01), in accordance
with the Declaration of Helsinki. This study is compliant with the
‘Guidance of the Ministry of Science and Technology (MOST) for the
Review and Approval of Human Genetic Resources’, which requires
formal approval for the export of human genetic material or data from
China (Application acceptance Number: 2022SLGH2233;
2022SLCJ1127).

RNA-seq and data analysis
Total RNA was isolated from FFPE samples using AmoyDx® FFPE
RNA Extraction Kit. For RNA-seq, cDNA libraries were generated
using a TruSeq RNA Sample Preparation kit (Illumina) according to
the manufacturer’s protocol, and sequenced on ILLUMINA NOVA-
SEQ 6000 (Illumina Inc., CA, USA). Paired-end reads were then
mapped to the Homo sapiens genome assembly GRCh37 (hg19) using
STAR32 (version 020201) with transcriptome annotation (Genecode
version 20). The expression levels of genes were quantified by Tran-
script per Million.

Immunofluorescence analysis
Multiplex staining was performed using the PANO 7-plex IHC kit, catalog
0004100100 (Panovue, Beijing, China). According to the manufacturer’s
instructions, samples were incubated with primary antibodies, while HRP-
labeled secondary antibodies were incubated and tyrosine signal amplifi-
cation (TSA) was performed to label the antigens. After each TSA, primary
and secondary antibodies were removed using microwave thermal repair,
and samples were eluted before the next antigen was labeled. After all
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antigen labeling was completed, the nuclei were labeled with 4′-6′-diami-
dino-2-phenylindole (DAPI, SIGMA-ALDRICH). The labeled samples
were scanned using the Mantra System (PerkinElmer, Waltham, Massa-
chusetts, US). For each case, a representative region of interest was selected
by the pathologist and 12–20 fields of view were acquired as multispectral
images at 20× resolution. The multispectral images were analyzed by
InForm cell analysis software (Version 2.4, PerkinElmer, Waltham, Mas-
sachusetts, US) and quantified into data. Image analysis included tissue
resolution, cell segmentation, and cell quantification. Meanwhile, mIF
images were quantified using Visiopharm software (Visiopharm A/S,
Hørsholm, Denmark). The quantitative data were collected by R script
(version 4.1.2), and the basic data such as positive cell number, positive rate
and density were obtained for follow-up data analysis.

The antibodies used for staining in this study included: CD86 (Cell
Signaling,CST91882, dilution1/100),CD206 (Abcam,AB64693, dilution1/
5000), CD11B (Cell Signaling, CST49420, dilution 1/100), PD-L1 (Cell
Signaling, CST13684, dilution 1/2000), FOXP3 (Biolegend, BLG320202,
dilution 1/50), Granzyme B (Abcam, AB4059, dilution 1/2000), CD4
(Biolynx, BX22300130, dilution 1/200), CD8A (Cell Signaling, CST70306,
dilution 1/200), PANCK (Cell Signaling, CST4545, dilution 1/200)47.

Flow cytometry
Different immune cell subsets in peripheral blood were performed using
flow cytometry. The following monoclonal antibodies were used: cells were
stained with

anti-CD3, anti-CD19, anti-CD56 antibodies, anti-CD4, anti-CD16,
anti-CD25, and anti-CD8. All antibodies were purchased from BD Bios-
ciences and diluted according to manufacturer instructions (tube 1, 1:200
dilution; tube 2, 1:2.5). T cells were identified as CD3+ and then divided into
CD4+ and CD8+ populations. CD25 expression was determined on CD4+

T cells. The samples were run on a BD FACSCalibur (BD Biosciences) and
analyzed using BD Cellquest 5.2.1 software. The gating strategies used for
cell sorting can be found in Supplementary Fig. 848.

Quantification of EBV viral loads
The EBV-DNA load in plasma was detected by real-time quantitative
polymerase chain reaction. DNA was extracted using EBV-encoded RNA
ISH kit (OriGene Technologies, Inc., Beijing, China), according to the
manufacturer’s protocol.

Evaluation of infiltrating immune cells in the TME
Single-sample gene set enrichment analysis (ssGSEA) algorithmwas used to
evaluate the relative abundance of infiltration immune cells in the TME of
NPC. The marker gene set for TME infiltration immune cell type was
obtained from Bindea et al.34. The enrichment scores calculated by ssGSEA
wereused to represent the relative abundanceof eachTMEinfiltrating cell in
NPC. The composition of infiltrated immune cells was evaluated by com-
monly useddeconvolution tools, CIBERSORTvia online tools (http://timer.
comp-genomics.org/). To visualize the integrated analysis of genomic
alterationswith gene expression patterns inTMEandmalignant cells before
ipilimumab and camrelizumab treatment, planetary schema termed
Molecular-Functional portrait (MFPortrait) of the tumor created byBagaev
et al.49 was generated in this study. The gene expression scores of 29
immuno-related signatures were displayed in a heatmap.

Statistical analysis
All statistical analyses were performed using GraphPad Prism 9 and R
(v4.0.5) (http://www.r-project.org). Wilcoxon test was used to test the sta-
tistical significance between two independent groups or paired groups. Pair-
wise P < 0.05 was considered to indicate statistical significance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been deposited in the
GSA-Human (Genome Sequence Archive for Human in BIG Data Center,
Beijing Institute of Genomics, Chinese Academy of Sciences, https://ngdc.
cncb.ac.cn/gsa-human/) under the accession code HRA004417. The data
are available under controlled access. Any additional information required
to reanalyze the data reported in this paper is available from the lead contact
upon request.

Code availability
This paper does not report the original code.
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