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Multimodal fusion of liquid biopsy and CT
enhances differential diagnosis of early-
stage lung adenocarcinoma

Check for updates

Yanwei Zhang 1,7, Beibei Sun2,7, Yinghong Yu3,7, Jun Lu1,7, Yuqing Lou1, Fangfei Qian1, Tianxiang Chen4,
Li Zhang3, Jiancheng Yang 3,5 , Hua Zhong1 , Ligang Wu 6 & Baohui Han1

This research explores the potential of multimodal fusion for the differential diagnosis of early-stage
lung adenocarcinoma (LUAD) (tumor sizes < 2 cm). It combines liquid biopsy biomarkers, specifically
extracellular vesicle long RNA (evlRNA) and the computed tomography (CT) attributes. The fusion
model achieves an impressive area under receiver operating characteristic curve (AUC) of 91.9% for
the four-classification of adenocarcinoma, along with a benign-malignant AUC of 94.8% (sensitivity:
89.1%, specificity: 94.3%). These outcomes outperform the diagnostic capabilities of the single-
modal models and human experts. A comprehensive SHapley Additive exPlanations (SHAP) is
provided to offer deep insights into model predictions. Our findings reveal the complementary
interplay between evlRNA and image-based characteristics, underscoring the significance of
integrating diverse modalities in diagnosing early-stage LUAD.

Lung cancer stands as the leading cause of cancer-related deaths
worldwide1. Early detection through low-dose CT (LDCT) has shown
significant potential in reducing mortality rates, as demonstrated by
notable trials such as the National Lung Screening Trial (NLST)2 and the
Dutch-Belgian Lung Cancer Screening Trial (NELSON)3. One sig-
nificant challenge in LDCT screening is the high rate of false-positive
results, leading to unnecessary biopsy or surgical procedures. For
instance, the NLST reported a false-positive rate of 26.3% for baseline
screening2, while the NELSON trial reported a rate of 19.8%3. Lung
nodules identified during LDCT screening, often smaller than 2 cm4,5,
are challenging to biopsy effectively6,7. Therefore, the primary approach
involves close monitoring, but larger tumors may exhibit resistance or
metastasize during this period.

In addition to LDCT screening, liquid biopsies can identify
various biomolecular features, providing potential insights into dis-
ease status8. Combining liquid biopsy with AI methods holds

significant promise for early-stage diagnosis9,10. Extracellular vesicle
long RNA (evlRNA), identified as a candidate biomarker, is enriched
in the blood of lung cancer patients compared to healthy controls,
showing significant diagnostic value in early-stage LUAD
patients11,12. However, many current liquid biopsies focusing on early
cancer detection lack the sensitivity needed for reliable identification
of early-stage cancers13.

Artificial intelligence (AI) and biomarkers, both non-invasive, hold
substantial promise in shaping the future of lung cancer screening14. The
combined assessment of CT and evlRNA features in lung cancer cases has
not been thoroughly investigated. Our study aims to explore the com-
plementarity of these two modalities, leveraging their respective strengths
and addressing individualweaknesses for the early-stagediagnosis of LUAD
with tumors smaller than 2 cm.

This study enrolled 146 participants (Table S1) who underwent
lung surgeries due to the presence of pulmonary nodules. These

1Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2Institute for Thoracic
Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 3Dianei Technology, Shanghai, China. 4Shanghai Lung
Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 5Computer Vision Laboratory, Swiss Federal
Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. 6State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology,
Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese
Academyof Sciences, Shanghai, China. 7These authors contributed equally: Yanwei Zhang, Beibei Sun, YinghongYu,
Jun Lu. e-mail: jiancheng.yang@epfl.ch; eddiedong8@hotmail.com; lgwu@sibcb.ac.cn;
xkyyhan@gmail.com

npj Precision Oncology |            (2024) 8:50 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00551-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00551-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00551-8&domain=pdf
http://orcid.org/0000-0002-0230-6279
http://orcid.org/0000-0002-0230-6279
http://orcid.org/0000-0002-0230-6279
http://orcid.org/0000-0002-0230-6279
http://orcid.org/0000-0002-0230-6279
http://orcid.org/0000-0003-4455-7145
http://orcid.org/0000-0003-4455-7145
http://orcid.org/0000-0003-4455-7145
http://orcid.org/0000-0003-4455-7145
http://orcid.org/0000-0003-4455-7145
http://orcid.org/0000-0003-4010-9118
http://orcid.org/0000-0003-4010-9118
http://orcid.org/0000-0003-4010-9118
http://orcid.org/0000-0003-4010-9118
http://orcid.org/0000-0003-4010-9118
mailto:jiancheng.yang@epfl.ch
mailto:eddiedong8@hotmail.com
mailto:lgwu@sibcb.ac.cn
mailto:xkyyhan@gmail.com


individuals had available preoperative blood samples and chest CT
scans. Among them, 111 patients were diagnosed with LUAD, while 35
were categorized as benign. The LUAD group is subdivided into three
pathological categories: adenocarcinoma in situ (AIS; N = 36), mini-
mally invasive adenocarcinoma (MIA; N = 34), and invasive adeno-
carcinoma (IA; N = 41).

Model development details are illustrated in Fig. 1A. We extracted
imaging features, referred to as Rad features, froma pre-trainedmultitask 3D
DenseSharp neural network15. These features included malignancy prob-
ability, IA probability, invasiveness category, attenuation category, 2D dia-
meter, and volumetric consolidation tumor ratio (vCTR). In addition, blood
samples were collected in 10mL K2EDTA anticoagulant vacutainer tubes.

E

evlRNA + Human ExpertevlRNA + (v)CTR

evlRNA + Rad + Junior

evlRNA + Rad

evlRNA + Rad + Senior

A

B

evlRNA Rad evlRNA + Rad

F

C

D

https://doi.org/10.1038/s41698-024-00551-8 Brief communication

npj Precision Oncology |            (2024) 8:50 2



Subsequent steps for serum extracellular vesicle (EV) purification, RNA
isolation and RNA-seq analysis followed procedures from our prior study12.
We selected 17 evlRNA features from differentially expressed genes (DEGs)
between the LUAD and control groups. Moreover, to evaluate our methods
compared to humanperformance and investigate the potential enhancement
of diagnostics through the integration of human expertise, we conducted an
observer study involving both a senior and a junior investigator.

For multimodal fusion, incorporating Rad features extracted by AI
from CT, evlRNA features from liquid biopsy, and observation features
from clinicians, we employed the XGBoost machine learning framework16.
Separate XGBoost models were established for each feature fusion scenario,
with a primary training objective ofmulti-class classification (IA,MIA, AIS,
Benign). The flexibility to use different combinations allows for diverse
subgroup analyses. A 5-fold cross-validation approach was adopted, and
average results are reported.

The performance evaluation of the multimodal fusion is shown in Fig.
1B–D, revealing several intriguing discoveries:
(1) Combining evlRNA and Rad features results in a highly effective diag-

nostic method, with an impressive AUC of 0.919 (Fig. 1B). This com-
bined model surpasses unimodal models and is comparable to the
performance of senior expert.

(2) Integrating human expertise with the combination of evlRNA and Rad
characteristics leads to improved results, with AUC values of 0.934 and
0.924 for the inclusion of senior and junior experts, respectively
(Fig. 1C).

(3) Furthermore, evlRNA-based and image-based features complement
each other, displaying amutually reinforcing relationship (Fig. 1D). The
three subplots illustrate that combining evlRNA with image-based
attributes (Rad, (v)CTR, observer) leads to better performance than
using a single modality.

The evlRNA + Rad model outperforms other multi-modal fusion
modelswithout human expert intervention. In the subsequent text, we’ll use
it as our standard fusionmodel.We conducted a detailed assessment of our
model’s performance, concentrating on three vital clinical subtasks (see
Table 1):
(a) The binary classification distinguishing between malignant nodules

(IA, MIA, or AIS) and benign nodules. The fusion model attained an
impressive area under receiver operating characteristic curve (AUC) of
94.8%, with sensitivity of 89.1% and specificity of 94.3%.

(b) The binary classification distinguishing between invasive nodules (IA
orMIA) andpreinvasivenodules (AIS orBenign). The goal is to reduce
overdiagnosis in line with the 2021 WHO guidelines17. Invasive
nodules require surgical intervention due to their worse prognosis,
while preinvasive nodules usually need CT monitoring. The fusion
model performed well in this task with an AUC of 87.2%, a sensitivity
of 80.0%, and a specificity of 87.1%.

(c) The binary classification distinguishing IA nodules fromMIA in inva-
sive nodules. MIA patients have a high disease-free survival rate, nearly
100%, with careful limited resection18. In contrast, IA patients have a
lower disease-free survival rate, around 60% to 70%19,20. The fusion

model achieved excellent results for this task with an AUC of 92.1%, a
sensitivity of 92.8%, and a specificity of 88.6%.
Our fusion model consistently outperforms single-modal models

across different subtasks, just as it did in the four-class classification.
Notably, our fusion method significantly improves specificity, effectively
reducing false positives and overdiagnosis. The fusion model exceeds the
specificity of senior experts by 14.3%, 9.7%, and 11.9% in subtasks (a), (b),
and (c), respectively. Furthermore, when combining evlRNA, Rad, and
senior expert inputs, our model achieves 100% specificity in distinguishing
malignant from benign nodules during cross-validation.

To enhance the understanding of feature importance in pre-
dictive modeling, we employed the SHapley Additive exPlanations
(SHAP) post hoc explanatory framework21. We applied this frame-
work to three models: evlRNA, Rad, and evlRNA + Rad. The feature
impacts for the 4-category classification are depicted in Fig. 1E.
Notably, in the fusion model, vCTR is the most crucial feature. Fur-
thermore, the SHAP framework extended to individualized valida-
tion predictions (Fig. 1F). The visual illustration unveils that the
patient with a high probability of 0.94 for being classified as IA. This
probability primarily results from factors such as an IA probability of
0.9312, a vCTR value of 0.2426, a gene CCND value of 15.89, and
other risk-contributing factors. Understanding individual predic-
tions is valuable for clinical decision-making. In addition, we
explored how feature values relate to predicted categories (Fig. S1 in
Supplementary). In the evlRNA analysis, certain genes exhibit dis-
tinct correlations with category predictions, which become more
evident in the Rad feature analysis. We believe Rad features, being AI-
generated, naturally possess discriminative abilities. In the joint
analysis of Rad and evlRNA features, the top five crucial features
combine genetic and imaging traits, highlighting their synergistic
effects (details in Supplementary Results).

Assessing a model’s robustness is crucial for both evaluation and
practical use.We evaluated the robustness of our XGBoostmodel by adding
Gaussian noise to input features (Fig. S2). With low noise, the model’s
performance slightly declines, but as noise increases, the degradation
intensifies. Remarkably, in a specific noise range, our multimodal fusion
model, consistently outperforms single-modal models, showcasing its
robustness.

Our study has a few limitations. Firstly, we only include 146 partici-
pants due to difficulties in obtaining both evlRNA detection data and CT
imaging samples. Collecting evlRNA information is time-consuming and
expensive. In the future, a larger dataset is needed to avoid overfitting and
improve validation accuracy. Secondly, our study only involved internal
validation and did not include external validation, thereby leaving the
model’s applicability and generalizability unexplored.

In summary, our study has underscored the complementary
nature between evlRNA-based and image-based features, with human
analysis integration leading to improved performance. These results
emphasize the critical importance of multimodal fusion to enhance
differential diagnosis of early-stage lung adenocarcinoma in the LDCT
screening.

Fig. 1 | Development, diagnostic performance and post hoc explanation of the
multimodal fusion model. AMultimodal fusion model development and post hoc
explanation. B–D The validation performance evaluation of different models was
conducted using 5-fold cross-validation for four-category classification (BenignAIS,
MIA, IA). Themean ROC curves are depicted with dark lines, while the ROC curves
for each fold are shown with light-colored lines. The shaded area surrounding the
average curves indicates the standard deviation of the 5-fold. The legend for the ROC
curve includes the mean AUC with median (±SD). The senior or junior models are
represented by the marker “x” with their corresponding sensitivity provided in the
legend. B Single-modal models compared with evlRNA+ Rad multimodal models.
CCollaboration of evlRNA, Rad, and human analysis from junior and senior expert.
D Multimodal fusion of evlRNA and image-based features (Rad, (v)CTR, human
expert). E Features importance of 4-category classification in SHAP post hoc

explanation for three models (evlRNA, Rad, evlRNA + Rad). In each subplot, the
horizontal axis denotes the feature names, and the vertical axis denotes SHAP values.
Features with larger SHAP values aremore important. The four distinct colors on the
graph correspond to the four categories. Some features in the figure are abbreviated:
malignancy probability (malig_prob), IA probability (IA_prob), and invasiveness
classification (Rad_invas). F Explanation of SHAP values for a patient prediction
from the model evlRNA + Rad. This patient is pathologically diagnosed as IA. The
function f(x) is the output of themodel (the predicted probability 0.94), and the base
value follows the average of the model predictions. Features that increase the pre-
diction (i.e., higher risk) are highlighted in red, while features that decrease the
prediction (i.e., lower risk) are highlighted in blue. The size of the arrow denotes the
effect of the features.
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Methods
Data characteristics
The study involved 146 participants who underwent lung operations due
to the presence of pulmonary nodules between 2018 and 2020. This
group included 111 patients diagnosed with lung adenocarcinoma
(LUAD) and 35 controls classified as benign cases. Essential participant
characteristics are provided in Table S1. The following inclusion criteria
for the LUAD patients were applied: (a) patients pathologically proven
to have LUAD (tumor size < 2 cm), (b) obtainable preoperative blood
samples, (c) obtainable chest CT scan, and (d) patients gave their
informed consent before enrollment.

This study was approved by the ethics committee of Shanghai Chest
Hospital, Shanghai Jiao Tong University School of Medicine, and complied
with all relevant ethical regulations including the Declaration of Helsinki.
All participants were from a registered lung cancer screening study (China
Lung Cancer Screening Study, NCT03975504), and signed informed con-
sent to take part in the research. Our study did not specifically address cases
involvingmultiple nodules. In our cohort, only two individuals hadmultiple
pulmonary nodules. For these cases, we chose to analyze only the most
severe nodule.

In this study, the CT images of the latest CT examination before sur-
gery were collected from a single clinical center (Chest Hospital affiliated to

Table 1 | Classification performance overall and across three clinical subtasks

Method Category
Classification

Subtasks analysis

(IA, MIA, AIS)
vs
Benign

(IA, MIA)
vs
(AIS, Benign)

IA
vs
MIA

AUC P AUC Sens Spec AUC Sens Spec AUC Sens Spec

Single-modal analysis

evlRNA 79.2
(75.0–
83.4)

0.001 86.4
(82.3
–90.4)

83.9
(78.2–
89.5)

85.7
(85.7–
85.7)

75.8
(64.4–
87.3)

73.3
(48.2–
98.5)

78.9
(68.3–
89.6)

81.7
(76.4–
86.9)

75.8
(59.0–
92.7)

91.4
(80.2–
102.6)

CTR 77.6
(74.4–
80.8)

0.001 75.7
(71.6–
79.8)

59.5
(50.5–
68.5)

94.3
(87.4–
101.1)

62.9
(60.1–
65.7)

77.3
(59.5–
95.1)

59.2
(47.1–
71.2)

73.7
(57.8–
89.6)

82.5
(67.8–
97.2)

72.4
(48.8–
95.9)

vCTR 84.0
(82.0–
86.0)

<0.001 85.1
(81.6–
88.5)

71.0
(57.2–
84.9)

97.1
(91.5–
102.7)

75.9
(69.8–
82.0)

68.0
(51.3–
84.7)

80.3
(68.2–
92.3)

79.3
(75.9–
82.7)

70.6
(57.8–
83.3)

93.8
(86.3–
101.3)

Rad 89.0
(84.4–
93.6)

<0.001 92.2
(87.0–
97.5)

79.2
(69.5–88.8)

94.3
(87.4–101.1)

82.9
(74.6–91.2)

76.0
(63.2–88.8)

85.8
(75.8–95.8)

89.2
(81.6–96.9)

87.8
(76.8–98.8)

94.3
(87.4–101.1)

Junior
expert

/ / / 83.7
(76.4–
91.0)

51.4
(30.5–
72.4)

/ 76.0
(66.2–
85.8)

66.2
(58.0–
74.3)

/ 81.1
(64.5–
97.7)

79.5
(65.4–
93.6)

Senior
expert

/ / / 91.9
(87.5–
96.3)

80.0
(73.1–
86.8)

/ 85.3
(75.7–
94.9)

77.4
(74.4–
80.4)

/ 85.6
(76.9–
94.2)

76.7
(57.9–
95.4)

EvlRNA-based and image-based features are complementary

evlRNA
+ CTR

88.0
(84.5–
91.5)

<0.001 90.5
(87.1–
93.9)

87.4
(78.0–
96.9)

88.6
(83.0–
94.2)

84.0
(77.5–
90.4)

72.0
(60.8–
83.2)

90.0
(81.6–
98.4)

88.1
(83.7–
92.6)

90.3
(81.2–
99.4)

82.4
(72.0–
92.8)

evlRNA
+ vCTR

89.1
(86.2–
92.0)

<0.001 91.0
(86.8–
95.2)

84.6
(77.3–
91.9)

91.4
(84.6–
98.3)

82.7
(74.1–
91.2)

68.0
(49.8–
86.2)

91.4
(80.2–
102.6)

90.7
(85.6–
95.8)

92.8
(87.0–
98.6)

85.2
(76.3–
94.1)

evlRNA
+ Rad

91.9
(88.6–
95.2)

<0.001 94.8
(91.3–
98.3)

89.1
(83.1–
95.1)

94.3
(87.4–
101.1)

87.2
(80.2–
94.3)

80.0
(63.0–
97.0)

87.1
(70.3–
104.0)

92.1
(88.5–
95.7)

92.8
(87.0–
98.6)

88.6
(78.1–
99.0)

evlRNA
+ Junior
expert

83.4
(78.7–
88.1)

<0.001 89.9
(86.3–
93.5)

86.4
(78.9–
93.9)

88.6
(78.1–
99.0)

82.8
(77.8–
87.8)

73.3
(57.9–
88.8)

84.5
(73.2–
95.7)

82.1
(73.1–
91.1)

88.1
(77.7–
98.4)

77.1
(58.2–
96.1)

evlRNA
+ Senior
expert

89.3
(83.9–
94.7)

<0.001 95.1
(91.1–
99.2)

86.5
(78.0–
95.0)

97.1
(91.5–
102.7)

87.8
(81.0–
94.6)

86.7
(78.4–
95.0)

80.2
(68.9–
91.5)

84.2
(76.0–
92.4)

75.8
(63.1–
88.6)

85.7
(64.0–
107.4)

Multimodal + Human analysis collaboration further improves performance

evlRNA
+ Rad +
Junior
expert

92.4
(89.2–
95.6)

<0.001 96.0
(92.7–
99.2)

95.5
(91.5–
99.4)

91.4
(84.6–
98.3)

87.3
(79.2–
95.5)

78.7
(63.5–
93.8)

88.6
(79.1–
98.1)

92.5
(90.2–
94.8)

90.3
(81.2–
99.4)

91.4
(84.6–
98.3)

evlRNA
+ Rad +
Senior
expert

93.4
(90.5–
96.3)

<0.001 97.9
(96.0–
99.9)

91.8
(85.3–
98.4)

100.0
(100.0–
100.0)

88.9
(81.6–
96.1)

92.0
(84.4–
99.6)

80.1
(65.0–
95.1)

92.4
(89.0–
95.9)

88.1
(77.7–
98.4)

94.3
(87.4–
101.1)

including discrimination between malignant nodules (IA, MIA, or AIS) and benign nodules, discrimination between invasive nodules (IA or MIA) and preinvasive nodules (AIS or Benign), and discrimination
between IAnodules andMIAnodules. Theperformancemetrics ofAUC (%),AUCp-value (P), sensitivity (Sens,%), andspecificity (Spec,%) arepresented from themeanof 5-fold cross-validation,with95%
confidence interval (CI) provided. Bold: Best-performing model within its subtasks and subgroup analysis.
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Shanghai Jiaotong University School of Medicine). Thicknesses of these
scans range between 0.625mm and 1.5mm. The pathological label and
mass center of each lesion is manually labeled by a junior thoracic radi-
ologist, according to corresponding pathological reports. These annotations
are then confirmed by a senior radiologist with 15 years of experience in
chest CT. Patient identities are anonymized for privacy protection.

Pre-trained DenseSharp model
To extract nodule features from CT images, we utilized a pre-trained 3D
DenseSharp neural network15, which had undergone extensive training on
two internal datasets: Pretraining cohort A contained 651 subcentimeter
nodules15, and pretraining cohort B comprised 4728 nodules from the
Pulmonary-RadPath dataset22. Number of nodules for pretraining can be
found in Table S2. The DenseSharp model generates outputs through five
heads: four for classification andone for creating a 3Dnodule segmentation.
The four classification tasks include invasiveness with four categories
(Benign, AIS, MIA, IA), malignancy (benign/malignant), IA (non-IA/IA),
and attenuation with three categories (solid, part-solid, ground-glass).

We conducted standard data preprocessing adhering to common
practices: (1) Resampling CT volumes to dimensions of 1mm × 1mm ×
1mm. (2)NormalizingHounsfieldUnits to the range [−1, 1]. (3) Cropping
a 32 × 32 × 32 volume centered at the centroid of each lesion. In our
proposed model, the input consists of a cubic CT volume patch measuring
32mm × 32mm × 32mm.

The training employs early stopping basedon validation loss—training
stops if the validation loss does not decrease within 10 epochs. We incor-
porate online data augmentations, such as random rotation, flipping, and
translation, in every volume. We use Adam optimizer23 to train all models
end-to-end for 200 epochs. Our experiments are conducted using PyTorch
1.1124 on 2 Nvidia RTX 3090 GPUs.

Extracting imaging features
We employed the pre-trained 3D DenseSharp neural network to perform
the classification task and generate the nodule mask. We collected predic-
tion logits from the classification task, resulting in four nodule attributes.
Since the size of the solid component within SSNs observed onCT images is
closely related to the extent of tumor infiltration25,26, we developed an
internal tool to calculate 2D diameter (mm), the consolidation tumor ratio
(CTR), and volumetric CTR (vCTR). Notably, a nuanced differentiation
exists between the two, as CTR measures the diameter fraction of the solid
components in nodules, whereas vCTR quantifies the volumetric propor-
tion. By combining these features with the previously established funda-
mental attributes, we derived a set of six nodule imaging features known as
Rad features. These Rad features encompass malignancy probability, IA
probability, invasiveness category, attenuation category, clinicallymeasured
2D diameter (mm), and v(CTR).

Extracting evlRNA features
The methodologies employed for collection of blood samples, serum
extracellular vesicle (EV) purification, RNA isolation, characterization of
EVs, construction of evlRNA libraries and subsequent RNA-seq analysis
closely adhere to those detailed in the previously cited work12. We explored
the differentially expressed genes (DEGs) between the LUAD and control
groups, which revealed a total of 145 upregulated and 363 downregulated
DEGs (pvalue < 0.05, fold change>1.5). Feature selectionwasperformedby
the Boruta algorithm27 to find all relevant variables for machine learning. A
signature of 17 DEGs were selected as diagnostically informative EV-
associated evlRNAs: HLA-E, BIN2, Z97192.1, KAZN, CCDC9B, PLE-
KHO1, PTGS1, ANXA4, SNX29, CEP164, GFRA2, TBC1D24, NPC2,
CCND1, KIAA1217, DMD, and SEZ6L.

Integrating multimodality features
We employed the machine learning framework XGBoost16 to perform
multimodal fusion of various features. To integrate human expertise, we
gathered pathological four-type judgments from both doctors for all

samples. These judgments were then used as features, combined with other
modal features, and introduced as fusion features into the XGBoost model
for training and validation. In our experiments, we established separate
XGBoost models for each feature fusion scenario.

The primary training objective of our model involves multi-class
classification, specifically distinguishing between (IA, MIA, AIS, Benign)
categories. This is achieved using the multiclass softmax as the objective
function, which generates a probability distribution for each class. When it
comes to prediction results, we have the flexibility to use different combi-
nations based on specific needs, allowing for various subgroup analyses. As
an illustration, we outline the calculation of positive and negative prob-
abilities for each task as follows: in task (a), ypostive = yIA+ yMIA+ yAIS,
ynegative = yBenign; in task (b), ypostive = yIA+ yMIA, ynegative = yAIS + yBenign; in
task (c), ypostive = yIA, ynegative = yMIA.

We adopted a 5-fold cross-validation approach, wherein the entire
dataset was evenly divided into five distinct subsets. During each iteration,
four subsets were used for training, leaving one subset for validation. The
stopping criteria involve early stopping based on the maximum number of
iterations, with the default value of num_boost_round set to 10. The
reported performance metrics represent the average results obtained across
the fivefold validation. To assess the effectiveness of a diagnostic test in
distinguishing between positive and negative cases, we employed the You-
den index. This threshold is employed to strike a balance between sensitivity
and specificity. Our multi-modal fusion model’s parameters are shown in
Table S3.

Observation study
To compare our methodologies with human proficiency, an experienced
senior radiologist (with over a decade of expertise in chest CT interpreta-
tion) and a junior radiologist (with 3 years of experience in chest CT
interpretation) from Chest Hospital affiliated to Shanghai Jiaotong Uni-
versity School of Medicine were consulted. These professionals, who were
kept unaware of the histopathological findings and clinical information,
independently undertook the task of classifying and diagnosing all the
nodules. The outcomes of their expert-based image interpretations were
referred to as observation features.

Model robustness analysis
During the experiments,we introducedGaussiannoisewith ameanof 0 and
observed its impact on the model’s performance (4-categoray classification
AUC) as perturbations increased, corresponding to an increase in the
standarddeviation.We selected threemodels for analysis: Rad, evlRNA, and
a multi-modal fusion model, evlRNA + Rad. In our study, we injected
Gaussian noise into the input features of theXGBoostmodel with amean of
0 and a standard deviation of σ. We then observed the trend of 5-fold AUC
validation performance on the dataset as the standard deviation varied. For
each standard deviation value selected, we randomly generated Gaussian
noise 100 times andcalculated the averageAUCresults for these 100 runs. In
Fig. S3, we represented the average results of the 100 runs with a solid line,
andweused shading to indicate the standarddeviation interval for 100noise
injections.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The sequencing data have been deposited in the National Center for Bio-
technology Information Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/) database under accession number GSE200288.
Additional data utilized and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Code availability
Our pipeline is available at https://github.com/yinghyu5214/fusion.
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