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Cancer is a complex disease influenced by a heterogeneous landscape of both germline genetic
variants and somatic aberrations. While there is growing evidence suggesting an interplay between
germline and somatic variants, and a substantial number of somatic aberrations in specific pathways
are now recognized as hallmarks in many well-known forms of cancer, the interaction landscape
between germline variants and the aberration of those pathways in cancer remains largely unexplored.
Utilizing over 8500 human samples across 33 cancer types characterized by TCGA and considering
binary traits defined using a large collection of somatic aberration profiles across ten well-known
oncogenic signaling pathways, we conducted a series of GWAS and identified genome-wide and
suggestive associations involving 276 SNPs. Among these, 94 SNPs revealed cis-eQTL links with
cancer-related genes or with genes functionally correlated with the corresponding traits’ oncogenic
pathways. GWAS summary statistics for all tested traits were then used to construct a set of polygenic
scores employing a customized computational strategy. Polygenic scores for 24 traits demonstrated
significant performance and were validated using data from PCAWG and CCLE datasets. These
scores showed prognostic value for clinical variables and exhibited significant effectiveness in
classifying patients into specific cancer subtypes or stratifying patients with cancer-specific
aggressive phenotypes. Overall, we demonstrate that germline genetics can describe patients’
genetic liability to develop specific cancer molecular and clinical profiles.

Common germline variants in the form of Single Nucleotide Poly-
morphisms (SNPs) represent the main form of DNA polymorphism.
In the last fifteen years, genome-wide association studies (GWAS)
identified thousands of variants linked with susceptibility to different
types of cancers1–3. However, most of these variants exhibited low
relative risk, suggesting that they individually have a small effect on
the heritability of cancer4–6. Polygenic scores hence emerged as an
effective approach to integrate multiple small effects across hundreds
or even thousands of variants summarizing in a single measure the
patients’ genetic liability to develop specific cancer types7.

Cancer, however, is a complex disease8 influenced by both germline
variants and a heterogeneous landscape of somatic aberrations acquired
during tumor formation and evolution which recurrently target core
cellular pathways and processes9. A growing number of studies support
the presence of intricate links between germline variants and somatic
aberrations. For example, a pan-cancer study10 exploiting genomic data
for >5000 tumors revealed hundreds of significant associations between
germline variants and tumor formation in specific tissues or somatic

aberration of specific cancer genes. Further, in11 a network-based
approach was developed to study interactions between multiple germ-
line variants and acquired somatic events in breast cancer, and in12 we
queried genomic data from more than 500 prostate cancer patients and
found strong signal of association between a germline SNP and SPOP
mutated prostate cancer molecular subtype. In addition, in13 it was
demonstrated that germline variants regulate the expression of cancer
genes and associate bothwith local and global somaticmutations, and in14

it was recently demonstrated that polygenic background underlying
common hematological traits influence the clonal selection of specific
somatic mutations and the development of specific hematological cancer
subtypes.

Overall, although there is an increasing evidence suggesting an inter-
play between germline and somatic variants and a large number of somatic
aberrations in specific pathways are now used as hallmarks in many well-
known forms of cancer15, an exhaustive exploration of the interaction
landscape between germline variants and the aberration of these pathways
in cancer is still largely missing.
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Herewe exploit data fromTheCancerGenomeAtlas (TCGA)16, ICGC
Pan-CancerAnalysis ofWholeGenomes (PCAWG)17 andCancer Cell Line
Encyclopedia (CCLE)18,19 projects, together with other cancer-specific stu-
dies, to integrate germline genotypeswith somatic aberrationprofiles in a set
of well-characterized oncogenic signaling pathways to obtain a pan-cancer
and cancer-specific view of how common germline SNPsmay contribute or
predispose to the progression and evolution of tumors.Wefirst identify and
characterize an array of common SNPs that increase or decrease the pre-
disposition of these somatic events patterns to occur and then exploit the
theory of polygenic scores to explore to what extent germline genetics
correlates with somatic molecular profiles, tumor subtypes, and clinical
variables such as patients’ survival and tumor aggressiveness.

Results
SNPgenotypes associatewith somatic aberrations in oncogenic
signaling pathways
To examine to what extent germline genetics primes aberrations in onco-
genic signaling pathways we first conducted genome-wide association stu-
dies (GWAS) using >8500 human samples across 33 cancer types
characterized by TCGA and exploiting phenotypic traits built considering
10 oncogenic signaling pathways previously described and characterized
in20; consideredpathway includeCellCycle,HIPPO,MYC,NOTCH,NRF2,
PI3K, RTKRAS, TGFBeta, TP53 andWNT. Specifically, using TCGASNP
Affymetrix 6.0 arraydata, a collectionof pan-cancerGWASwereperformed
by means of logistic regression considering the genotypes of 833,130 high-
quality SNPs across 8682 TCGA high-quality normal samples (patient’s
control samples, non-tumor) using additive, dominant and recessive
models. Forty binary traits were tested, 10 of which considering for each
oncogenic signaling pathway the presence/absence of a somatically altered
gene (as described in20 and here referred to as somatic traits, Fig. 1a), and the
remaining ones (here referred to as somatic transcriptomic traits, Supple-
mentary Fig. 1a) considering for each pathway the presence/absence of up-
regulated genes (10 traits), down-regulated genes (10 traits) or generally
deregulated genes (10 traits). The aberration frequencies of all traits across
all tumor types are reported in Supplementary Fig. 2. All analyses were
adjusted for age at diagnosis, sex, and the first six components from a
principal component analysis (Supplementary Fig. 3). Genomic inflation
(GI) was inspected (Supplementary Fig. 4) and TP53 downregulation
recessive trait (TP53 DOWN recessive) was removed due to an inflation
>1.1. In addition, heterogeneity of associations across tumor types was
determined and investigated.

We identified 6 genome-wide significant (p-value < 4.2e-10) associa-
tions between 6 SNPs (1 intronic and 5 intergenic) and 5 traits (Fig. 1b,
Supplementary Data 1), no one reported in the GWAS catalog21 or listed
in10. We also identified additional 320 suggestive (p-value < 1e-06) asso-
ciations between 272 SNPs (3 exonic, 7 promoter, 2 3′UTR, 85 intronic and
175 intergenic) and 36 traits, 7 already reported in the GWAS catalog, one
associated with Core binding factor acute myeloid leukemia and six asso-
ciated to non-cancer traits (Fig. 1b, Supplementary Fig. 1b, Supplementary
Data 1), and no one listed in10. Of these suggestive associations, 8 had a
p-value < 1e-08 and 71 a p-value < 1e-07. Overall, the majority of associa-
tions were trait-specific, with 39 SNPs associated to at least two traits. We
found both risk and protective alleles with associations, especially those
derived from dominant and recessive models, often exhibiting high/low
ORs. In particular, recessive models applied in the association of low fre-
quency variants and low case/control ratios resulted in significant though
unstable results (high ORs and large CIs), demanding for careful inter-
pretation of effect sizes. Of all 326 associations, about 97% demonstrated
zero tomoderateheterogeneity across tumor types (64%of associationswith
I2 ¼ 0, 21% with 0<I2<0:25 and 13% with 0:25≤ I2<0:5) while of the
remaining ones only 1 had I2 ≥ 0:75. All 9 associations with I2 ≥ 0:5 were
recessive, suggesting that the variable sample size of the different tumor type
datasets (from 36 in the CHOL and DLBC datasets to 953 in the BRCA
dataset) was probably the major contributor22 for the high heterogeneity of
those associations. Of note, the global Minor Allele Frequency (MAF)

distribution of genome-wide significant SNPswas not significantly different
than the MAF distribution of suggestive SNPs (Supplementary Fig. 5).
Linkage disequilibrium (LD) analysis was performed to retrieve variants in
strong LD (D’ = 1 and R2 ≥ 0.8) with associated SNPs, obtaining 1105 LD
variants for 133 associated SNPs.

Using our resource CONREL23 we found that 654 of the LD extended
associated SNPs (59%) lie in enhancer elements conserved across 34 tissue
types, 331 SNPs (30%) lie in active enhancer elements conserved across 33
tissue types and 15 SNPs lie in promoter regions (Fig. 1c, Supplementary
Fig. 1c and SupplementaryData 2). Exploiting our resource Polympact24 we
found that 523 of the 678 functional SNPs we identified (77%) cause a
putative absolute relative change >0.5 in the scores of 594 transcription
factor bindingmotifs, of which 19 are oncogenes (includingMYC, JUN, and
CTNNB1), ten are tumor suppressor genes (including,TP53,PTEN,BRCA1,
and CEBPA) and more generally 90 (15%) are genes implicated in cancer
(Fig. 1c, Supplementary Fig. 1c and Supplementary Data 2).

Overall, the data support the presence of wide association signal
between functional germline SNPs and the occurrence of somatic aberra-
tions in specific oncogenic signaling pathways.

Associated variants are functionally linked to oncogenic
signaling pathways
To further explore GWAS results, we asked whether the observed associa-
tions could be due to downstream effects that SNPs may have on the
transcription of genes linked to the activity of traits’ oncogenic signaling
pathways. We hence exploited cis-eQTL and transcriptomic data available
from the Genotype-Tissue Expression (GTEx) project25 to search, among
the 276 GWAS-associated variants, for cis interactions with genes in the
pathways, or cis interactions with genes co-expressed and functionally close
to genes in the pathways.

Overall, we retrieved247 cis-eQTL links (ofwhich 123 identifiedacross
multiple GTEx tissues) involving 94 variants and 134 transcripts (Supple-
mentaryData 3). Of these transcripts, 89were protein-coding genes with an
associated gene symbol, while the remaining ones were mostly categorized
as novel transcripts. Interestingly, although only three of these 89 cis-eQTL
genes are known to be involved in cancer, when exploiting data from an
integrated protein-protein interaction (PPI) network 66% of the 74 cis-
eQTLgenes that are characterized in thePPInetworkwere found connected
to genes involved in cancer, of which 15 were connected to oncogenes and
16were connected to tumor suppressor genes (Fig. 2a). Further, of the89 cis-
eQTL genes 53 demonstrated significant transcript level correlations with
oncogenic signaling pathway-related genes, 25 of which exhibiting con-
sistent significant correlations across multiple tissues (Supplementary Data
4). Of note, those co-expression signals span across several traits, with some
oncogenic pathways exhibiting enriched signal in specific traits, like
downregulation-based somatic transcriptomic traits,which show the richest
signal.

Overall, 50 SNPs were involved in cis interactions with genes that were
observed co-expressedwithmembers of the corresponding traits’oncogenic
pathways, for a total of 1802 putative links (Fig. 2b and SupplementaryData
4). Interestingly, mean PPI distance among cis-eQTL genes and co-
expressedgeneswas2.94, a distance thatwas smaller (p-value < 1e-03)when
compared to the ones obtained from permuted gene sets. Of note, 205
putative links demonstrated a distance less than or equal to 2. Among those
latter links, wemay highlight variant rs2722888, a SNPwe found associated
to TP53 somatic trait (additive), which was observed with an effect size
lower than 1 (Supplementary Data 1). This indicates that aberrations in
TP53 pathway is less likely to occur when the alternative allele is present.
Interestingly, variant rs2722888 alternative allele was linked to increased
expression of ELP3 gene in multiple GTEx tissues, which was positively
correlated (correlations across tissues in the range 0.6–0.7) with TP53
transcript level (Fig. 2c, Supplementary Fig. 6a and Supplementary Data 4)
with PPI interaction data supporting a close link (PPI distance 2) between
the two proteins. We can hence speculate that patients carrying rs2722888
SNP may constitutively have higher expression of TP53 gene, likely
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protecting cells from the accumulation of somatic aberrations in the
TP53 signaling pathway and hence supporting the observed GWAS
association.

Another interesting example is variant rs12686004, which was found
additively associated to Cell Cycle downregulation trait (Cell Cycle DOWN
additive) with an OR of 3.4 (Supplementary Data 1), indicating a strong
enrichment of variant’s alternative allele in patients with downregulation of
genes part of the Cell Cycle pathway. Variant rs12686004 alternative allele
was linked to increased expression of ABCA1 gene, which was negatively

correlated (−0.7) with RB1 transcript level (Supplementary Fig. 6b and
Supplementary Data 4) and closely linked (PPI distance 2) to it. Interest-
ingly, RB1 is a tumor suppressor gene and is dysfunctional in many major
cancers26.Hence,we canhypothesize that patients carrying rs12686004SNP
may constitutively have lower expression of RB1 gene, likely enhancing the
cancerous phenotype of cells that accumulate a somatic deregulation of Cell
Cycle genes.

Further, we may highlight variant rs436898, associated with NRF2
downregulation trait (NRF2 DOWN recessive). The SNP was found linked

Fig. 1 | Somatic trait definition and GWAS analysis results. a Cancer patients are
stratified based on the presence of aberrant genes in specific oncogenic signaling
pathways to build binary somatic traits. TP53 somatic trait construction is shown as
example. b Circular plots showing GWAS results for genome-wide significant
associations (highlighted with the star symbol) and suggestive associations with p-
value < 1e-07. The chromosomal positions (outer track) of the associations are
shown for the forty traits in the inner track. The associations for different oncogenic
pathways are reported on different rows and shown with different colors based on
the trait’s definition. In the middle track, the statistical models used for each

association are shown in different colors. c Circular plots showing functional
characterization of genome-wide significant associations (highlighted with the star
symbol) and suggestive associations with p-value < 1e-07. The functional char-
acterization is performed on LD extended associated variants. LD extended sets of
associated variants are characterized for genomic overlaps with regulatory elements
(inner track) and to cause a change in the transcription factor bindingmotifs of genes
implicated in cancer (middle track). The chromosomal positions (outer track) are
reported for the corresponding variant from the GWAS analyses.
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Fig. 2 | cis-eQTL and co-expression analyses. a PPI network showing cis-eQTL
genes that were found connected to cancer-related genes. b Grid visualization
highlighting coordinates of cis-eQTL genes in one dimension and coordinates of co-
expressed genes in the other dimension. Points in red represent links between genes
with PPI interaction data supporting a close link (PPI distance ≤2) between the two

proteins. cAn example representing variant rs2722888 alternative allele (associated
withTP53 somatic trait) linked to increased expression ofELP3 gene inWhole Blood
tissue, which was positively correlated with TP53 transcript level with PPI inter-
action data supporting a close link (PPI distance 2) between the two proteins.

https://doi.org/10.1038/s41698-024-00546-5 Article

npj Precision Oncology |            (2024) 8:57 4



to increased expression ofTMEM30A gene inmultiple GTEx tissues, which
was in turn negatively correlated to KEAP1 gene expression (correlations
across tissues in the range 0.53–0.58) and closely PPI connected to it
(Supplementary Fig. 6c, d and Supplementary Data 4). Based on these
observations, GWAS association of rs436898 variant can be supported by
the observation that patients carrying the SNPmayhave reduced expression
of KEAP1, which combined with somatic downregulation of other NRF2
pathway genes likely exposes cells to a cancerous phenotype characterized
by an increased induction of NRF2.

Taken together, these results support the hypothesis that functional
links between GWAS-associated variants, the corresponding traits’ onco-
genic signaling pathways and cancer genes exists, further strengthening the
validity of our GWAS results.

Polygenic somatic scores
Provided the strong and broad association signal we identified in the TCGA
dataset and the putative functional links we observed, we then explored to
what extent polygenic scores can capture the relationship between the
unique combinationof alleles ina cancerpatient and its likelihood topresent
aberrations in specific oncogenic signaling pathways. A new class of poly-
genic scores, referred to asPolygenic Somatic Scores (PSS), were computed in
the TCGA dataset for all considered traits across additive, recessive, and
dominant models using a five-fold cross-validation approach. Given a trait,
the computational strategy we developed first identifies the best p-value
cutoff to build the PSS across different LD clumps, then determines the PSS
performances in terms of AUCacross the different LD clumps, selecting the
best performing one, and finally determines its statistical significance using
permutation analysis and multiple hypotheses correction.

Overall,weobserved24PSS showing anFDR < 0.25 across 9oncogenic
signaling pathways and different association models (Supplementary Data
5). Among the obtained PSS, NRF2 downregulation traits (NRF2 DOWN)
presented consistent high AUC values across the different association
modelswith anAUCof 0.75 for the additivemodel and0.72 for the recessive
model. Of note, the baseline distributions built on NRF2 transcriptomic
traits show a high variance due to the low ratio between cases and controls
patients (0.3% for NRF2 DOWN and 1.6% for NRF2 UP). The other
somatic traits, including traits for Cell Cycle, TP53, MYC, PI3K, and RTK
RASoncogenicpathwayswereobservedwithAUCvalues ranging from0.53
to 0.61 and with an observed AUC greater than all the corresponding
baseline distribution values (Fig. 3a). As shown in Fig. 3b, quantile plots
obtained from PSS calculated using the identified LD clump and p-value
thresholds but exploiting the entire TCGA dataset clearly demonstrate how
high PSS predominantly identify patients with altered oncogenic pathways.
As shown in Supplementary Fig. 7, no specific tumor type is segregated by
our PSS.

The 24 PSS with FDR < 0.25 (Fig. 3a), denoted as pan-cancer PSS
(pPSS), were retained for further analyses.

PSS associate with patient’s clinical endpoints
Todetermine the effectiveness of pPSS, we first explored towhat extent they
can reproduce the prognostic value of somatic (transcriptomic) traits.
Tumor types were analyzed separately and Overall Survival (OS) and
Progression-Free Interval (PFI) data for TCGA patients was retrieved
from27. Patients were stratified based on both traits’ oncogenic pathways
aberration status and pPSS quantiles (considering the median values) and
tumor type-specific analyses were performed using a Cox proportional
hazards regressionmodel considering age, sex, andprincipal components as
covariates. Also in this case, models’ performances (AUC) were computed
using a five-fold cross-validation approach and were then tested for statis-
tical significance against reference baseline distributions generated using
permutation analyses,finally correcting formultiple hypotheses.Overall, we
observed 87 significant (FDR < 0.25) traits showing also a significant
(FDR < 0.25) pPPS (70 from OS analysis, 46 from PFI analysis) across 19
tumor types (Fig. 4a, Supplementary Data 6). pPSS reproduced traits’ OS
and PFI prognostic value across different tumor types, with Cell Cycle and

TP53 somatic traits showing significant OS associations across 8 tumor
types and significant PFI associations across 6 and 5 different tumor types,
respectively.As examples, TP53pathway aberrations status andpPSS (TP53
additive trait) showed a strong OS prognostic value in LIHC tumors
(Fig. 4b), Cell Cycle pathway aberrations status and pPSS (Cell Cycle
dominant trait) demonstrated OS prognostic value in MESO tumor
(Fig. 4c), NOTCH UP pathway aberrations status and pPSS (NOTCH UP
recessive trait) demonstrated PFI prognostic value in PRAD (Fig. 4d) and
PI3K DEG pathway aberrations status and pPSS (PI3K DEG additive trait)
showed significant PFI prognostic value in UCEC tumors (Fig. 4e).

Overall, our data demonstrate that pPSS can be potentially used to
stratify patients with poor survival or treatment response.

PSS and tumor subtypes
We then asked to what extent pPSS can be used to identify tumor-specific
subtypes. For each tumor type, we tested the presence of a significant
deviation in the distribution of pPSS across different tumor subtypes.
Interestingly, we identified several tumor types were pPSS demonstrated
strong shifts across specific subtypes (Fig. 5). Examples are UCEC
CN_HIGH subtype (Fig. 5a), ESCA CIN subtype (Fig. 5b), TGCT non-
seminoma and seminoma subtypes (Fig. 5c), STAD CIN subtype (Fig. 5d),
LGG IDHmut codel subtype (Fig. 5e), BRCA Basal and Her2 subtypes
(Fig. 5f). Of note, several pPSS demonstrated significant shifts across sub-
types of multiple tumor types.

To explore further this relationship, we built logistic regression
models and by comparing observed AUC against AUC baseline dis-
tributions obtained from permutation analysis, we identified 22 pPSS
across the subtypes of 7 tumor types with statistically significant
(FDR < 0.25) classification performances (Fig. 5g, SupplementaryData 7).
Additionally, in most of those cases an extended logistic regressionmodel
integrating all significant subtype-specific pPSS achieved same or better
performances in classifying tumor subtypes (Supplementary Data 8). In
particular, integratedmodels for subtypes UCECCN_HIGH, TGCT non-
seminoma and TGCT seminoma achieved much better classification
performances with respect to models built with single pPSS. Instead,
integrated models for subtypes BRCA Basal, BRCA Her2, STAD CIN,
STAD GS, ESCA CIN, and ESCA ESCC exhibited classification perfor-
mances that were comparable to the singlemost significant pPSS. Of note,
the majority of the subtype-specific pPSS were non-transcriptomic and
combinations of Cell Cycle, NRF2 DOWN, PI3K, TP53, andWNT pPSS
were observed as particularly effective in identifying specific tumor
subtypes.

Overall, our results demonstrate that pPSS can be used across several
tumor types to stratify patients based on specific tumor subtypes.

Validation of PSS in an independent pan-cancer dataset
We next tested the effectiveness of our 15 non-transcriptomic pPSS using
data from the ICGC PCAWG project17, a large collection of cancer and
matched normal whole genomes from patients spanning over 40 tumor
types. Although the differences in PCAWG and TCGA projects data col-
lection limit our ability to test and validate pPSS in PCAWG patients, we
exploitedPCAWGgermline and somatic processed data to test the presence
of statistically significant shifts in the distribution of pPSS among PCAWG
patients with somatic trait-specific aberrations.

In detail, by exploitingGWAS summary statistics trained in the TCGA
dataset, PCAWGgermline genotype calls were used to calculate the 15 pPSS
of interest across 1823 PCAWG patients. Somatic trait-specific aberrations
for each patient were determined considering (separately or in combina-
tion) reported somatic point mutations, homozygous deletions, and
amplifications data identifiedwithin the corresponding oncogenic signaling
pathways. For 5 of the 15 tested pPSS (33%) we found a statistically sig-
nificant (FDR < 0.25) increase of pPSS distribution in PCAWG patients
harboring somatic trait-specific aberrations (Supplementary Data 9). For
example, patients harboring point mutations in RTK RAS signaling path-
way genes showed increased RTK RAS pPSS values (Fig. 6a, left) and
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patients harboring homozygous deletions or point mutations in WNT
signaling pathway genes showed increasedWNT pPSS value (Fig. 6b, left).

Overall, the predictive power of pPSS in identifying patients’ genetic
liability to develop specific cancer molecular profiles was validated in an
independent pan-cancer dataset.

Validation of PSS in cancer cell line data
The 5 pPSS showing significant associations in the ICGC dataset were
further tested for confirmation using data from the Cancer Cell Line
Encyclopedia CCLE18,19, a large collection of SNP array and omics data for
cancer cell lines. Also in this case by exploiting GWAS summary statistics
trained in the TCGA dataset, CCLE germline genotype calls were used to
calculate the 5 pPSS of interest across 995 CCLE cell lines. Somatic trait-
specific aberrations for each cell line sample were determined considering

(separately or in combination) reported somatic point mutations, homo-
zygous deletions, and amplifications data identified within the corre-
sponding oncogenic signaling pathways. For 2 of the 5 tested pPSS (40%)we
found a statistically significant increase (p-value < 0.05) of pPSS distribution
in CCLE samples harboring somatic trait-specific aberrations (Supple-
mentary Data 10). We found, for example, that patients harboring homo-
zygous deletions in the RTK RAS showed increased RTK RAS pPSS values
(Fig. 6a, right) and that patients harboring point mutations in WNT sig-
naling pathway showed increased WNT pPSS values (Fig. 6b, right).

Validation of PSS in an independent cancer-specific dataset
We finally evaluated our pPSS in the Tyrol cohort28,29, a prostate cancer
(PCa) dataset including 1036 control samples and 837 cancer samples, of
which 280 (of 492 with ERG gene status annotation) are annotated as PCa

Fig. 3 | Polygenic somatic score (PSS) analysis. a Ridgeline plot of all PSS with a
FDR smaller than 0.25, ordered by AUC value, showing the distribution of AUC
values generated from random permutations and the observed AUC values (dots)

colored by the corresponding p-value.bQuantile plots with 5 quantiles of increasing
PSS for all the somatic traits with significant FDR using the additive model showing
the fraction of samples with altered and non-altered phenotypes.
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samples collected from patients overexpressing the ERG gene due to a
TMPRSS2-ERG fusion (i.e., ERG subtype patients). Considering the effec-
tive ERGsubtype classificationperformances thatwe observed in theTCGA
PCa dataset (PRAD) for 5 pPSS, we tested towhat extent this result could be
validated in the Tyrol cohort. Exploiting GWAS summary statistics trained
in theTCGAdataset, the 5pPSSwere calculated for all 837 cancer samples in
the Tyrol dataset exploiting the available Tyrol genotype data. Two of the
five pPSS (40%) also validated in the Tyrol cohort (Fig. 7a), and one
demonstrated a similar (though not significant) trend. Notably, a logistic
regression model built using the two validated pPPS demonstrated in the
Tyrol cohort statistically significant performances (p-value = 0.033) in ERG
subtype classification.

The Tyrol cohort provides also clinical information about patients’
Gleason Score (GS), a grading system representing one of the best inde-
pendent predictor of prostate cancer clinical outcome30. Of the 19 pPSS that
in the discovery TCGA dataset demonstrated a significant association with
moderate/high-grade prostate cancerpatients (i.e., patientswithGS equal to
4+ 3 or greater than 7, respectively), four (21%) also validated in the Tyrol
cohort (Fig. 7b) and one other demonstrated a similar (though not sig-
nificant) trend.

Overall, the predictive power of pPSS was further validated in an
independent cancer-specific dataset and we additionally demonstrated that
pPSS could be effective in stratifying patients with more aggressive cancer
phenotypes.

Fig. 4 | Clinical endpoints analysis. a Tile plots recapitulating the traits survival
analysis results. Results are divided based on PFI and OS events. For each trait’s
oncogenic pathway aberrations status and tumor type, corrected (FDR) empirical p-
values computed comparing the observed AUC with the corresponding AUC
baseline reference distribution are reported. Combinations of trait and tumor type

were both trait’s pathways aberration status and pPSS survival analyses resulted
statistically significant (FDR < 0.25) are highlighted with an asterisk.
b–e Kaplan–Meier curves showing significant survival analyses for specific exam-
ples in both trait’s pathway aberration status (left) and pPSS (right).
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Discussion
Over the past 15 years, despite numerous common SNPs have been linked
by GWAS studies to the susceptibility of developing different cancer types,
most of the identified associations demonstrated modest albeit significant
effects. GWAS studies have been usually designed to measure the increased
risk that individuals have in developing a specific cancer type. However, in
the last ten years, cancer genomes studies based on next-generation
sequencing data have unveiled how cancer is heterogeneous, characterized
by the presence of multiple molecular subtypes and recurrently targeting

signaling pathways and biological processes that are now recognized as
hallmarks across many well-known forms of cancer.

This motived a deeper exploration of germline-somatic interactions,
leading to a clear evidence that genetic background can influence the
somatic evolution of tumors10–14,31–34. Here, we dug further into the
exploration of this germline and somatic interplay, using a GWAS-based
approach with additive and non-additive35,36 models and exploiting the
availability of matched germline genotypes and somatic phenotypes from
large-scale projects like TCGA, ICGC PCAWG, and CCLE. The datasets

Fig. 5 | pPSS and tumor subtypes. a–f Boxplots showing the distributions of the
pPSS values across different tumor subtypes. pPSS in each cancer subtype are
compared using Kruskal–Wallis test and pPSS for each cancer subtypes pair are
compared usingWilcoxon-test. gTile plot recapitulating the tumor subtype analysis

results. For each pPSS and tumor subtype, FDR values of empirical p-values com-
puted comparing the observed AUC with the corresponding baseline reference
distribution are reported. The combinations of pPSS and tumor subtype statistically
significant (FDR < 0.25) are highlighted with ‘*’.
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utilized inour analyses aremulti-ancestry,withEuropean ancestry being the
dominant population. Although we employed logistic regression combined
with principal component analysis instead of more advanced models,
extensive evidence has demonstrated the effectiveness of our approach,
particularly in the context of case-control studies37–41. Further, other recent
GWAS studies successfully used logistic regression with PCA correction on
TCGA data31,42.

Overall, we found evidence that germline genetics can influence the
aberrationof specific oncogenic signalingpathways, highlightinghencehow
individuals’ genetic background may contribute to the activity and stability
of fundamental biological processes that are recurrently disrupted in cancer.
A large fraction of the SNPs we found associated in our GWASwere indeed
known cis-eQTLs of genes closely connected to oncogenes, tumor sup-
pressor genes or cancer-related genes. In addition, we identified functional
links between specific GWAS-associated SNPs and the corresponding
oncogenic pathways traits, exploring for some of them putative biological
interpretations that are in linewith scientific knowledge and literature.As an
example, we highlighted a SNP associated with NRF2 signaling pathway
deregulation that is linked in cis to genes that are co-expressedwith genes in
the pathway acrossmultiple tissues.Of note, the alternative allele of the SNP
was indicative of a transcriptional signature associatedwith downregulation
of KEAP1/CUL3/RBX1 complex, which acts as regulator of NRF2 levels in
various cancers43,44.

The ability to analyze and integrate different matched omics data
enabled us not only to identify and functionally characterize putative links
between specific SNPs genotypes and the aberration of specific oncogenic
signaling pathways, but also to exploit the theory of polygenic scores to
investigate patients’ genetic liability to develop specificmolecular profiles or
particularly aggressive forms of cancer. While polygenic scores have been
recently proven valuable in cancer risk predictionwithmultiple areas where
they canhave strong clinical utility, recent reports demonstrate that they can
preferentially predict patients belonging to certain tumor subtypes or car-
rying specific somatic aberrations45, highlighting hence the importance to
better understand their association with molecular and clinical variables. In
line with this, our study demonstrates that individuals’ genetic background
may influence the aberration of oncogenic processes in a way that is
orthogonal with respect to the tumor type but important for specific tumor
subtypes or to cancers that are particularly aggressive.

Our results are also in line with10, were the authors identified poly-
morphisms associated to specific tumor types or specific cancer driver gene
alterations. While in both cases a genome-wide association approach was
exploited to study germline-somatic links, our approach is substantially
different. Indeed, we performed a pan-cancer analysis that explores
germline-somatic links at the level of pathway, and in particular we inves-
tigated the polygenic nature of those links. Although, and as expected, we

had no specific overlap with polymorphism reported in10, the two studies
can be considered complementary, since by exploring different dimensions
of germline-somatic links they both converge to the same conclusion that
germline variants have a significant influence on specific somatic changes in
tumors.

While the specific germline-somatic interactions we identified and
reported may be used to generate testable hypothesis about mechanistic
processes related to cancer genesis and progression, an important question
would be to what extent our PSS could be useful in a clinical setting.
Although the PPS we have studied demonstrated AUC below 0.8 (which
represent awell-recognized thresholdof highpredictivepower), someof our
pan-cancer PSS were able to stratify patients based on OS and PFI in an
extremely effective and cancer-specific manner. In addition, classification
models built from our PSS demonstrated effective in identifying tumor
subtypes and tumorswithmore aggressive phenotypes both in the discovery
but also in external pan-cancer and cancer-specific datasets.

This study has several limitations, including the relatively small size of
the TCGA dataset, the absence of an independent validation dataset with
specular data characteristics, and the limited clinical utility that our OS and
PFI results could have given that TCGA was not designed for clinical out-
come studies. We, however, envision that our approach could be exploited
and refined to intercept cancer patients with a genetic background that
could more likely make their cancer evolve and progress towards specific
molecular and clinical trajectories (Fig. 8).

We want to underline that due to the subtle links that can relate tumor
types and pathway aberration profiles, no explicit inclusion of the tumor
type in the association model was considered in the current study. Indeed,
while it has been established that genetics influences tumor type formation10,
the extent atwhich it can act as a colliderormediator variablewith respect to
pathway aberrationprofiles is not easily definable, and further investigations
are required. Furthermore, an increased number of recessive associations,
primarily involving downregulation traits with slightly elevated GIs, were
observed. While an increased GI may suggest a polygenic trait46, the
instability of OR estimations observed across these traits made character-
izing most of them challenging in our polygenic analyses. This necessitates
future efforts to delve deeper into their characterization and their role in
cancer predisposition and evolution.

In addition, while in this study we focused on a set of phenotypic traits
derived from the aberration profiles of specific signaling pathways, more
advanced methods could be explored to define somatic traits, were cancer-
specific disruption of specific biological processes could be identified by
combining germline and somatic tumor omics data together with network
data (e.g., gene networks, protein-protein interaction network)47.

Future large-scale studies collecting both germline and somatic omics
data should continue to explore links between germline genetics and

Fig. 6 | pPSS validation using data for ICGC PCAWG and CCLE. Boxplots
showing statistically significant shift of pPSS distributions in patients harboring
specific aberrations in somatic traits. Specific examples for RTK RAS (a) andWNT
(b) pathways significant in ICGCPCAWGdataset (left) and confirmed in the CCLE

dataset (right) are reported. Wilcoxon-test was performed (two-tail statistic with
FDR correction for ICGC PCAWG and one-tail statistic for further confirmation in
CCLE) and reported in the figure.
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somatic variants with the ultimate goal of identifying cancer risk
biomarkers.

Methods
Landscape of inherited SNPs in cancer patients
Genotype calls generated from Affymetrix SNP Array 6.0 intensities of
normal (non-tumor) samples were retrieved from the TCGA legacy archive
(portal.gdc.cancer.gov/legacy-archive). Each SNPwas there annotated with
an allele count (0 = AA, 1 = AB, 2 = BB, −1 =missing) and a confidence
score between 0 and 1. Genotype calls with a score larger than 0.1 (corre-
sponding to an error rate of >10%) were set to missing and the data was
reformatted with PLINK v248. Only autosomal SNPs were considered.
Hardy-Weinberg equilibrium (HWE) was calculated across European
individuals, selected based on the ancestry calls previously defined in49, and
reported in Supplementary Data 11. Samples with SNP call rates <0.9 were
discarded. Multi-allelic SNPs and SNPs with call rates <0.9, minor allele
frequencies <0.01, orHWE test p-values < 1e-06were discarded resulting in
842,108 SNPs across 10,755 TCGA samples. Considering that batch effects
associatedwith groups of samples processed together (plate effects) can lead
to a bias in the estimation of variants allele frequencies50, we then searched
for the presence of variants displaying strong link with plate. In details,
analysis of plates was performed stratifying samples by population

(considering AFR, EUR, AMR, EAS, SAS major populations as annotated
by EthSEQ51,52 in49, Supplementary Data 11) and, for each population,
comparing all samples of a particular plate with all other plate’s samples
pooled together. Each variant was tested for the enrichment of genotypes in
specific plates (across 275 plates) performing Fisher exact test considering
additive, dominant, and recessive models. We discarded all the SNPs
demonstrating a strong plate association (p-value < 1e-08) in at least one
population and one statistical model, retaining however variants associated
with 4 or more plates. In addition, we searched for variants showing links
with specific tumor typesusing a procedure that is similar to the oneused for
plate association analysis. All the variants displaying a strong association
(p-value < 1e-08) in at least one population and one statistical model with
exactly one tumor type were excluded. Overall, genotype calls of 833,130
SNPs across 10,755 TCGA samples were finally considered. Principal
Component Analysis (PCA) was performed on the final data using the
smartpca function implemented in the EIGENSOFT tool53 and the first 6
components were extracted.

GWAS traits definition
A set of phenotypic binary traits were defined based on the somatic aber-
ration profiles corresponding to 10 oncogenic signaling pathways char-
acterized in20 using TCGA data. The considered oncogenic pathways

Fig. 7 | pPSS validation in a prostate cancer dataset. Boxplots showing statistically
significant shift of pPSS distribution for ERG subtype (a) and in patients with mod-
erate/high Gleason Score (GS) (b) in both TCGA dataset (left) and their confirmation

in the Tyrol dataset (right). Kruskal–Wallis rank test sumwas performed (two-tail test
with FDR correction for TCGAand one-tail test for confirmation in theTyrol dataset).
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include Cell Cycle, HIPPO, MYC, NOTCH, NRF2, PI3K, RTK RAS, TGF
Beta, TP53 andWNT (Supplementary Data 12). A set of phenotypic binary
traits (referred to as somatic traits) were defined based on the somatic
aberration profiles described in20, one for each oncogenic pathway con-
sidered. Figure 1a shows an example, based on TP53 pathway, of how a
somatic trait is built. An additional set of phenotypic binary traits (referred
to as somatic transcriptomic traits) were defined based on the expression
deregulation profile of the list of genes defined in20 for each oncogenic
pathway (Supplementary Data 12). Specifically, mRNA expression z-scores
(RNASeq V2 RSEM) were retrieved from The cBioPortal for Cancer
Genomics54,55 for each patient and an oncogenic pathway was considered
up-regulated, down-regulated, or generally deregulated if at least two genes
in the pathway had, respectively, an expression z-score >2, <−2 or not in the
range [−2,2]. Supplementary Fig. 1a provides an example of how a somatic
transcriptomic trait is built, with the TP53 pathway serving as an example.
Overall, we defined 10 somatic traits and 30 somatic transcriptomic traits.

GWAS association analysis
GWAS analyses were performed for each considered trait within the TCGA
dataset. Associations of SNPs and traits were performed with PLINK v2
using logistic regression with firth-fallback parameter active, indicating that
firth regression is used when logistic regression fails. The analyses were
performed using age at diagnosis, sex and the first 6 principal components
previously calculated as covariates. Of note, the selection of the number of
principal components (PCs) was based on the observation that the first six
were sufficient to capture all TCGA populations and subpopulations
described in49. PCs 1–3 captured the major population structure, while PCs
4–6 captured Asian and European substructures (Supplementary Fig. 3). In
addition, considering that in our scenario the assumption that the likelihood
of a patient to have an oncogenic pathway altered is proportional to the
number of alternative alleles may not be sufficient to explain the complex
genetic architecture of cancer, all three additive, dominant, and recessive
models were investigated. Overall, 8860 patients with phenotype and cov-
ariate data available were used in the analyses. Associations were calculated
against the minor allele. Family structure in the analysis was controlled

excluding 178 samples representing potential 3rd degree relatives using a
scaledKINGkinship coefficient of 0.0422 (--king-cutoff parameterwasused
while running the analyses). We extracted all associations that achieved a
genome-wide statistical significance threshold of p-value < 4.2e-10 (Bon-
ferroni correction, adjusted also for the number of traits and models tested,
i.e., 5e-08/120), but also suggestive associations considering a weaker
threshold of p-value < 1e-06. The latter threshold was chosen, similar to31,
based on the observation that our analyseswere conducted across correlated
traits (Supplementary Fig. 8), involving hundreds of thousands of SNPs
(many ofwhich in linkage disequilibrium), and encompassing both additive
and non-additive dependent models. Associations flagged by PLINK as
UNFINISHED were excluded from reported results. Cross-cancer hetero-
geneity of the resulting associated variantswas determined calculating the I2

index. In detail, the set of significant associations were tested again in each
tumor type separately. The analyses were performed with PLINK as
described before. GWAS summary statistics were combined via meta-
analysis across tumor types using PLINK.Associationsflagged by PLINK as
UNFINISHED were not considered in the meta-analyses. Heterogeneity
values I2 were extracted and collected.

Functional characterization of associated variants
For each GWAS (both genome-wide and suggestive) associated SNP, we
identified all SNPs in strong linkage disequilibrium (LD)with themwithin a
genomicwindowof 250 kb centered around the SNP. LDdatawas retrieved
from the ENSEMBLdatabase. Strong LDwas defined asR2 > 0.8 andD‘ = 1.
This extended list of associated SNPs and LD SNPs was then queried for
genomic overlaps with regulatory elements, cancer genes, oncogenes, or
tumor suppressor genes, and their disruptive effect on transcription factor
binding motifs. Oncogenes (OGs, N = 82), tumor suppressor genes (TSGs,
N = 63) and more generally cancer-related genes (N = 920) were char-
acterized using a comprehensive list we compiled from literature. Reg-
ulatory elements for promoters, enhancers and active enhancers were
retrieved using our resource CONREL23, while the impact of SNPs on
putative transcription factor DNA binding motifs was retrieved from our
resource Polympact24, which characterizes the impact of >18 million

Fig. 8 | Polygenic scores model to describe patients’ genetic liability to develop
specific cancer profiles. Cancer patients are stratified based on multiple polygenic
scores built from somatic phenotypic traits. Somatic traits represent patients’ pre-
disposition to carry somatic aberrations in specific oncogenic signaling pathways.

Single polygenic scores or combination of polygenic scores can identify patients
with more aggressive phenotypes, specific tumor subtypes or patients with poorer
survival.
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commonSNPs across >5000DNAmotifs. SNPswere classifiedasdisruptive
when causing an absolute relative change of motifs’ score >0.5.

Integrated protein-protein interaction network
A reference protein-protein interaction (PPI) networkwas built bymerging
information of five databases: BioGRID release 3.5.17356; HPRD release 9
2010041357; IntAct release 2015012058; BioPlex 3 release 2019050259;
STRING release v11.060. Interactions between nodes that represent human
proteins and experimentally validatedwere retained. Predicted data, such as
evolutionary analysis, gene expression data, and metabolic associations,
were excluded. Interactions from STRING and IntAct databases were fil-
tered considering only interactions with reported confidence scores higher
than 700 and 0.6 respectively. Interactions from BioGRID, HPRD, and
BioPlex were all included because manually curated. After the removal of
duplicated edges, the resulting network contains 245,787 interactions and
16,514 unique human proteins.

Cis-eQTL and co-expression analyses
GTEx v8 RNAseq count matrices were downloaded from recount3
database61. For each tissue, logarithm (two-based) transformed RPKM+ 1
of each gene was calculated using R recount and recount3 packages and
quantile normalized using R limma package62. A total of 16,805 RNA-seq
samples across 42 tissueswere used in the analysis. cis-eQTLdata forGWAS
SNPs (both genome-wide and suggestive) were retrieved from GTEx data
portal (gtexportal.org). SNP/gene cis-eQTL links were stratified by tissue
and for each tissue cis-eQTLgenes in that tissuewere collected and tested for
co-expression against all other protein-coding genes expressed in the same
tissue, using Pearson correlation and correcting p-values with FDRmethod.
Only correlation values smaller than −0.50 or greater than 0.50 and with
FDR < 0.05 were considered significant.

Polygenic somatic scores construction
For each considered trait, a set of polygenic scores were computed using a
five-fold cross-validation approach and exploiting the TCGA dataset.
TCGA samples were randomly partitioned into five equal-sized disjoint
subsets. For each fold, a partition was retained as validation set while the
others were aggregated and used as training set. A set of GWAS runs was
performed in the training sets as previously described. Specifically, logistic
regression was used, considering additive, dominant, and recessive models,
and using age at diagnosis, sex, and the first 6 principal components as
covariates. The generated GWAS summary statistics were then used in the
validation set to build polygenic scores, referred to as polygenic somatic
scores (PSS). PSS were calculated as the average number of minor alleles
weighted by the allele’s effect size using PRSice-263. As shown in64,65, using a
more liberal but optimized p-value threshold instead of a genome-wide
significant threshold, improves performance of polygenic scores prediction.
Hence, a computational workflowwas designed to build effective traits’ PSS
and test their performances and statistical significance. As described in
Supplementary Fig. 9, for each trait we first used PRSice-2 to determine the
best p-value threshold (testing p-values ranging from 1e-08 to 1 and using a
1e-08 step) across different LDclumps (usingR2 of 0.2, 0.4, 0.6, 0.8 and 1). In
particular, to determine the optimal p-value threshold for each clump, we
averaged the p-value thresholds at the highest pseudo-R2, when significant
(p-value < 0.05), that we obtained across the five folds. Then, we used
PRSice-2 again to generate for each LD clump a trait’s score using the
corresponding best p-value threshold and calculating its representative
AUC performance score, which was obtained averaging the AUC values
obtained across the five folds (R pROC package66 was used to compute the
AUCs). This to finally select the best-performing combination of p-value
threshold andLDclump thatwas used to generate the trait’s PSS. Further, to
better characterize the statistical significance of PSS performances, we
implemented an additional analysis step that is based on permutation
analysis. In detail, for each of the 120 PSS (40 traits across 3 association
models), 100 random PSS were generated by randomly shuffling trait’s
labels, and for each of them performances in terms of AUC values were

computed using the same computational workflow described before, pro-
ducing a PSS’s specific AUC baseline reference distribution. Then, for each
PSS theobservedAUCvalue and the correspondingAUCbaseline reference
distribution were used to compute an empirical p-value. Specifically, each
empirical p-valuewas computed as (r+ 1)/(n+ 1), where n is the size of the
reference distribution and r is the number of AUC values in the reference
distribution that are greater or equal to the observed AUC. P-values were
finally corrected formultiple hypothesis testing using FDRmethod. A set of
pan-cancer PSS (pPSS) was finally defined only considering PSS with an
FDR < 0.25.

Survival analysis
TCGA survival data was retrieved from27. Overall survival (OS) and
Progression-Free Interval (PFI) data were used. Survival analysis was per-
formed to examine to what extent clinical endpoints correlate with both the
somatic (transcriptomic) traits and pPSS within individual tumor types.
Also in this case, a five-fold cross-validation approachwas applied. Analysis
was performed using the R survival package67. For the analysis based on
somatic (transcriptomic) traits, patients were stratified based on traits
definitions. For pPSS analysis, patients were grouped and tested on the
median value of each selected pPSS. In detail, for each fold analysis, a Cox
proportional hazards regressionmodelwas computed in the training set and
then used in the validation set to compute the performance (AUC) which
evaluates the ability of the model to discriminate patients with altered
pathways or the patients with a higher pPSS. Also in this case, the perfor-
mances of our survival models were compared against AUC baseline
reference distributions generated by permutation analyses. Empirical
p-values were computed as described previously. For both analyses, OS and
PFI associations were corrected for multiple hypotheses separately and for
each tumor type. OS and PFI associations with an FDR < 0.25 for both
somatic (transcriptomic) traits and pPSS analyses were highlighted.

Analysis of tumor subtypes
TCGA cancer subtypes were collected from49. A total of 5148 samples were
annotated with molecular subtypes for the following tumor types: BLCA,
BRCA, CESC, COAD, ESCA, GBM, HNSC, LGG, READ, SARC, STAD,
TGCT, and UCEC. The molecular subtypes of TCGA prostate cancer
(PRAD) dataset were retrieved from12. Only TCGApatients included in our
polygenic scores computationswere retained and then tumor subtypes with
less than20patientswere discarded.A total of 4818patients, representing13
tumor types spanning more than 40 different tumor subtypes, were used in
the analysis. For each tumor type, we tested the presence of significant
deviation in the distribution of pPSS across different tumor subtypes
applying a five-fold cross-validation approach as described previously. In
detail, for each combination of tumor subtype and pPSS, statistical sig-
nificancewas determinedbuilding a logistic regressionmodel in the training
set testing all samples of a particular tumor subtype against all other tumor
samples of that tumor type. Then, the performance (AUC) of themodelwas
computed in the validation set. Also in this case, the performances of our
models were compared against AUC baseline reference distributions gen-
erated by permutation analyses. An empirical p-value for each combination
of pPSS and tumor subtype was calculated as described previously. For each
tumor subtype, associations were corrected for multiple hypotheses. Given
the non-standard u-shape distribution of p-values that we observed for
some combinations, associations were here corrected using the robust FDR
method described in68. Only FDR < 0.25 were considered significant. For
each tumor subtype, significant pPSS were integrated using a logistic
regression model to test their predictive power in identifying tumor
subtypes.

Validation using PCAWG data
Data for somatic point mutations, somatic copy number aberrations,
together with matched common SNPs genotype calls and relevant clinical
information were obtained from the ICGC PCAWG project17 for 1823
patients. Based on available samples annotations, samples that are both in
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TCGA and ICGC projects were not considered in the analysis. Genotyping
files (VCF format) representing a total of 67,207,291 germline variants were
downloaded from the ICGC Data Portal (dcc.icgc.org). INDELS and SNPs
not in theTCGAgenotypedatasetwere excluded.A total of 830,168 variants
were retrieved and used to build pPSS exploiting the weights previously
trained in the TCGA dataset. Specifically, scores were calculated with
PRSice-2 using TCGA GWAS summary statistics filtered based on PSS
TCGA-specific optimal p-value thresholds and LD clump cutoffs. Somatic
point mutations and somatic copy number aberrations were downloaded
for each patient and used to collect somatic trait-specific genomic aberra-
tions. Specifically, for each gene in a somatic trait defined by an oncogenic
signaling pathway, we retrieved non-synonymous point mutations,
homozygous deletions, and amplifications.We considered only the somatic
copy number aberrations consistent with the role of the gene (deep deletion
of TSGs and amplification of OGs, as defined above). Somatic alterations
data representing the presence of gene aberration were integrated and
summarized across patients. Due to the differences between data in TCGA
and ICGC PCAWG projects, aberrations were not aggregated but kept
separated. Binary somatic trait-specific aberration profiles were defined for
each patient considering separately or in different combinations the three
types of somatic aberrations. Distributions of pPSS in the different groups
were compared using Wilcoxon-test statistics (two-tail) and p-values were
corrected for multiple hypotheses. Only results with FDR < 0.25 were
considered significant.

Validation using CCLE data
Data for somatic point mutations, somatic copy number aberrations, toge-
ther with matched SNP Affymetrix 6.0 array Birdseed calls were obtained
from the CCLE data portal for 995 cell lines18,19. Each SNP was there
annotatedwith an allele count (0 = AA, 1 = AB, 2 = BB,−1 =missing) and a
confidence score between 0 and 1.Genotype calls with a score larger than 0.1
were set tomissing and thedatawere reformattedwithPLINKv248.A total of
868,261variantswere retrievedandused tobuildpPSSexploiting theweights
previously trained in the TCGAdataset. As for ICGC, scores were calculated
with PRSice-2 using TCGAGWAS summary statistics filtered based on PSS
TCGA-specific optimal p-value thresholds and LD clump cutoffs. Somatic
pointmutations and somatic copynumber aberrationsweredownloaded for
each cell line and used to collect somatic trait-specific genomic aberrations.
Datawas processed as described in the previous section.Only pPSS resulting
significant in the ICGCvalidationwere tested for confirmation inCCLEdata
using a Wilcoxon-test statistic (one-tail) with 0.05 p-value cutoff.

Validation using Tyrol cohort data
SNP genotype calls (Affymetrix SNP Array 6.0) data and clinical informa-
tion for 1903 individuals from the Tyrol Early Prostate Cancer Detection
Program cohort were retrieved from28,29. The data include genotype calls for
1036 healthy control individuals and 867 prostate cancer (PCa) patients. Of
these, 492 had annotation for ERG statuswith 280 patients (57%) annotated
as positive for the TMPRSS2-ERG fusion (ERG subtype patients). In
addition, 159 patients were annotated as having a moderate/high Gleason
Score (GS) of 4+ 3 (N = 54) or >7 (N = 105). A total of 871,856 SNPs were
retrieved and used to build pPSS exploiting theweights previously trained in
the TCGA dataset. Also in this case, scores were calculated with PRSice-2
using TCGA GWAS summary statistics filtered based on PSS TCGA-
specific optimal p-value thresholds and LD clump cutoffs. Only pPSS
resulting significant (FDR < 0.25) in theTCGAPRADsubsetwere tested for
confirmation in theTyrol dataset.DistributionsofPSSwere comparedusing
Wilcoxon-test statistic (one-tail) to identify PCa ERG subtype patients and
patients with high GS with 0.05 p-value cutoff. Significant pPSS were inte-
grated using a logistic regression model to test their predictive power in
identifying ERG-positive patients.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data generated in this study are available within the article and its
supplementary data files. Tyrol cohort data access and use were granted by
the lead contacts of the corresponding studies. All other human and cell line
data used in this study come from publicly available sources, however some
of these sources require controlled access. The raw data can be obtained
directly from the source studies. The processed form of the data used to
support the findings of this study are available on request from the corre-
sponding author AR. Becausemany of the sources are controlled access, the
requestor must have approved access for the data to be shared. For Data
Access to processed genotyping and transcriptomic data, contact corre-
sponding author with proof of access to dbGaP studies where controlled
access is required. More information for controlled access dataset is
available for TCGA (https://docs.gdc.cancer.gov/Data/Data_Security/
Data_Security/) and ICGC PCAWG (https://docs.icgc.org/pcawg/data/).

Code availability
This study didn’t generate original codes. Any additional information
required to reanalyze the data reported in this paper is available from the
lead contact upon request.
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