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Stroma-specific gene expression
signature identifies prostate cancer
subtype with high recurrence risk
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Stine Hesselby Larsen1,2, Benedicte Parm Ulhøi3, Jørgen Bjerggaard Jensen2,4, Michael Borre2,5 &
Karina Dalsgaard Sørensen 1,2

Current prognostic tools cannot clearly distinguish indolent and aggressive prostate cancer (PC). We
hypothesized that analyzing individual contributions of epithelial and stromal components in localized
PC (LPC) could improve risk stratification, as stromal subtypes may have been overlooked due to the
emphasis on malignant epithelial cells. Hence, we derived molecular subtypes of PC using gene
expression analysis of LPC samples from prostatectomy patients (cohort 1, n = 127) and validated
these subtypes in two independent prostatectomy cohorts (cohort 2, n = 406, cohort 3, n = 126).
Stroma and epithelium-specific signatures were established from laser-capture microdissection data
and non-negative matrix factorization was used to identify subtypes based on these signatures.
Subtypes were functionally characterized by gene set and cell type enrichment analyses, and survival
analysis was conducted. Three epithelial (E1-E3) and three stromal (S1-S3) PC subtypes were
identified. While subtyping based on epithelial signatures showed inconsistent associations to
biochemical recurrence (BCR), subtyping by stromal signatureswas significantly associatedwithBCR
in all three cohorts, with subtype S3 indicating high BCR risk. Subtype S3 exhibited distinct features,
including significantly decreased cell-polarity and myogenesis, significantly increased infiltration of
M2-polarized macrophages and CD8+ T-cells compared to subtype S1. For patients clinically
classified asCAPRA-S intermediate risk, S3 improvedprediction of BCR. This study demonstrates the
potential of stromal signatures in identification of clinically relevant PC subtypes, and further indicated
that stromal characterizationmay enhance risk stratification in LPC andmay be particularly promising
in cases with high prognostic ambiguity based on clinical parameters.

Prostate cancer (PC) is the third leadingcauseof cancer-associatedmortality
and the most commonly diagnosed non-skin cancer among men in the
west1. While indolent PC can often bemanaged by active surveillance, early
stage aggressive PC requires active treatment by radical prostatectomy (RP)
or radiation therapy to avoid metastatic spread2. Several prognostic
nomogramsbasedonclinical variables, e.g.,GleasonGrade, tumor stage and
serumprostate specific antigen (PSA), have beendeveloped in an attempt to
stratify localized PC (LPC) patients into low, intermediate or high-risk
groups2,3. However, models based exclusively on clinical parameters offer

limited accuracy and cannot readily distinguish between aggressive and
indolent PC at the early disease stage. This is evident by the overtreatment of
indolent PC that can lead to unnecessary side effects4, and undertreatment
or delayed treatment of potentially aggressive PC resulting in ~30% of
patients treated by RP experiencing biochemical recurrence (BCR) within a
10-year period5,6. Thus, there is a need for a better risk stratification tool to
improve decision-making in LPC.

While PC originates in the prostate epithelium, the stromal compo-
sition has become increasingly recognized as an important contributor to

1Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark. 2Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
3Department of Pathology, Aarhus University Hospital (AUH), Aarhus, Denmark. 4Department of Urology, Gødstrup
Hospital, Herning, Denmark. 5Department of Urology, Aarhus University Hospital (AUH), Aarhus, Denmark.

e-mail: kdso@clin.au.dk

npj Precision Oncology |            (2024) 8:48 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00540-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00540-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00540-x&domain=pdf
http://orcid.org/0000-0001-9077-7857
http://orcid.org/0000-0001-9077-7857
http://orcid.org/0000-0001-9077-7857
http://orcid.org/0000-0001-9077-7857
http://orcid.org/0000-0001-9077-7857
http://orcid.org/0000-0002-7319-2467
http://orcid.org/0000-0002-7319-2467
http://orcid.org/0000-0002-7319-2467
http://orcid.org/0000-0002-7319-2467
http://orcid.org/0000-0002-7319-2467
http://orcid.org/0000-0002-4902-5490
http://orcid.org/0000-0002-4902-5490
http://orcid.org/0000-0002-4902-5490
http://orcid.org/0000-0002-4902-5490
http://orcid.org/0000-0002-4902-5490
mailto:kdso@clin.au.dk


disease initiation, progression, and response to treatment7. The environ-
ment of cells around the PC cells, known as the tumor microenvironment
(TME), can act reciprocally with the cancer cells to influence
aggressiveness8. Various characteristics of the TME, such as infiltration of
specific immune cell types and transformationof resident stromal cells, have
been associated with recurrence and metastatic spread across cancer types,
including PC9–11. Previous studies have reported high abundance of cancer-
associated fibroblasts, changes to the extracellular matrix, and increased
vessel formation as indications of aggressive PC12,13. Increases in specialized
macrophages (M2-polarizedmacrophages) and regulatory T-cells have also
been associated to invasion and higher risk of metastatic spread in PC14,15,
while other subsets of T-cells (e.g., CD8+T-cells) may affect PC progres-
sion as suggested by their association to poor metastasis-free survival16.
Hence, the specific cell type composition of the TME as well as the inter-
actions between different cell types may reflect PC aggressiveness, and
further investigations are required to fully understand this.

For some cancers, e.g., pancreatic cancer and colorectal cancer, it has
been suggested that patients can be grouped into several subtypes with
distinct prognosis basedon theirTMEcomposition, includingdifferences in
the presence of certain immune and stromal cell types (e.g., fibroblasts,
neutrophils and CD8+ T-cells) and in certain cancer cell signaling path-
ways (e.g., NOTCH1 signaling)17,18. However, limited attention has been
given to the importance of TME subtypes in PC biology and progression19.
Thus,we aimed to investigate if separate analysis of epithelium- and stroma-
specific gene expression patterns could identify novel and clinically-relevant
subtypes of PC.

We used three large RP cohorts to identify and validate prognostic
subtypes of LPC. Based on unsupervised clustering using epithelium or
stroma-specific gene expression signatures from prostate samples, we
identified three epithelial and three stromal subtypes of early-stage,
clinically-localized PC. Both epithelial and stromal subtypes were char-
acterized using clinicopathological characteristics (e.g., Gleason Grade, T-
stage), gene set enrichment analysis, and stromal and immune cell infil-
tration patterns. Lastly, we used epithelial and stromal subtypes to identify
high-risk subsets of PC patients and to improve the accuracy of risk pre-
diction for patients classified as intermediate risk based on clinical factors
(CAPRA-S nomogram).

Results
Definition of epithelium- and stroma-specific gene expression
signatures and derivation of epithelial and stromal subtypes
We hypothesized that clinically relevant subtypes of PC could be identified
by separating the contribution of stroma (TME) from that of the epithelium
(PC cells). To investigate this, we searched for genes that were specifically
expressed in either prostate epithelium or prostate stroma using data from
laser capture microdissected healthy prostate epithelium and matched
healthy stroma samples from Tyekucheva et al.19. (Fig. 1a). Identification of
genes with expression specific for epithelium or stroma, and involved in
Gene Ontology pathways related to epithelium- or stroma-specific func-
tions, resulted in a prostate epithelium-specific gene signature (n = 86 genes,
Supplementary Table 1) and a prostate stroma-specific gene signature
(n = 88 genes, Supplementary Table 1).

First, to test the significance of the epithelium- and stroma-specific
gene signatures, we generated total RNA sequencing data from 127 LPC
tumor samples. To ensure the cohort was representative for PC, we further
included 31 adjacent normal samples (AN) (cohort 1, discovery), allowing
us to identify well-known PC-associated gene differences between LPC and
AN. An overview of the study design is given in Fig. 1a. Unsupervised
clustering, using Euclidean distance and complete clustering-linkage based
on the 500 most variably expressed genes, resulted in two distinct clusters,
with all but one AN sample in one cluster and the vast majority of LPC
samples in the other cluster (Supplementary Fig. 1a). Differential gene
expression (DGE) analysis identified 4954 downregulated and 6246 upre-
gulated genes inLPCcompared toANsamples (BH-adj.p < 0.05). Themost
significantly upregulated genes in LPC samples were PC-associated genes

(e.g.,DLX1,HPN, and SIM220–22), andwell knownPC-associated oncogenes
such as ERG,MYC, and KLK323 were similarly upregulated in LPC samples
(Supplementary Fig. 1b), supporting the validity of our data and indicating
that it is a representative RP patient cohort.

Next, we used the epithelium and stroma-specific gene signatures to
sub-classify the LPC tumor samples from cohort 1 based solely on their
expression of epithelium or stroma specific-genes (Fig. 1a). Using non-
negativematrix factorization (NMF)andconsensus clustering,we evaluated
a range of potential subtype partitions (2–8 clusters) and based on cophe-
netic and silhouette scores identified the optimal number of partitions to use
for the final analysis. Specifically, we classified samples into three PC sub-
types based on the epithelial (E) gene expression signature (E1, E2 and E3;
n = 61, 34, and 29 patients, respectively; Fig. 1b; Supplementary Fig. 2a) and
three PC subtypes basedon the stromal (S) gene expression signature (S1, S2
and S3; n = 44, 43, and 37 patients, respectively; Fig. 1c; Supplementary Fig.
2b). Subtypes were subsequently validated by NMF and consensus clus-
tering also in the external, publicly available cohort 2 (TCGA) and cohort 3
(MSKCC) (Fig. 1a). The overlap of epithelial (E1–E3) and stromal (S1–S3)
subtypes in cohorts 1–3 is given in Supplementary Fig. 3, and clin-
icopathological characteristics for cohorts 1–3 are given in Table 1.

Epithelial subtypes have growth and hormone regulation char-
acteristics but heterogeneous prognostic potential across
cohorts
We initially sought to characterize the three epithelial subtypes, E1, E2 and
E3, identified above in cohort 1 (Fig. 1b) and validated in cohorts 2 and 3
(Supplementary Fig. 4a).

For each subtype, we analyzed the distribution of clinical variables
known to be associated with adverse PC disease course. Subtype E3 showed
an association to higher pT-stage and higher ISUP grade group, although
this trendwas not significant across all cohorts (Fig. 2a, b).Next, the subtype
associated with the least (E1) and the most (E3) adverse clinicopathological
characteristics, respectively, were further compared.

Gene set enrichment analysis (GSEA) based on genes differentially
expressed between subtype E1 and E3 identified several Hallmark pathways
important to PC biology (n = 30, 13, 38 in cohorts 1, 2, 3, respectively). Of
these, 10 pathways were seen to be differentially expressed between E1 and
E3 consistently in all 3 cohorts (encompassing 22% of unique enriched
pathways across cohorts, p < 0.05, Fisher’s Exact Test; Fig. 2c), with crucial
functions in cell growth (E2F and MYC target pathways) and a reduced
hormone response (androgen and estrogen response pathways), indicating
aggressive cancer growth and reduced sensitivity to hormone signaling in
the E3 subtype. Overlap in pathways across cohorts likely indicate that the
underlying disease biology differs between subtype E1 and E3.

Furthermore, cell-type enrichment analyses showed higher enrich-
ment of M2-polarized macrophages and CD8+T-cells in subtype E3
compared to E1 in both cohort 1 and cohort 2 (Supplementary Fig. 5). We
and others have previously reported that high levels of infiltrating M2-
polarized macrophages and CD8+T-cells is associated with more
aggressive PC16,24,25. No other cell type investigated (fibroblasts, smooth
muscle cells, adipocytes, B-cells, CD4+ T-cells, dendritic cells, endothelial
cells, eosinophils, epithelial cells,M1-polarizedmacrophages,mast cells,NK
cells, and regulatory T-cells) showed significant difference in abundance
between subtypes E1 and E3 that were consistent across both cohorts
analyzed (Supplementary Fig. 5).

Lastly, prognostic evaluation showed significant association of subtype
E3 with increased risk of post-operative BCR compared to E1 in cohort 1
(log-rank test, p = 0.032, Fig. 4a) and cohort 2 (log-rank test, p = 0.019, Fig.
4b) but not in cohort 3 (log-rank test, p = 0.433 Fig. 4c). These results were
corroborated byunivariateCox regression analysis of time toBCR (Table 2).
Subtype E3 was not significantly associated with BCR in any of the three
cohorts when adjusting for clinical variables (CAPRA-S nomogram) in
multivariate analysis (Table 3).

Thus, our data indicate unique transcriptional characteristics inherent
to the different epithelial subtypes, potentially underlying distinct PC
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biology. However, heterogeneity between cohorts in terms of prognostic
potential indicates limited clinical utility for subtyping on the epithelial gene
expression signature.

Stromal subtypes are characterized by stromal dysfunction and
changes in immune cell infiltration and predict prostate cancer
recurrence
We next sought to characterize and validate the three stromal subtypes, S1,
S2 andS3, identified earlier (Fig. 1c). Stromal subtype S3was associatedwith
higher pT-stage and higher ISUP grade group in all three cohorts, although
ISUP grade did not reach statistical significance in cohort 1 (Fig. 3a, b). The
subtype with the least (S1) and the subtype with the most (S3) adverse
clinicopathological characteristics, respectively, were further compared.
Genes from the stroma-specific signature with importance for sample
classification into subtypes S1 and S3 have been listed in Supplementary
Table 2.

GSEA based on genes differentially expressed between subtype S1 and
S3 identified several Hallmark pathways important to PC biology (n = 18,
18, 36 in cohorts 1, 2, and3, respectively).Of these, 11pathwayswere seen to
be differentially expressed between S1 and S3 consistently in all 3 cohorts
(encompassing 26% of unique enriched pathways across cohorts, p < 0.05,
Fisher’s Exact Test; Fig. 3c, Supplementary Fig. 6), with alterations such as
increases in pathways related to cell growth (E2F andMYC targets), reduced
stromal environment functions (e.g., myogenesis, hypoxia, and adipogen-
esis) and reduced cell polarity (apical junction and apical surface) (Fig. 3c).
Thus, indicating that dysregulated stroma is associatedwith loss of epithelial
cell polarity and enhanced tumor growth.

To further investigate this stromal dysregulation, we character-
ized the cell type compositional differences between S3 and S1 in
cohorts 1 and 2 by computational cell type enrichment analysis26

(Fig. 3d–o and Supplementary Fig. 7). We observed significantly
reduced fibroblast enrichment score in S3 compared to S1 in both
cohorts and significantly reduced smooth muscle cell enrichment
score in cohort 2 (Fig. 3d–g), corroborating the GSEA findings and
indicating that fibroblasts and smooth muscle cells play an important
role in maintaining a functional stroma. We did not observe any
consistent difference in overall immune cell infiltration between
subtype S3 and S1 in cohorts 1 and 2, although, increased immune
infiltration was observed in cohort 2 (Fig. 3h, j). In contrast, we
observed a significant decrease in CD4+ T-cells in subtype S3
compared to subtype S1 in both cohorts (Fig. 3i, k). Furthermore, a
significant increase in M2-polarized macrophages and CD8+ T-cells
was observed in subtype S3 in both cohorts (Fig. 3l–o). B-cells,
dendritic cells, endothelial cells, eosinophils, epithelial cells, M1
polarized macrophages, mast cells, and regulatory T-cells did not
change consistently across the two cohorts (Supplementary Fig. 7).
Adipocyte levels were significantly lower in subtype S3, although with
many samples in cohort 2 absent for adipocytes (Supplementary
Fig. 7).

Interestingly, subtype S3 was significantly associated with increased
risk of BCR compared to S1 in cohort 1 (log-rank test, p = 0.0019, Fig. 4d),
cohort 2 (log-rank test, p = 0.0098, Fig. 4e), and cohort 3 (log-rank test,
p = 0.0057, Fig. 4f). These results were corroborated by univariate Cox
regression analyses of BCR-free survival in subtype S3 compared to S1
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Fig. 1 |Workflow for subtype discovery. aWorkflow and patient samples across cohorts. Heatmap of the three-group consensus cluster for the (b) epithelium-specific gene
expression signature or (c) stroma-specific gene expression signature.
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(Hazard Ratio (HR) = 3.2, HR = 2.14, HR = 3.42 in cohort 1, 2, and 3,
respectively, p < 0.05; Table 2). In multivariate analyses, subtype S3 was
significantly associated with BCR independent of CAPRA-S risk group in
cohort 1, but not in cohorts 2 and 3 (Table 3).

To validate that the observed differences in recurrence risk between
stromal subtypes was associated to stroma-specific gene expression and not
to unexplored background processes inherent to the datasets, we stratified
patients on the 500 most variably expressed genes in cohort 1 (Supple-
mentary Fig. 1).AssociationofBCRriskwithpatient subgroups stratifiedon
variably expressed genes would indicate that unexplored biological pro-
cesses in the tissue could be responsible for the trends in the dataset
attributed to stromal characteristics. Stratification of patients on the 500
most variably expressed genes revealed stable clusters in all three cohorts,
but were not significantly associated with prognostic outcome (BCR)

(Supplementary Fig. 8). Together, this indicates that although some back-
ground processes may be present in the dataset due to the stable clustering,
these could not replicate the prognostic potential observed from stromal
subtypes. Hence, the subtypes based on stroma specific gene expression
could not be attributed to underlying background gene expression.

Taken together, our results indicate that stromal transcriptional dys-
regulation and cell type changes inherent to the stromal subtypes underlie
distinct PCbiology anddisease aggressiveness. Thiswas corroborated by the
consistent prognostic potential of these subtypes across three large inde-
pendent RP cohorts from multiple countries.

Stromal subtypes improve risk stratification of prostate cancer
patients with intermediate risk
To further improve on the prognostic effect of the subtypes, we investigated
prognostic ability of the overlap between high-risk epithelial and stromal
subtypes, as well as between low-risk epithelial and stromal subtypes
(Supplementary Fig. 9a-c). However, stratification of patients into com-
bined high-risk (S3+ E3, S3+ E2, S2+ E3) or combined low-risk
(S1+ E1, S1+ E2, S2+ E1) did not robustly increase prognostic accuracy
compared to S3 alone (Fig. 4d–f compared to Supplementary Fig. 9a-c).

Instead, since we identified stromal subtypes to harbor robust prog-
nostic potential, we asked if this stroma-derived subtype information could
beused to further improveupon the currentprognostic risk evaluation tools.
To test this, we selected patients with an ambiguous, intermediate risk of
BCR according to CAPRA-S. Interestingly, CAPRA-S intermediate risk
patients with the S3 subtype had an increased BCR risk compared to
CAPRA-S intermediate-risk patients with S1/S2 subtypes in cohort 1 (log-
rank test, Supplementary Fig. 10a, p = 0.032). This was validated in cohort 2
and cohort 3 (Supplementary Fig. 10b, c, Supplementary Table 3) and could
not be recreated using the epithelial subtypes instead (CAPRA-S inter-
mediate + E1/E2 vs. CAPRA-S intermediate + E3) (Supplementary Fig.
10d-f, Supplementary Table 3). Additionally, univariate Cox regression
showed the conjugatedCAPRA-S intermediate+ S3 subgroup to have BCR
risk comparable to that of the CAPRA-S high risk group (cohort 1, delta
HR = 1.4, Fig. 5). This re-stratification of the BCR risk in the CAPRA-S
intermediate+ S3 subgroup was further validated in cohort 2 and cohort 3
(cohort 2, delta HR = 2.3; cohort 3, delta HR = 4.2; Fig. 5, Supplementary
Table 3).

Thus, our results suggest a potential for further stratification of clini-
cally defined (CAPRA-S) intermediate risk PC based on stroma-derived
molecular risk classification. Taken together our results indicate that,
beyond cancer cell (epithelial) characteristics, the surrounding stromal
environment holds unique biological characteristics that can be exploited
for prognostication in conjunction with clinical variables.

Discussion
There is mounting evidence that characterization of the TME, with a focus
on both immune cell and stromal characteristics, can increase our under-
standingofPCpathobiology andbeused to improveprognostic accuracy7,24.
To this end, we clustered LPC patients into subtypes based specifically on
epithelial or stromal gene expression. The emerging subtypes showed
unique characteristics for both the stromal and epithelial subtypes, however
only the stromal subtypes showed consistent prognostic potential across the
training cohort and two external validation cohorts.

Characterization of the three stromal subtypes showed subtype
S3 to be associated with adverse clinical changes and subtype S1 to be
associated with more indolent characteristics (Fig. 3a, b), thus indi-
cating that stroma-associated gene expression could be biologically
relevant for determining PC aggressiveness. While previous studies
have used gross stromal histology or the presence of individual cell
types as markers for PC aggressiveness27,28, these have seen limited
clinical relevance and consequently have not been translated into
clinical practice. Interestingly, in our study, although subtype iden-
tification was without any information on malignancy, the stromal
subtypes displayed clear and robust clinical and prognostic

Table 1 | Clinicopathological characteristics of patient
sample sets

Cohort 1
Discovery (total
RNA-seq)

Cohort 2
Validation
(TCGA-PRAD)

Cohort 3
Validation
(MSKCC)

N = 127 N = 406 N = 126

Age (years)

Median (range) 65 (45–78) 61 (41–78) 58 (37–72)

Pre-RP PSA (ng/mL)

Median (range) 10.6 (2.0–193) 7.5 (0.8–107) 5.9 (1.2–46.4)

Unknown, n (%) 14 (11.0%) 15 (3.7%) 0 (0.0%)

ISUP Grade Group

1 13 (10.24%) 39 (9.6%) 40 (31.7%)

2 68 (53.5%) 117 (28.8%) 52 (41.3%)

3 22 (17.3%) 78 (19.2%) 20 (15.9%)

4–5 23 (18.1%) 42 (36.4%) 14 (11.1%)

Unknown, n (%) 1 (0.8%) 0 (0.0%) 0 (0.0%)

pT stage

pT2a-c 76 (59.8%) 150 (36.9%) 81 (64.3%)

pT3a 26 (20.5%) 131 (32.3%) 28 (22.2%)

pT3b-4 24 (18.9%) 119 (29.3%) 17 (13.5%)

Unknown, n (%) 1 (0.8%) 6 (1.5%) 0 (0.0%)

Margin status

Negative 83 (65.4%) 260 (64.0%) 96 (76.2%)

Positive 41 (32.3%) 120 (29.6%) 30 (23.8%)

Unknown, n (%) 3 (2.4%) 26 (6.4%) 0 (0.0%)

Capra-S risk nomogram

Low risk (0–2) 30 (23.6%) 95 (23.2%) 69 (54.8%)

Intermediate
risk (3–5)

60 (47.2%) 144 (35.5%) 34 (27.0%)

High risk (≥6) 34 (26.8%) 122 (30.0%) 23 (18.3%)

Unknown, n (%) 3 (2.4%) 46 (11.3%) 0 (0.0%)

Biochemical Recurrence

No 77 (60.5%) 348 (85.7%) 94 (74.6%)

Yes 50 (39.4%) 58 (14.3%) 32 (25.4%)

Follow-up length (Months)

Median (range) 71 (2.9–204) 21.3 (3.1–151) 93.1 (10.4–223)

Survival status

Alive 111 (87.4%) NA 109 (76.5%)

Dead 16 (12.6%) NA 17 (13.5%)

Data is in n (%) or median (range).
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differences in multiple independent cohorts (Fig. 3a, b, Fig. 4d-f). To
the best of our knowledge, the current study is the first to use
unsupervised clustering to identify clinically relevant TME subtypes
in PC and suggests that the stromal subtypes identified in this study
could hold prognostic potential in clinically ambiguous PC, although
evaluation of prognostic potential requires further studies.

Multiple transcriptional pathways and cell types differed
between the stromal subtypes S1 and S3. Of these, the decreased
fibroblast and smooth muscle cell enrichment in subtype S3 (Fig. 3d-
g) likely reflects a larger change in the stromal composition, as also
corroborated by the observed transcriptional changes in subtype S3
(e.g., myogenesis, adipogenesis, and hypoxia, Fig. 3c). Beyond the

Fig. 2 | Epithelial subtype characteristics. Stacked bar plot in each cohort showing
percentage of patients in each subtype according to (a) pathological T-stage, (b) 2014
ISUP Gleason grade. Fisher´s Exact test is used to determine significant differences

in clinical characteristics. c Venn diagram and heatmap showing overlap of sig-
nificantly enriched Hallmarks for GSEA of DGE between E1 and E3.
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stromal changes, subtype S3 also had reduced infiltration of
CD4+ T-cells, which have been associated to reduced risk of PC
lymph node metastasis29. Furthermore, subtype S3 had increased
infiltration of M2-polarized macrophages, which have previously
been associated to metastatic potential and interactions with cancer
associated fibroblasts in PC15,30, and increased CD8+ T-cells, where
no consensus on influence on PC prognosis have been
reached16,27,31,32. Thus, increased levels of M2 polarized macrophages
likely reflects an immunosuppressive environment in subtype S333,
while change in the specific T-cell subsets require additional inves-
tigation. Interestingly, the changes in stromal and immune cell
composition and failure to maintain stromal functions were

correlated to increased cell growth and a loss of epithelial cell
polarity, processes that are invariably linked to cancer progression
and metastatic spread34,35. This suggests a role of stromal and
immune cells in the dysregulation to the stromal environment that
may be necessary for the transformation of LPC into metastatic PC.

While the stromal subtypes predicted disease aggressiveness across
multiple cohorts (Fig. 4d-f), these results could not be replicated using the
epithelial subtypes (Supplementary Fig. 10d-f) nor substantially improved
by addition of epithelial subtype information to stromal subtypes (Sup-
plementary Fig. 9a-c, compared to Fig. 4d-f). Furthermore, by adding the
stromal subtype information to the CAPRA-S risk groups we saw increased
prognostic ability (Fig. 5), highlighting the possible utilization of integrating

Table 2 | Univariate Cox regression analysis of BCR-free survival and CAPRA-S risk groups, epithelial subtypes, and stromal
subtypes

Univariate cox regression

Cohort 1 Cohort 2 Cohort 3

Variable N HR 95% CI p value C-index N HR 95% CI p value C-index N HR 95% CI p value C-index

CAPRA-S risk group 0.695 0.646 0.739

Low 29 - - - 94 - - - 69 - - -

Intermediate 60 1.46 0.58–3.67 0.4 142 3.83 1.12–13.1 0.032 34 4.72 1.17–12.6 0.002

High 32 5.61 2.26–13.9 <0.001 117 7.95 2.42–26.2 <0.001 19 7.29 2.63–20.2 <0.001

Epithelium 0.589 0.597 0.540

Subtype 1 61 - - - 148 - - - 14 - - -

Subtype 3 29 2.09 1.03–4.22 0.041 165 2.25 1.12–4.52 0.023 46 1.60 0.44–5.77 0.5

Stroma 0.611 0.583 0.638

Subtype 1 44 - - - 198 - - - 54 - - -

Subtype 3 37 3.21 1.48–6.94 0.003 162 2.14 1.18–3.87 0.012 18 3.42 1.12–9.47 0.018

Significant p values (p < 0.05) are highlighted.
HR hazard ratio, CI confidence interval, C-index Harrell’s concordance index.

Table 3 |MultivariateCox regressionanalysis ofBCR-free survival andCAPRA-S riskgroupsandepithelial subtypes, orCAPRA-
S risk groups and stromal subtypes

Multivariate cox regression

Cohort 1 Cohort 2 Cohort 3

Variable N HR 95% CI p value C-index N HR 95% CI p value C-index N HR 95% CI p value C-index

CAPRA-S risk group 0.704 0.674 0.738

Low 29 - - - 94 - - - 69 - - -

Intermediate 60 1.44 0.57–3.64 0.4 142 3.72 1.09–12.7 0.036 34 4.49 1.67–12.1 0.003

High 32 5.18 2.07–13.0 <0.001 117 7.06 2.13–23.4 0.001 19 8.34 2.92–23.8 <0.001

Epithelium

Subtype 1 60 - - - 130 - - - 14 - - -

Subtype 3 28 1.61 0.79–3.31 0.2 147 2.25 0.86–3.80 0.12 46 2.04 0.52–7.93 0.3

CAPRA-S risk group 0.724 0.683 0.765

Low 29 - - - 94 - - - 69 - - -

Intermediate 60 1.61 0.64–4.08 0.3 142 3.83 0.96–11.6 0.058 34 4.43 1.57–12.0 0.005

High 32 5.43 2.15–13.7 <0.001 117 7.95 1.88–22.0 0.003 19 6.98 2.43–20.1 <0.001

Stroma

Subtype 1 43 - - - 180 - - - 54 - - -

Subtype 3 37 2.67 1.22–5.83 0.014 143 2.25 0.86–3.03 0.14 18 2.07 0.73–5.91 0.2

Significant p values (p < 0.05) are highlighted.
HR hazard ratio, CI confidence interval, C-index Harrell’s concordance index.
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Fig. 3 | Stromal subtype characteristics. Stacked bar plot in each cohort showing the
percentage of patients in each subtype according to (a) pathological T-stage, (b) 2014
ISUPGleason grade. Fisher´s Exact test was used to determine significant differences
in clinical characteristics. c Venn diagram and heatmap showing overlap of sig-
nificantly enriched Hallmarks for GSEA of DGE between S1 and S3. Raincloud plots
show differences in enrichment score between S1 and S3. In cohort 1 for Fibroblasts

(d), Smooth muscle (e), Immune Score (h), CD4+ T-cells (i), M2-polarized mac-
rophages (l), and CD8+ T-cells (m). In cohort 2 for Fibroblasts (f), Smooth muscle
(g), Immune Score (j), CD4+ T-cells (k), M2-polarized macrophages (l), and
CD8+ T-cells (m). Wilcoxon rank-sum test was used to determine significant
differences between subtypes S1 and S3. FDR-corrected p values are reported. # =
axis is square root scaled.
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stromal information for patients where tumor-centric information (such as
Gleason grading, T-stage, and serum PSA level) is inadequate to provide a
clear outcome prediction.

Indeed, Gleason grade group and T-stage evaluation may already
explain much of the malignant transformation in PC epithelial cells that
genomic subtypes in LPC attempt to identify36,37. While the molecular
heterogeneity of primary PC is well documented38, TME heterogeneity in
PC is largely unexplored. Thus, the stromal changes we identify across
cohortsmay reflectmoreuniversal changes to theTME in aggressive cancer,
beyondheterogeneous epithelial (malignant cell) characteristics.Our results

support the hypothesis that although cancer cells have the capacity to dis-
seminate and becomemetastatic, a feature that can somewhat be discerned
from the histology (i.e., high Gleason Grade), an altered stromal environ-
ment is also required for further evolution of the cancer and metastatic
spread19,39.

Pending further validation, the link between stromal composition and
clinical outcome could potentially be utilized in a clinical setting in the
future. Risk stratification and management of intermediate-risk PC with
active surveillance is controversial and disputed as a viable treatment
strategy40. Here, utilization of stromal subtyping may aid in improving risk

Fig. 4 | Kaplan-Meier analysis of epithelium and stroma subtypes.Kaplan-Meier plot of BCR risk in E1 and E3 in (a) cohort 1, (b) cohort 2, and (c) cohort 3. Kaplan-Meier
plot of BCR risk in S1 and S3 in (d) cohort 1, (e) cohort 2, and (f) cohort 3. Significance determined using log-rank test.
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stratification and tracking of metastatic potential. In line with this, offering
active treatment to intermediate-risk patientswith stromal high-risk disease
may then improve the safety of referring the remaining intermediate-risk
PC patients to AS. Furthermore, commercial gene expression tests available
for PC treatment guidance have been investigated for use during active
surveillance of intermediate-risk PC, but were not able to predict disease
upstaging41. Inclusion of stromal subtype evaluation in the continuous
surveillance of intermediate-risk PC patients may also have the potential to
improve prediction of progression risk. However, clinical studies utilizing
stromal subtyping for treatment selection or continuous evaluation of
progression risk is needed to prove any such potential utility.

Although several commercial and non-commercial gene expression-
based models are available for prostate cancer treatment guidance, only a
few utilize stromal gene expression42–44. While most models rely on
expression of cell-cycle or growth related genes, the Oncotype DX model
includes multiple genes related to stromal composition and cellular
organization45. Several of theOncotype DX genes were present either in our
stromal signature (COL1A1, FLNC, GSN and TPM2) or epithelial signature
(KLK2 and AZGP1), with stromal signature genes being related to stromal
response and cellular organization45. Likely, the stromal genes in Oncotype
DX quantify some of the aspects captured by our stromal subtypes. Hence,
other stromal subtype characteristics could further improve thismodel, and
other prognostic models, especially for evaluation of intermediate risk PC.
Future studies should investigate this further.

In addition to the gene-expression-based models, other studies have
developed stroma-related PC signatures for prediction of high Gleason PC

or metastatic potential following RP19,39. One study used LCM samples of
epithelium and stroma from patients with low (3+ 3) or high (≥8) Gleason
score PC to develop a 24-gene signature, which they named the Gleason
stromal gene signature. Interestingly, where we observed limited prognostic
utility between epithelial subtypes in the current study, this previous study
identified only one epithelial gene with consistent expression change
between low and high Gleason grade PC, corroborating the difficulty of
identifying prognostic epithelial subtypes in PC.While the Gleason stromal
gene signature was able to separate low and high Gleason grade PC,
including in a recent validation study46, no further evaluation of its clinical
utility beyond Gleason grade prediction has been performed.

Another study used a pre-clinical, patient-derived xenograft model of
PC metastasis in mice to develop a 93-gene stroma-derived metastatic
signature (SDMS)19. The SDMS stratified patients into high or low risk of
metastasis following RP. Indeed, similar to how our S3 subtype improved
risk stratification for patients with CAPRA-S intermediate risk PC (Fig. 5),
the SDMS improved risk stratification for patients withGleason score seven
tumors. While the prognostic value of the SDMS was validated in multiple
independent cohorts, the study used a murine model lacking several
immune components for signature development potentially limiting insight
into the stroma and immune cell interplay in PC progression. A total of 5
genes (AEBP1, C1S, COL1A1, LUM, PRELP) overlap between our stromal
signature and the Gleason stromal gene signature by Tyekucheva et al 19.,
while seven genes (ACTG2, DES, MGP, SPARC, TPM1, CLU, COL14A1)
overlap between our stromal signature and the SDMS signature reported by
Mo et al. 39. The small overlap in genes between our stromal signature and

Univariate Cox regression

Variable
No. of
Patients Hazard Ratio (95% CI) p  value C-index

Cohort 1

Cohort 2

CAPRA-S Extended

Cohort 3

CAPRA-S Extended

26 0.014

<0.001

34 0.0024.7 (1.8 − 13)

8.9

3.8

(2.5 − 32)

(1.3 − 11)

0.5 1 2 5 10 20

0.753

Low 69

High

8

19 <0.0017.3 (2.6 − 20)

Intermediate-S1/S2

Intermediate-S3

Intermediate-S1/S2 46 0.933

0.049

60 0.4241.5 (0.6 −  3.7)

Low 29

2.9

1.0

(1.0 − 8.3)

(0.4 − 2.9)

0.713

14

CAPRA-S Extended

High <0.0015.6 (2.3 − 13.9)32

Intermediate-S3

Intermediate

82

60

0.245

0.006

142 0.0323.8 (1.1 − 13)

6.1

2.3

(1.7 − 21.8)

(0.6 − 9.1)

0.661

High 117 <0.0017.9 (2.4 − 26.1)

Intermediate-S1/S2

Intermediate-S3

Low 94

Intermediate

Intermediate

Fig. 5 | Forest plots of univariate Cox regression analysis using stromal subtypes to re-stratify CAPRA-S intermediate risk. Significant p values (p< 0.05) are highlighted.
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both the previously reported Gleason stromal gene signature19 and SDMS39

highlight that both the methods used to identify the different stromal sig-
natures, and the underlying biological differences identified, are different
between the three studies. The previously identified signatures were based
on specific clinical differences (i.e., low vs. high Gleason,metastatic vs. non-
metastatic), while our stromal signaturewas based onbenignprostate tissue,
but turned out to be clinically relevant, likely due to identified differences in
microenvironment composition and function. Nonetheless, the biological
aspects of PC progression identified with the Gleason stromal gene sig-
nature, the SDMS, and our stromal subtypes all provide unique insights into
a more holistic understanding of the PC TME and its role in malignancy.

Our study has certain limitations. First, the use of BCR as endpoint for
prognostic evaluation instead of the more clinically appropriate metastatic
spreadorPC-specificdeath.However, as early-stagePC is characterizedby a
long time to progression47, it requires more than 10 years of follow-up to
evaluate these outcomes. Secondly, no spatial or single cell datawas available
to perform more in-depth analysis of the subtypes. Instead, our study uti-
lized several large, independent, and international cohorts of bulk tumor
transcriptomic data to identify subtypes using unsupervised clustering, and
to evaluate subtype aggressiveness using follow-up information. Single cell
or high-resolution spatial transcriptomic dataset with fewer samples and
short follow-upwouldhavebeen inadequate for suchanalyses. Furtherwork
should investigate details of the now established stromal subtypes using
single cell or high-resolution spatial transcriptomic analysis of PC tissue.

In conclusion, we have identified stromal subtypes in primary tumor
samples of LPC patients and validated their characteristics in two inde-
pendent cohorts. We have identified a stromal subtype (S3) that was con-
sistently more aggressive in LPC, displayed specific stromal dysfunction at
both the cellular and pathways level, and had increased M2-polarized
macrophage and CD8+T-cell infiltration. Furthermore, it improved
prognostic stratification of patients with clinically intermediate risk PC,
which suggest potential use in active surveillance management of inter-
mediate risk disease. However, further studies validating the clinical utility
of stromal subtypes in PC is required.

Methods
Patient cohorts
Cohort 1 included127 fresh-frozenprimaryPC tissue specimens and31AN
prostate specimens from 142 patients with LPC treated by RP (Table 1).
Samples were collected at the Department of Urology, Aarhus University
Hospital (2004–2017) or Regional Hospital West Jutland (2016–2019).
RNA profiling was performed by total RNA-sequencing as previously
described48,49.

All research for cohort 1 was carried out in accordance with the
principles of the Helsinki Declaration and was approved by The Central
Denmark Region Committees on Health Research Ethics [#2000/0299,
#1–10–72–361–18, #1–10–72–367–13], The National Committee on
Health Research Ethics [#1603543/66451] and notified to The Danish Data
Protection Agency [#2013–4–2041, #1–16–02–330–13, #1–16–02–23–19,
#1–16–02–248–14]. Written consent was obtained from all participants
prior to their donation of tissue samples for a research biobank, while the
requirement for patient consent to the specific analyses in this retrospective
study was waived.

Cohort 2 included 406 tumor samples from patients with LPC treated
by RP from The Cancer Genome Atlas Prostate Adenocarcinoma Dataset
(TCGA-PRAD)36. RNA profiling of tumor samples was performed by
poly(A) enrichedRNAsequencing.Molecular and clinical datawas publicly
available and obtained from the TCGA data portal50 as described
previously51.

Cohort 3 included 126 tumor samples from patients with LPC treated
by RP from theMemorial Sloan-Kettering Cancer Center dataset by Taylor
et al. (MSKCC)52. RNA profiling of tumor samples was conducted using an
Affymetrix Human Exon 1.0 ST Array. Expression data was publicly
available and obtained from theGeneExpressionOmnibus (GEO) database
(GSE21032).

The laser-capture microdissection dataset included 5 cystoprosta-
tectomy samples frompatients with bladder cancer fromTyekucheva et al. 19.
Samples were reviewed for no incidental prostate cancer by a pathologist and
laser capture microdissection was used to isolate areas of epithelium or
stroma19. RNA profiling was performed using the Affymetrix Gene Array
STA 1.0. Expression data was publicly available and obtained from the GEO
database (GSE97284).

RNA extraction and sequencing
For cohort 1, total RNAextractionand librarypreparationwasperformedas
previously described24,49. Briefly, immediately following RP, fresh prostate
tissue biopsy samples were obtained and stored at −80 °C in TissueTek.
Approximately 40 sections (20 µm thick) were cut from each sample. The
first and last tissue sections were stained with Hematoxylin and Eosin
(H&E) and evaluated by a pathologist for areas of malignant prostate tissue
or benign prostate tissue absent of malignant cells. Total RNA extraction
was performed on the remaining sections using the RNeasy Plus Mini Kit
(QIAGEN, Cat#74036). RNA concentration was assessed on a NanoQuant
Plate™ (TECAN). RNA quality was assessed using a 2100 Bioanalyzer
(Agilent).

Sequencing libraries were generated using the ScriptSeq RNA-seq
Library kitwithRiboZero™MagneticGoldKit (Illumina;AN= 11, LPC= 52)
or the KAPA RNA HyperPrep Kit with KAPA RiboErase Kit (Roche;
AN= 20, LPC= 75). Paired-end sequencing was performed using either
Illumina HiSeq 2000, NextSeq 500, or NovaSeq 6000 ( ~ 25 million reads/
sample; 2 × 75 bp, 2 × 75 bp, or 2 ×100 bp, respectively). All reads were QC
checked and trimmed, and transcriptswere quantified usingKallisto (version
0.46.2)53 withGrCh38.p13/hg38 as reference transcriptome.Transcriptswere
summarized to gene level counts using tximport54. Subsequently, normal-
ization, filtering and log2 transformation was performed using edgeR55.
Correction for batch effects was performed in the design formula for differ-
ential expression analyses or using the removeBatchEffect function from the
R package Limma56.

Gene signature definition and subtype identification
Genes for the epithelium- and stroma-specific signatures were identified
in an external laser-capture microdissection dataset (see above), based on
two criteria: 1) differential gene expression analysis of epithelium vs.
stroma using Limma56, where we selected genes significantly upregulated
in either healthy prostate epithelium or healthy prostate stroma (false
discovery rate (FDR) < 0.05, log2 fold-change (logFC) ≥ 2.0). And 2)
Gene Ontology57,58 analysis for biological processes, where the final
selection required significant enrichment of epithelium- or stroma-
specific Gene Ontology terms (Fold enrichment ≥10, FDR < 0.05) when
using epithelium or stroma genes, respectively, for the analysis. For the
epithelium genes, one pathway was significantly enriched: Epithelial cell
development. For the stromal genes, seven pathways were significantly
enriched and all related to stromal functions: Regulation of complement
activation, Regulation of transforming growth factor-beta secretion,
Mesenchymal migration, Regulation of amyloid fibril formation, Reg-
ulation of smooth muscle cell migration, and Regulation of metallo-
peptidase activity. This resulted in 86 epithelium-associated genes for an
epithelial signature and 88 stroma-associated genes for a stromal sig-
nature (Supplementary Table 1).

For the epithelial subtype and the stromal subtype discovery in cohort
1, patient clusteringwasperformedon the epithelial signature (n = 86genes)
or the stromal signature (n = 88 genes), respectively, using NMF with
consensus clustering via the R package NMF59. The optimal number of
clusters/subtypes for each signature was evaluated based on the cophenetic
and silhouette scores, indicative of clustering stability. Based on an initial
evaluation of a range of clusters (2–8 clusters), having three clusters was
deemed as being optimal both when clustering based on the epithelial and
stromal signature and hence used for the final consensus clustering with
5000 clustering iterations. Genes important for sample placement into
stromal subtype S1 or S3 were extracted using the feature selection method
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described in Carmona-Saez et al. 60. implemented in the NMF package in R
(Supplementary Table 2).

Validation of epithelial and stromal subtypes
Subtype validation in cohort 2 and cohort 3 was performed on samples
clustered on identical gene-expression signatures and clustering parameters
to cohort 1 (n = 3 clusters, iterations = 5000). Cluster similarity across
cohorts was validated using Spearman’s rank correlation. Spearman’s rank
correlation analysis was used to evaluate the concordance of gene con-
tribution to placement of samples into a specific subtype (gene weights)
across cohorts. A positive correlation of gene weights confirmed that E1, E2
and E3 were defined based on the same epithelial genes across the three
cohorts (Supplementary Fig. 4a). Similarly, correlation of gene weights
validated that subtypes S1 and S3 were based on the same stromal genes
across the three cohorts, while S2 could not be validated in all three cohorts
(Supplementary Fig. 4b).

Differential gene expression analysis and gene set enrichment
analysis
Transcriptomic differences between AN and LPC samples in cohort 1 were
examined by DGE analysis using edgeR55. Transcriptomic differences
between the high- and low-risk stromal subtypes (S3 and S1) and between
the high- and low-risk epithelial subtypes (E3 and E1) were examined by
DGE analysis. In cohorts 1 and 2 (RNA sequencing data) DGE was per-
formed using edgeR, while in cohort 3 (microarray expression data) DGE
was performed using Limma in R56. In all cases, adjustment for multiple
testing was performed using the Benjamini-Hochberg (FDR) method61.
Adjusted p values < 0.05 were considered significant.

Pre-ranked GSEA was subsequently performed on the output from
either edgeR or Limma. GSEA was performed using the R package fgsea62

based on the cancer Hallmark Gene Set Collection from the Molecular
Signature Database63. Gene sets with BH-adjusted p value < 0.05 were
considered significantly enriched,while normalized enrichment scoreswere
used to determine the level of enrichment.

Cell-type enrichment analysis
The cellular composition of the subtypes was estimated by cell type
enrichment analysis using the xCell26 package for R. xCell uses bulk gene
expression data to determine the enrichment of specific cell types in indi-
vidual samples, based on cell type-specific expression signatures. Cell type
enrichment analysis was evaluated in the cohorts with tumor RNA
sequencing data (cohort 1 and cohort 2), as the microarray data format
available from cohort 3 was not available to us in a format eligible for
accurate xCell analysis64.

Statistical analysis
All statistical analyses were performed in R (v. 4.0.2) using R Studio
(v. 1.1.463). Comparison of categorical variables (i.e., clinicopathological
parameters) was conducted using Fisher’s exact Test, while comparison of
continuous variables (e.g., cell type enrichment) was done using Wilcoxon
rank-sum test with BH-corrected p values.

For comparison of stromal and epithelial subtypes to clin-
icopathologically defined risk groups, we used the established CAPRA-S
nomogram3. CAPRA-S risk groups were defined based on scores [0–2] =
low risk; [3–5] = intermediate risk; [6–12] = high risk3. Stromal subtypes,
epithelial subtypes, and CAPRA-S risk groups were analyzed as categorical
variables in survival analyses. The prognostic potential of the subtypes and
CAPRA-S risk groups was evaluated by BCR-free survival analyses, using
univariate and multivariate Cox regression, Kaplan-Meier and log-rank
tests in the survival package in R65. BCR was defined as PSA ≥ 0.2 ng/mL.
PatientswithoutBCRwere censored at theirmost recentPSAmeasurement.
Patients with unknown BCR status (lost to follow-up) or BCR within
3monthsofRP (likely tohave residual tumor)were excluded fromBCR-free
survival analyses (cohort 1,n = 3; cohort 2,n = 9; cohort 3,n = 4). Prognostic
accuracy was determined using Harrell’s C-index.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
As the requirement for patient consent was waived in the current study, we
do not have permission to deposit the full raw and individual-level clinical
data in a public repository. The raw data, individual-level clinical data, and
processed gene expression files for the discovery cohort have instead been
deposited in the controlled access repository the GenomeDK Data Library
(IDGDK000002). All inquiries regarding data access should bemade to the
Data Access Committee as described on the project’s GenomeDK Data
Library page (https://genome.au.dk/library/GDK000002/).

Code availability
The underlying code for this study is available from the corresponding
author upon reasonable request.
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