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Machine learning reveals diverse cell
death patterns in lung adenocarcinoma
prognosis and therapy
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Cancer cell growth,metastasis, anddrug resistance pose significant challenges in themanagement of
lung adenocarcinoma (LUAD). However, there is a deficiency in optimal predictive models capable of
accurately forecasting patient prognoses and guiding the selection of targeted treatments.
Programmed cell death (PCD) pathways play a pivotal role in the development and progression of
various cancers, offering potential as prognostic indicators and drug sensitivity markers for LUAD
patients. The development and validation of predictivemodels were conducted by integrating 13 PCD
patterns with comprehensive analysis of bulk RNA, single-cell RNA transcriptomics, and pertinent
clinicopathological details derived from TCGA-LUAD and six GEO datasets. Utilizing the machine
learning algorithms, we identified ten critical differentially expressed genes associated with PCD in
LUAD, namely CHEK2, KRT18, RRM2, GAPDH, MMP1, CHRNA5, TMPRSS4, ITGB4, CD79A, and
CTLA4. Subsequently, we conducted a programmed cell death index (PCDI) based on these genes
across the aforementioned cohorts and integrated this index with relevant clinical features to develop
several prognostic nomograms. Furthermore, we observed a significant correlation between the PCDI
and immune features in LUAD, including immune cell infiltration and the expression of immune
checkpoint molecules. Additionally, we found that patients with a high PCDI score may exhibit
resistance to immunotherapy and standard adjuvant chemotherapy regimens; however, they may
benefit from other FDA-supported drugs such as docetaxel and dasatinib. In conclusion, the PCDI
holds potential as a prognostic signature and can facilitate personalized treatment for LUAD patients.

Lung cancer is widely recognized as the leading cause of cancer-related
mortality and the second most prevalent cancer globally, with lung ade-
nocarcinoma (LUAD) being the most common histological type1–3.
Despite advancements in diagnostic techniques and treatmentmodalities,
the prognosis for patients remains grim, with a discouraging 5-year sur-
vival rate of merely 10–20%4–6. For patients diagnosed at an advanced
stage, the available treatment options are limited to targeted therapy and
immunotherapy. However, the high degree of heterogeneity in lung
cancer and the inevitable development of drug resistance results in only a

small fraction of patients responding favorably to these therapeutic
approaches. In recent times, significant progress has been made in the
treatment of non-small cell lung cancer, particularly through the use of
immunotherapy, specifically immune checkpoint inhibitors such as anti-
PD-1/PD-L17. However, the emergence of high resistance rates and low
overall response rates poses a significant challenge8. Therefore, there is an
urgent need for further research into biomarkers that could potentially
predict the efficacy of targeted and immune therapies in LUAD. Addi-
tionally, exploring the underlying mechanisms will provide potential
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targets and theoretical foundations for drug design and clinical decision-
making.

Programmed cell death (PCD), also known as regulated cell death,
refers to a specific form of cell death that can be controlled by various
biomacromolecules9. For several decades, PCD has been recognized as a
pivotalmechanismgoverning the intricate dynamics of tumor development
and progression. The ability of tumor cells to evade or resist PCD exerts a
profound impact on their unrestrained proliferation and malignancy. Per-
turbation of the intricate orchestration of PCDmetabolic pathways leads to
the accumulation of genetically compromised or aberrant cells, thereby
facilitating their relentless persistence and uncontrolled proliferation, ulti-
mately culminating in the formation of tumor masses10–12.

PCD encompasses a diverse array of distinct cellular demise
mechanisms, including apoptosis, necroptosis, ferroptosis, pyroptosis,
netotic cell death, entotic cell death, lysosome-dependent cell death, par-
thanatos, autophagy, oxeiptosis, cuproptosis, alkaliptosis, and
disulfidptosis13–15. Apoptosis, a highly regulated form of cell death, is char-
acterized by controlled cellular disassembly and plays a vital role in various
physiological processes such as tissue development, immune response
regulation, and elimination of damaged cells. Inhibition or resistance of
apoptosis often contributes to the development of cancer16. Notably, api-
genin has been reported to induce the reprogramming of TRAIL/DISC
components, rendering lung cancer cells sensitive to TRAIL-mediated
apoptosis17. Entotic cell death arises fromactomyosin-dependent cell-in-cell
internalization (entosis) and is executed through lysosome degradation18,19.
This form of cell death has been observed in various human neoplasms and
is presumed to act as an oncosuppression mechanism20–22. Autophagy, a
cellular process involved in the degradation of cellular components, exerts a
dual role in cell survival and cell death23,24. Previous evidence suggested that
USP15 may negatively regulate lung cancer progression by modulating the
TRAF6-BECN1 signaling axis to induce autophagy25. Disulfidptosis, a novel
form of cell death induced by disulfide stress, is characterized by the
breakdown of cytoskeletal proteins and F-actin due to intracellular accu-
mulation of disulfides14,26. In addition, the roles of other forms of PCD, such
as ferroptosis, cuproptosis, and pyroptosis, in LUAD have been widely
discussed27–29. However, the comprehensive association between these
thirteen forms of PCDand anticancer immunity in LUAD remains unclear.

In the present study, we have identified ten differentially expressed
genes associated with PCD in LUAD. Subsequently, we have developed a
programmed cell death index (PCDI) to elucidate the relationship between
these model genes, PCDI, and the carcinogenesis of LUAD. Furthermore,
we have comprehensively characterized the genetic andmutation landscape
of these genes in LUAD and formulated a prognostic model for accurately
predicting the survival outcomes of LUAD patients. Additionally, we have
investigated the intricate interplay between the model genes, PCDI levels,
and the immune system. Moreover, we have examined and validated the
therapeutic response of the model genes and PCDI to immunotherapy and
targeted therapy in the context of LUAD.

Results
The workflow of this study
We conducted a comprehensive reanalysis ofmultiple previously published
cohorts to train and validate our predictive model. These analyses included
three bulk RNA cohorts (TCGA-LUAD, GSE116959, and GSE31210) as
well as two single-cell RNA datasets (GSE162498 andGSE143423). In total,
we examined thirteen patterns of PCD involving a concatenated set of 2090
genes (Supplementary Table 2). The flowchart depicting the study is pre-
sented in Fig. 1.

Variant landscape of programmed cell death genes in LUAD
patients
FromtheTCGA-LUADandGSE116959cohorts,we identified52DEGswith
statistical significance (all adjusted p < 0.05 and log2FC > 1), of which 20were
from disulfidocytosis, 18 were from apoptosis, 5 were from ferroptosis, 2
(GSDMB and AIM2) were from pyroptosis, 1 (CDKN2A) was from

cuproptosis, 2 (TRAF5and JAK3)was fromnecroptosis, 1 (MMP1)was from
netotic cell death, 1 (BLK) was from lysosome-dependent cell death, and 2
(EEF1A2 and GAPDH) were from autophagy (Fig. 2a). The complete list of
DEGs can be found in Supplementary Table 3. Heatmaps displaying the
scaled RNA levels of DEGs are shown in Fig. 2b, while the protein–protein
interaction network of the DEGs is depicted in Fig. 2c. Furthermore, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses revealed that these DEGs are involved in various
carcinogenesis-associated pathways associated carcinogenesis, such as
intrinsic apoptotic signaling,p53signaling, andpathways incancer (Fig.2d, e).
Additionally, we examined themutational landscape of PCD-related genes in
LUADpatients from theTCGAcohort. The top 10mutations of PCD-related
genes were analyzed and presented, with CDKN2A and TNC exhibiting the
highest mutation frequency (11%), while the remaining eight genes demon-
strated a relatively lower mutation frequency ranging from 5 to 10% (Fig. 2f).

Construction of a prognostic gene signature via the machine
learning-based integrative procedure for LUAD patients
We employed a machine learning-based integrative procedure to develop a
prognostic PCDI using the expression profiles of 52 PCD-related DEGs. In
the TCGA-LUAD dataset, we fitted 70 types of predictive models using the
LOOCV framework and calculated the C-index for each model (Fig. 3a,
Supplementary Table 4). Notably, the top twomodel combinationswith the
highest C-index were Lasso and RSF+Lasso. We thereby applied these two
algorithms for model gene selection andmodel construction and the top 35
genes with higher variable importance were identified (Fig. 3b, c). After
intersecting these 35 genes with those identified through Lasso regression
analysis, resulting in the extraction of 10 genes (Fig. 3d–f). The chromo-
somal location of each gene is depicted in Fig. 3g.

Subsequently, we constructed the PCDI model using the Lasso regres-
sion method and calculated the PCDI for each patient using the following
formula: PCDI = (−0.028463286 ×CHEK2 exp)+ (0.099357443 ×KRT18
exp)+ (0.156214065 × GAPDH exp) + (0.01656202 × MMP1 exp) +
(0.007265954 × CHRNA5 exp) + (−0.003710263 × TMPRSS4
exp)+ (0.047539452 × ITGB4 exp)+ (−0.037942721 ×CD79A exp)+
(−0.049874867 ×CTLA4 exp)+ (0.09887913 × RRM2 exp). Using the
medianPCDI,we stratifiedpatientswithLUADfromtheTCGA-LUAD, and
three independent GEO cohorts were divided into high-risk and low-risk
subgroups. To investigate the underlying biological processes with these
subgroups, we performed Gene set variation analysis (GSVA). Figure 3h
presents the enriched biological processes specially observed in the TCGA-
LUAD dataset, while Fig. 3i, j highlight four common processes identified
across all four datasets were identified. Further details of the pathways can be
found in Supplementary Table 5.

To assess the significance of the model genes, we compared their
expression levels between LUAD tissues and normal samples using the
Wilcoxon test (Supplementary Fig. 1). Additionally,We conductedKaplan‒
Meier analysis to investigate their influence on the OS of LUAD (Fig. S1).
Remarkably, all model genes, except for CHEK2, TMPRSS4, and CD79A
exhibited a significant influenceonOS time.The coexpressionpatternof the
model genes is visually represented in Supplementary Fig. 2.

Association of PCDI with clinicopathologic features in LUAD
patients
We conducted a comparative analysis of variables, including T stage, N
stage,M stage, clinical stage, and survival status (alive or dead). Significantly,
a significant association was observed between low PCDI and high PCDI
groups (Fig. 4a–e, l). Consistent findings were also noted in the GSE31210,
GSE50081, andGSE72094datasets (Fig. 4f–h).Notably,we also conducteda
detailed analysis to investigate the influence of diverse histological pheno-
types on the levels of PCDI within LUAD. Intriguingly, our results revealed
no statistically significant differences in PCDI levels among the different
histological types of LUAD, suggesting that PCDI may exhibit minimal
variability among the diverse histological subtypes in LUAD (Fig. S4a).
Leveraging the model genes, we stratified the LUAD patients in the TCGA
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cohort into two distinct clusters, with patients in cluster 2 exhibiting amore
favorable prognosis.Moreover, the alluvial diagrams and heatmapprovided
visual evidence that the majority of patients in cluster 1 were characterized
by an advanced clinical stage and high PCDI, while the majority of patients
in cluster 2 displayed an early clinical stage and low PCDI (Fig. 4k, l).

Validation of the clinical significance of the prediction model in
LUAD datasets
Utilizing the calculated PCDI value, we stratified LUAD patients in the
TCGA-LUAD, GSE31210, GSE50081, and GSE72094 cohorts into PCDI-
High and PCDI-Low groups. Our findings revealed a significant association
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between high PCDI and unfavorable clinical outcomes (Fig. 5a, b). Fur-
thermore, we observed that the PCDI-High andPCDI-Lowgroups could be
effectively distinguished in all four cohorts through PCA (Fig. 5c).

Development and evaluation of the nomogram survival model
To assess the independent prognostic significance of PCDI, we conducted
both univariate and multivariate Cox regression analyses. Our findings

revealed that PCDIwas a significant risk factor in univariate Cox regression
analysis (HR = 4.751, 95%CI: 2.929–7.136,P < 0.001, Fig. 6a). Furthermore,
in themultivariate analysis, PCDI retained its independent prognostic value
in LUAD patients even after adjusting for other confounding factors
(HR = 3.674, 95% CI: 2.146–6.290, P < 0.001, Fig. 6b).

Based on the results from multivariable Cox and stepwise regression
analyses, we constructed a prognostic nomogram model in the TCGA

Fig. 3 | A consensus PCDI was developed and validated via themachine learning-
based integrative procedure. aA total of 70 kinds of predictionmodels via a ten-fold
cross-validation framework further calculated theC index of eachmodel.bThe error
rate of the RSF result. c The variable relative importance of screened genes based on
RSF. d, e Visualization of LASSO regression in the TCGA-LUAD cohort. The
optimal λ was obtained when the partial likelihood of deviance reached the

minimum value. f Venn plot of LASSO results and RSF results. g Circos plot
depicting the locations and expression levels of 10 model genes. h GSVA of the
subgroups categorized by PCDI. i Venn plot of enrichment biological functions
among the TCGA cohort, GSE31210 cohort, GSE50081, and GSE72094 cohort.
j The 4 common biological pathways.
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cohort to predict the 1-, 3-, and 5-year overall survival (OS) of LUAD
patients (Fig. 6c). The calibration curves demonstrated the accurate pre-
dictive abilityof thenomogrammodel for the1-, 3-, and5-year survival rates
(Fig. 6d). Similar findings were also observed in the three validation cohorts
(Supplementary Fig. 3). Additionally, DCA confirmed that the nomogram
model outperformed other predictors utilized in the study (Fig. 6e, f).
Notably, a significant survival difference was observed between the high-
and low-risk groups based on the nomogram score (Fig. 6g). To evaluate the
performance of the nomogram, we accessed its predictive ability in four
independent cohorts. Our results indicated high area under the curve scores

for predicting the 1-, 3-, and 5-year survival of LUAD patients (Fig. 6h).
Similar results were observed in the validation cohort (Fig. 6i–k).

Subsequently, we conducted a further investigation into theMixed and
NOS subtypes of LUAD, and the findings were consistent with those
observed in the overall LUAD patients. Specifically, the low PCDI group
exhibited a significantly higher survival rate compared to the high PCDI
group within the Mixed and NOS subtypes (Supplementary Fig. 4d, g). To
enhance prognostic accuracy, we developed a prognostic nomogrammodel
to predict the 1-, 3-, and 5-year overall survival in Mixed and NOS patients
(Supplementary Fig. 4b, c). The calibration and ROC curves demonstrated
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the model’s proficiency in accurately predicting survival rates at these time
intervals (Supplementary Fig. 4e, f, h, i). These findings highlight the
potential of the prognostic nomogrammodel to provide valuable prognostic
information for patients with the Mixed and NOS subtypes of LUAD.

Single-cell analysis suggests the CDIscore correlates with the
development of LUAD
To probe the expression and distribution of PCD-related genes at a single-
cell resolution, we scrutinized the scRNA sequencing data of two LUAD
datasets. After employing various standard quality control procedures, a
total of 80059 cells were included for downstream analysis (Supplementary
Fig. 5a, b). The cells were sorted into 38 clusters and eight cell types (Sup-
plementary Fig. 5c, d), with the respective marker genes of each cell type
detailed in Fig. 7a–c. The distribution and expressions of ten model genes
across different cell types were shown in Fig. 7d. Using the inferCNV
algorithm, we detected significant copy number variations in each epithelial
cell (Fig. 7e), and the CNV score of each cluster was calculated. As shown in
Fig. 7f, g, the epithelial cells were separated into high-malignancy (clusters
31, 29, and 0), middle-malignancy (cluster 32), and low-malignancy (clus-
ters 11 and 34) groups. Pseudotime trajectory analysis usingMonocle 2 was
then employed to understand the underlying evolution of epithelial cells
with diverse CNV scores (Fig. 7h). Finally, we calculated the score of each
cell using the “AddModuleScore” function (Supplementary Fig. 5e), and we

found that the CDI score was positively correlated with the CNVscore and
that the cells with higher CNVscores (intermediate/high malignancy) had
higher CDI scores (Fig. 7i, j).

PCDI correlates with the immune features of LUAD patients
We employed a variety of algorithms, including TIMER, EPIC, MCP-
COUNTER, ESTIMATE, and CIBERSORT to comprehensively investigate
the infiltration of immune cells across different PCDI groups within the
TCGA-LUAD cohorts. Notably, we observed a significant negative corre-
lation between PCDI and anticancer immunity-associated cells, such as
CD8+ T cells, CD4+ memory T cells, and myeloid dendritic cells (Fig. 8a).
Conversely, PCDI exhibited positive correlations with cell types such as
Cancer-Associated Fibroblasts(CAFs), fibroblasts, activated NK cells, M0
macrophages, and neutrophils, as depicted in Fig. 8a. The Stromalscore and
Immunescore of the low PCDI group were found to be higher compared to
thoseof thehighPCDIgroup, as shown inFig. 7b, c. In addition,we explored
the relationship between immune checkpoint molecules, PCDI, and the
model gene expression levels in the high and lowPCDI groups. Our analysis
of immune checkpoint molecules revealed downregulation of CTLA-4,
TIGIT, and PDCD1 in the high PCDI group, whereas an upregulation was
observed for CD274/SIGLEC15, as illustrated in Fig. 8d, e. These findings
provide valuable insights into the intricate interplaybetweenPCDI, immune
cell infiltration, and immune checkpoint regulation in LUAD.
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Predictive effects of PCDI in immunotherapy
Significant positive correlations between TIDE scores and PCDI values
across four LUAD cohorts (Fig. 9a, b) were observed, indicating that
patients with elevated PCDI may not benefit from immunotherapy.

Utilizing the GSE126044 and GSE78220 immunotherapy cohorts, we
further evaluated the ability of PCDI to predict the response of LUAD
patients to anti-PD-L1 treatment. Patients exhibiting high PCDI dis-
played worse survival compared to those with low PCDI (Fig. 9c, f). The
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percentage of patients responding to anti-PD-L1 in the high PCDI group
was markedly lower than that in the low PCDI group (Fig. 9d, g).
Furthermore, non-responders exhibited higher PCDI than responders
(Fig. 9e, h).

PCDI correlates with the targeted therapy response of LUAD
patients
To explore the potential relationship between our constructed model and
drug sensitivity, we analyzed the half-maximal inhibitory concentration
(IC50) values for several drugs using the GDSC database in LUAD samples.
The correlation and significance between the IC50 of various drugs and the

prognostic PCDI are presented in Fig. 10a and Supplementary Table 6.
Particularly, we observed higher IC50 values of gemcitabine and cisplatin in
the high PCDI group compared to the low PCDI group (Fig. 10e, k).
Interestingly, we found that the IC50 values of savolitinib, osimertinib,
lapatinib, gefitinib, erlotinib, dasatinib, and afatinib were lower in the high
PCDI score group (Fig. 10b–l). Furthermore, we investigated the correla-
tions between the model genes, FDA-approved drugs for lung cancer,
classical therapeutic targets, and signaling pathways, as shown in Fig. 10m.
These findings suggest a potential association between ourmodel genes and
drug sensitivity, providing valuable insights for personalized treatment
strategies in LUAD.
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In-vitro experiments validation of signature genes in clinical
samples
WeutilizedRT-qPCR analysis to validate the differentialmRNAexpression
of 10 model genes between the adjacent and LUAD tissues from clinical
samples. The results showed that CHEK2, CD79A, RRM2, GAPDH,
ITGB4, KRT18, and TMPRSS4 were overexpressed in LUAD than in
paracancerous samples, whereas the expression of CHRNA5, CTLA4, and
MMP1 showed no statistical significance (Fig. 11a–j). Additionally, we
verified the expression of the model genes at the protein level between
LUAD and adjacent normal tissues using the Human Protein Atlas (HPA)
database (available fromwww.proteinatlas.org) under aCreative Commons
Attribution (CC BY) license. Immunohistochemistry analysis demon-
strated lower staining in normal tissue, whereas higher staining of CHEK2,
RRM2, GAPDH, ITGB4, KRT18, and TMPRSS4 was observed in LUAD
samples at the protein level (Fig. 11).

To clarify the link between gene expression andTIDE, we delved into a
thorough analysis of both training and validation datasets. Figure 12a
highlights four key genes—CHEK2, GAPDH, MMP1, and RRM2—com-
mon to all four cohorts. Considering gefitinib’s role as a prevalent NSCLC
therapy, we assessed its sensitivity correlation within the TCGA-LUAD
dataset, pinpointing five primary genes: CHEK2, ITGB4, RRM2, GAPDH,
and KRT18, as listed in Supplementary Table 6. Cross-referencing these
with the quartet fromFig. 12a isolated three candidates—CHEK2,GAPDH,
and RRM2—for closer scrutiny. Western blotting confirmed their heigh-
tened expression in tumors versus normal tissue (Fig. 12b), quantified in
Fig. 12c. Immunohistochemistry further validated the pronouncedpresence
of these genes in tumor samples, depicted in Fig. 12d.

Discussion
In our study, we identified 52 PCD-related DEGs and developed a con-
sensus prognostic PCDI employingmachine learning algorithms. Based on
the PCDI and clinical features, we generated several prognostic nomograms
across the training and validation LUAD cohorts, which exhibited robust
and consistent performance. Importantly, ourfindings revealed a significant
correlation between PCDI and the tumormicroenvironment (TME) as well
as drug sensitivity in LUAD. These results emphasize the potential clinical
applications of the PCDI in guiding personalized treatment decisions.

It has long been established that various PCD patterns are closely
associatedwith the development andmetastasis of human tumors30.Herein,
we developed a signature comprising 10 PCD-related genes (CHEK2,
KRT18, GAPDH, MMP1, CHRNA5, TMPRSS4, ITGB4, CD79A, CTLA4,
and RRM2) utilizing multiple LUAD datasets and conducted a compre-
hensive bioinformatic analysis to investigate the genetic landscape and
clinical relevance of these model genes in LUAD.

To corroborate our bioinformatic observations, RT-qPCRanalysis was
employed to juxtapose the expression of model genes across LUAD and
precancerous tissues. The results predominantly corroborated our expec-
tations, except for CTLA4, MMP1, and CHRNA5 at the mRNA level,
warranting further exploration at the protein level. CHK2 is a critical
component involved in various molecular processes, including DNA
structure modification, cell cycle progression, and DNA damage response.
Disruption of these checkpoints can lead to genomic instability, cell death,
and tumor formation31,32. KRT18, a type of cytokeratin, is an intermediate
filament protein that plays a role in maintaining tissue integrity. Cytoker-
atins have been identified as diagnostic and prognostic markers for tumor
occurrence, progression, and drug response33. Luigi et al. reported that
KRT18 exhibits potential as a prognostic marker in NSCLC patients34.
Although GAPDH is commonly considered a housekeeping gene, it is a
widely expressed enzyme with unconventional functions, including invol-
vement in glycolysis35. GAPDH acts as an irreversible metabolic switch in
glycolysis by catalyzing the conversion of glyceraldehyde-3-phosphate to
1,3-diphosphoglycerate, thereby producing NADH36. In NSCLC patient
cohorts, GAPDH transcription is upregulated and associated with the gly-
colysis and gluconeogenesis pathways37. RNA interference-mediated
knockdown of GAPDH induces cellular senescence in A549 cells and

enhances the therapeutic efficacy of metabolic drugs38. MMP1, a matrix
metalloproteinase, plays a critical role in extracellular matrix remodeling
and is involved in tumor invasion, metastasis, and angiogenesis39. Over-
expression of MMP1 has been observed in various cancers, including lung
cancer, and is associated with tumor progression and unfavorable clinical
outcomes40. CHRNA5, a subunit of the nicotinic acetylcholine receptor, has
been implicated in cell proliferation, apoptosis, and carcinogenesis41.
Genetic variations in the CHRNA5-CHRNA3-CHRNB4 gene cluster have
been shown to increase susceptibility to lung cancer42,43. TMPRSS4 induces
epithelial-to-mesenchymal transition and promotes metastasis in colon
cancer cells44. Importantly, high expression of TMPRSS4 is associated with
poor prognosis in patients with squamous cell carcinomas45. ITGB4, a cell
surface receptor, is involved in cell adhesion, migration, and invasion46.
ITGB4 disrupts cell adhesion and basement membrane integrity, thereby
promoting cancer progression and metastasis47. CD79A, a B-cell receptor-
associated protein, plays a critical role in B-cell development and function48.
CD79A is an important target in classicalHodgkin’s lymphoma49. CTLA4, a
known immune checkpoint molecule, regulates T-cell activation and the
immune response. It has emerged as a therapeutic target in cancer immu-
notherapy, particularly in approaches to block the immune checkpoint50.
CTLA-4 enhances the antitumor effect of effector T cells, maintains self-
tolerance, and suppresses the function of Tregs in liver cancer immunity51.
RRM2, a subunit of ribonucleotide reductase, plays a critical role in DNA
synthesis and repair52.Aprevious study found thathigh expressionofRRM2
is an independent predictive factor for poor prognosis in patients with
LUAD53. In the current study, we observed a significant association between
the expression of these model genes and the clinical outcomes of LUAD
patients, suggesting their potential as prognostic biomarkers in LUAD.

To evaluate the clinical relevance of PCDI in LUAD, we developed a
nomogram model that combines PCDI with relevant clinical parameters.
The effectiveness of this model was validated, demonstrating its clinical
usefulness. We also analyzed PCDI across different histological subtypes
and found no statistically significant differences among them. Importantly,
we observed that patients with low PCDI had a significantly higher survival
rate compared to those with high PCDI. The prognostic nomogrammodel
showed strong predictive ability for 1-, 3-, and 5-year overall survival in
patients with Mixed and NOS subtypes. However, due to the complex
nature of LUAD, which exhibits diverse histological phenotypes, further
comprehensive investigations are necessary to understand the role of the
PCDI model in different LUAD types. These investigations should include
mechanistic studies, animal studies, and additional clinical analyses.

Tumor cells possess the ability to evade immune surveillance and resist
the effects of therapeutic drugs, thereby promoting their survival and
progression54. Our study has revealed significant differences in the immune
microenvironments of tumors based on their levels of PCDI. Notably,
tumors with high PCDI exhibited reduced infiltration of anti-tumor
immune cells, including B cells, CD4+ T cells, and CD8+ T cells, compared
to tumors with low PCDI. Conversely, immunosuppressive cell types such
as cancer-associated fibroblasts (CAFs), fibroblasts, M0 macrophages, and
neutrophils were upregulated in tumors with high PCDI. This inverse
correlation between PCDI and effector immune cells, along with the
enrichment of suppressive leukocytes, suggests that tumors with high PCDI
exhibit a more immunosuppressed phenotype55. Despite the seemingly
favorable prognosis indicated by low PCDI, patients in this subgroup
demonstrated increased stromal and immune activities, suggesting hidden
risks of disease progression potentially attributed to the aggressive TME56,57.
While this molecular profile may seem counterintuitive, it necessitates
careful monitoring due to the tumor-promoting effects of the TME58.
Moreover, the abundance of immune infiltrates could be strategically
leveraged for immunotherapy, offering the potential to mitigate the detri-
mental effects of the pro-tumoral environment59. A comprehensive analysis
of immune checkpoint expression has provided further insights into the
attenuated immune response within tumors with high PCDI. We observed
downregulation of inhibitory receptors, includingCTLA-4,TIGIT, andPD-
1, likely as a result of T cell exhaustion due to chronic immune suppression.
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Concurrently, we observed upregulation of their ligand PD-L1, indicating
an adaptive immune resistance mechanism employed by tumor cells. Col-
lectively, these findings suggest an escalation of T cell dysfunction60.

From a clinical perspective, the elevated TIDE scores observed in
the high PCDI group support the notion of immune evasion being

associated with high PCDI61. In the cohort undergoing immunotherapy,
responders were characterized by lower PCDI, while non-responders
exhibited elevated PCDI, potentially attributable to the more potent
immune response associated with low PCDI, thus rendering the tumor
more susceptible to immunotherapy. These findings underscore the
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Fig. 11 | In-vitro experiments validation of signature genes in clinical samples. a–j RT-qPCR verifying the gene transcription in TCGA-LUAD and precancerous tissues.
k The protein expression of signature genes between TCGA-LUAD and adjacent normal tissues in the HPA database.
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potential utility of PCDI as a predictive biomarker for immunotherapy
in LUAD, with high PCDI scores being associated with a diminished
therapeutic response.

Our study provided insights into the relationship between the PCD
signature anddrug sensitivity in LUADpatients.Notably, patientswithhigh

PCDI exhibited resistance to standard chemotherapieswhile demonstrating
potential sensitivity to otherFDA-approveddrugs forNSCLC.These results
suggest that PCDI may serve as a predictive marker for personalized
treatment selection, facilitating the development of more effective ther-
apeutic strategies for LUAD patients.
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While our study provides valuable insights into the clinical impli-
cations of the PCDI signature, it is important to acknowledge several
limitations. Firstly, the analyses heavily relied on retrospective data,
highlighting the need for future studies to validate the clinical relevance
of our findings. Given the complex nature of LUAD and its diverse
histological phenotypes, conducting more comprehensive mechanistic
and clinical investigations is crucial to explore the role of PCD genes in
different LUAD subtypes. Additionally, although the differential
expression of PCDI genes between LUAD and precancerous samples
was confirmed by RT-qPCR, the protein levels of these genes were not
further validated. Lastly, the decision-making role of the PCDI model in
our study lacks verification from phase 3 randomized controlled trials.
Therefore, high-quality, adequately followed-up, multicenter rando-
mized controlled trials with large sample sizes are required to confirm
our results.

In conclusion, our findings suggest that PCDI has the potential to be a
valuable prognostic predictor for LUADpatients.However, further research
addressing the aforementioned limitations is necessary to strengthen the
validity and applicability of our findings.

Methods
Data acquisition
RNA-seq data and corresponding clinicopathological information for
LUAD samples were obtained from The Cancer Genome Atlas
(TCGA)62. In addition, clinicopathological information and genome-
wide expression data for four other LUAD cohorts (GSE116959,
GSE31210, GSE50081, and GSE72094) along with the immunotherapy
cohort (GSE126044 and GSE78220) were obtained from the Gene
Expression Omnibus (GEO) database63–68. To compile the list of PCD
genes, we gathered genes associated with 13 different PCDpatterns from
reputable scientific sources, including GSEA gene sets, KEGG, review
articles, and manual compilation69. After eliminating duplicate genes, a
total of 2090 PCD-associated genes were included for subsequent
analysis.

Identification of the expression and variation levels of PCD-
related genes
The raw transcriptome count data from TCGA-LUAD and GSE116959
were subjected to preprocessing for subsequent analysis. Differential
expression analysis was performed using the “edgeR” package to identify
genes that play a crucial role in PCD. The criteria for identifying differen-
tially expressed genes (DEGs) were set as an adjustedP < 0.05 and log2-fold
change > 170. To explore the somatic mutation landscape within the LUAD
patients cohort, we utilized the “map tools”54. The diverse characteristics of
PCD-related genes were visually represented in a circus plot using the
“circlize” R package71.

Signature generated frommachine learning-based integrative
approaches
To establish a consensus on PCD-related genes with high accuracy and
stability, we employed a comprehensive by integrating 10machine-learning
algorithms and 70 algorithm combinations. The integrated algorithms
encompassed a range of techniques, including randomsurvival forest (RSF),
elastic network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least
squares regression forex (plsRcox), supervised principal components
(SuperPC), generalized boosted regression modeling (GBM) and survival
support vector machine (survival-SVM). The procedure for generating the
signatures involved the following steps: (a) The previously identified DEGs
were subjected 70 algorithm combinations to construct predictive models
using leave-one-out cross-validation (LOOCV) in the TCGA-LUAD
cohort, (b) All models were further cross-validated using three indepen-
dent datasets (GSE31210, GSE50081, and GSE72094). (c) For each model,
the Harrell’s concordance index (C-index) was calculated across all vali-
dationdatasets, and themodelwith thehighest averageC-indexwasdeemed
optimal.

Functional enrichment analysis
The “clusterProfiler” R package was utilized to identify potential Gene
Oncology (GO) pathways based on the above-identified DEGs72. To com-
pare the distinct biological functions between the high-risk group (high
PCDI) and the low-risk group (low PCDI), we employed GSVA analysis
using the “hall. v2022.1.Hs.symbols.gm” database73.

Unsupervised clustering of PCD-related model genes
For unsupervised clustering of the PCD-relatedmodel genes, we utilized the
“ConsensusClusterPlus” R package. The clustering was performed using
agglomerative kindest clustering with a Spearman correlation distance
metric and 80% of the samples were resampled for 10 repetitions. To
determine the optimal number of clusters, we employed an empirical
cumulative distribution function plot74. The overall survival (OS) of LUAD
patients across different clusters was compared using Kaplan‒Meier
analysis.

Nomogram building and assessment based on the PCDI
Tovalidate the value of thePCDI as an independent prognostic indicator for
LUAD patients, both univariate and multivariate Cox regression analyses
were conducted. These analyses assessed the significance of the PCDI in
combination with relevant clinical parameters. Subsequently, prognostic
nomograms were developed based on the TCGA-LUAD cohort and three
GEO cohorts using the R packages “rms” and “replot”. The performance of
these nomograms was evaluated through calibration curves, decision curve
analysis (DCA), and receiver operating characteristic (ROC) curves75.

Single-cell sequencing analysis of PCD-related genes
The analysis of single-cell RNA sequencing data from the GEO database
(GSE162498 andGSE143423) for LUADwas undertaken with the “Seurat”
and “SingleR” packages76, following a series of standard quality procedures
that included the “PercentageFeatureSet”, “SCTransform”, “RunPCA”,
“FindNeighbors”, “FindClusters”, “RunUMAP”, and “FindAllMarkers”
functions. Cell types were assigned using the “SingleR” function and known
markers from the literature76. Additionally, the “ClusterGVis” and
“org.Hs.eg.db” R packages were used to identify the biological function of
the marker genes in each cell type. The CNV scores of epithelial cells were
calculated using CD8+ T cells as a reference via the “inferCNV” package77.
To explore the developmental trajectory of epithelial cells with diverse
CNVscores, the Monocle2 algorithm was used78,79. Moreover, the
“AddModuleScore” function was utilized to calculate the signature-specific
score (CDIscore) based on the PCD-related genes’ average expression.

Tumormicroenvironmentanalysisanddrugsensitivityprediction
The expression data of model genes and various immune cell infiltration
levels were obtained and calculated using multiple algorithms, including
TIMER, EPIC, MCP-COUNTER, ESTIMATE, and CIBERSORT80,81. The
association between PCDI and immunotherapy as well as targeted therapy
response was analyzed using the Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm82 and the “oncoPredict” tool83, respectively.

RT-qPCR
Total RNAwas extracted using the TRIzol lysismethod. The RNAwas then
reverse-transcribed into complementaryDNA(cDNA)using theHifair® III
One-Step RT-qPCR SYBR Green Kit (Yeasen, China). RT-qPCR was
conductedusing theHieff®qPCRSYBRGreenMasterMix (Yeasen,China),
according to the manufacturer’s instructions. The 2-ΔΔCT method was
used to calculate the relative gene expression levels. Primers were synthe-
sized and designed by GenePharma (Shanghai, China), and their detailed
sequences are listed in Supplementary Table 1.

Western blot analysis
Total protein was isolated using radioimmunoprecipitation and lysis buffer.
The extracted proteins were treated with 10% SDS-PAGE and transferred to
polyvinylidene fluoridemembranes.Membranes were blockedwith 5%milk
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and incubated with the primary antibodies overnight at 4 °C, followed by
incubation with the appropriate horseradish peroxidase-conjugated sec-
ondary antibodies. Signals were detected using an Enhanced Chemilumi-
nescence Detection Kit (Cell Signaling Technology, Danvers, MA, USA).
Antibodies against GPX4 (1: 5000, ab125066, Abcam), SLC7A11 (1: 1000,
26864-1-AP,Abcam),ACSL4(1: 50000, ab155282,Abcam), andGAPDH(1:
15000, 60004-I-Ig, Proteintech)were used as primary antibodies. Uncropped
scans of the most important blots were seen in Supplementary Fig. 6.

Immunohistochemical staining
Formalin-fixed, paraffin-embedded lung sections of 5 µm thickness were
dewaxed in xylene and rehydrated through graded ethanol. Endogenous
peroxidase activity was blocked with 3% H2O2 for 10min at room tem-
perature. Antigen retrieval was performed using citrate buffer (10mM, pH
6.0) and microwave heating. Sections were blocked with a 1:10 dilution of
goat serum for 30min at room temperature before overnight incubation at
4 °C with primary antibodies against CHEK2 (rabbit, 1:100, Absin,
Abs106836), RRM2 (rabbit, 1:100, Proteintech, 11661-1-AP), and GAPDH
(mouse, 1:100, Proteintech, 60004-1-lg). After washing in PBS, sections
were incubated with HRP-conjugated secondary antibodies for 30min at
room temperature, followed by a 20-min incubation with HRP-conjugated
broad-spectrum secondary antibodies. Hematoxylin counterstaining was
performed to visualize nuclei.

Ethics approval
Since the sequenced data generated from TCGA and GEO were publicly
available, additional ethics committee approval was not necessary.

Statistical analysis
Statistical analyses were performed using R software (version 4.1.0). Con-
tinuous variables were reported as the standard error of the mean and
compared using either the Student’s t test or Wilcoxon rank sum test.
Categorical data were assessed using the chi-square test. Statistical sig-
nificance was defined as P < 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets used in this paper are available online, as described in the
Methods section.

Code availability
No new algorithms were developed for this article. All code generated for
analysis is available from the authors upon request.
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