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Renal cell carcinoma (RCC) ismost often diagnosedat a localized stage,where surgery is the standard
of care. Existing prognostic scores providemoderate predictive performance, leading to challenges in
establishing follow-up recommendations after surgery and in selecting patients who could benefit
from adjuvant therapy. In this study, we developed a model for individual postoperative disease-free
survival (DFS) predictionusingmachine learning (ML)on real-world prospectivedata.Using theFrench
kidney cancer research network database, UroCCR, we analyzed a cohort of surgically treated RCC
patients. Participating siteswere randomly assigned to either the trainingor testing cohort, and several
MLmodelswere trained on the training dataset. The predictive performance of the bestMLmodel was
thenevaluatedon the test dataset andcomparedwith the usual risk scores. In total, 3372patientswere
included, with a median follow-up of 30 months. The best results in predicting DFS were achieved
using Cox PHmodels that included 24 variables, resulting in an iAUC of 0.81 [IC95% 0.77–0.85]. The
ML model surpassed the predictive performance of the most commonly used risk scores while
handling incomplete data in predictors. Lastly, patientswere stratified into four prognostic groupswith
good discrimination (iAUC = 0.79 [IC95% 0.74–0.83]). Our study suggests that applying ML to real-
world prospective data from patients undergoing surgery for localized or locally advanced RCC can
provide accurate individual DFS prediction, outperforming traditional prognostic scores.

Kidney cancer is showing an increasing incidence worldwide, with 431,288
new cases in 20201,2. It is responsible for a significant mortality rate with
almost 180,000 deaths3. The growing number of imaging procedures per-
formed each year is leading to an increase in the diagnosis of renal cell
carcinoma (RCC) at localized stages for which surgery is the standard of
care4–6.

The risk of recurrence after surgery is substantial, with rates
varying from 20 to 50% at 5 years, depending on the stage7–9. In the

absence of a consensus, current European recommendations
for surveillance are based on prognostic scores that offer only mod-
erate predictive performance4,10. These recommendations suggest
regular CT scans for 5 to 10 years depending on the patient’s
prognostic class.

In this context and as we enter the era of personalized medicine, it
becomes increasingly important to accurately predict the individual risk of
kidney cancer recurrence after surgery. This would enable the identification
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of high-risk patients who could be considered for adjuvant treatments, as
well as low-risk patients for whom reduced surveillance and radiation
exposure are possible.

Machine Learning (ML) analyses large datasets to predict out-
comes more accurately than traditional tools. In healthcare, there is a
wealth of clinical, biological, pathological, and imaging data available.
The exponential growth in information makes analysis and inter-
pretation difficult using traditional statistics, while the ML approach
offers promising perspectives and is already being used inmanymedical
specialties11–13.

Our aim is, therefore, to use ML on real-world data from a large
prospective cohort of patients to propose an individual prediction of the
recurrence risk after surgical management of localized or locally advanced
kidney cancer.

Results
Cohort description
A total of 3372 patients managed for localized or locally advanced RCC
were included. The median age was 62 years (IQR 52–69), and 2319
(69%) patients were male. The median tumor size was 4 cm (IQR
2.8–6.2), with a majority (66%) of pT1 and 71% of clear cell RCC
(ccRCC). Baseline patient and tumor characteristics are reported in
Table 1.

The median follow up, defined as the median of the intervals
between surgery and censoring or death, was 30 months. Four hundred
and eighty patients (14.2%) experienced an event over the follow-up
(122 locoregional recurrences, 270 metastatic progressions and 88
deaths). The estimatedmedianDFSwas 12 years (95%CI 9.2—Inf), and
the 5-year DFS probability was estimated at 72.9% (95% CI
70.2–75.5%).

The training dataset consisted of 2241 patients (66%) from ten
centers and 1131 patients (34%) from 13 other centers were assigned to
the test dataset. Baseline patient characteristics, missing data rates and
DFS curves were similar among the train and test cohorts (Table 1 and
Fig. 1).

Table 1 | Patients tumors and characteristics

Overall,
N = 3372

Training
set, N = 2241

Testing
set, N = 1131

Age (years), median (IQR) 62 (52–69) 61 (51–69) 62 (52–70)

Sex, n (%)

Male 2319 (69) 1541 (69) 778 (69)

Female 1053 (31) 700 (31) 353 (31)

BMI (kg/m2), median (IQR) 26.5
(23.7–30.1)

26.3
(23.5–29.7)

27.2
(24.1–30.9)

Missing 97 (3) 72 (3) 25 (2)

ASA score, n (%)

1 855 (25) 563 (25) 292 (26)

2 1664 (49) 1161 (52) 503 (44)

≥ 3 574 (17) 381 (17) 193 (17)

Missing 279 (8) 136 (6) 143 (13)

ECOG PS, n (%)

0 2150 (64) 1456 (65) 694 (61)

1 483 (14) 347 (15) 136 (12)

≥ 2 131 (4) 82 (4) 49 (4)

Missing 608 (18) 356 (16) 252 (22)

Symptoms at diagnosis, n (%)

Asymptomatic 2208 (66) 1472 (66) 736 (66)

Local symptoms 906 (27) 593 (27) 313 (28)

General symptoms 213 (6) 150 (7) 63 (6)

Missing 45 (1) 26 (1) 19 (2)

Tumor size (cm), med-
ian (IQR)

4.0 (2.8–6.2) 4.0 (2.8–6.5) 4.0 (3.0–6.0)

Missing 18 (0.5) 12 (0.5) 6 (0.5)

Solitary kidney, n (%) 74 (2) 58 (3) 16 (1)

Missing 28 (0.8) 21 (0.9) 7 (0.6)

Bilateral tumors, n (%) 114 (3.8) 82 (4) 32 (3)

Missing 357 (11) 250 (11) 107 (10)

Type of surgery, n (%)

Partial nephrectomy 2186 (64.8) 1456 (65) 730 (64.5)

Including RAPN 1521 (45.1) 1089 (48.6) 432 (38.2)

Radical nephrectomy 1186 (35.2) 785 (35) 401 (35.5)

Adrenalectomy, n (%) 440 (13) 301 (14) 139 (13)

Missing 68 (2) 39 (2) 29 (3)

Lymphadenectomy, n (%) 202 (6) 144 (7) 58 (5)

Missing 86 (3) 49 (2) 37 (3)

NLR, median (IQR) 2.3 (1.7–3.3) 2.2 (1.6–3.2) 2.5 (1.8–3.6)

Missing 943 (28) 425 (19) 518 (46)

GFR (ml/min), median (IQR) 86.5
(66.1–111.3)

85.1
(64.8–110.3)

89.0
(68.3–113.0)

Missing 411 (12) 180 (8) 231 (20)

pT, n (%)

pT1 2174 (66) 1439 (65) 735 (67)

pT2 257 (8) 157 (7) 100 (9)

pT3a 775 (23) 550 (25) 225 (21)

≥ pT3b 103 (3) 71 (3) 32 (3)

Missing 63 (2) 24 (1) 39 (3)

pN+ , n (%) 79 (2) 50 (2) 29 (3)

Fuhrman grade, n (%)

1/2 1530 (50) 997 (49) 533 (52)

Table 1 (continued) | Patients tumors and characteristics

Overall,
N = 3372

Training
set, N = 2241

Testing
set, N = 1131

3 1142 (37) 738 (63) 404 (39)

4 393 (13) 297 (15) 96 (9)

Missing 307 (9) 209 (9) 98 (9)

Histological subtype, n (%)

Clear cell 2403 (71) 1568 (70) 835 (74)

Chromophobe 277 (8) 198 (9) 79 (7)

Papillary type 1 337 (10) 245 (11) 92 (8)

Papillary type 2 135 (4) 81 (4) 54 (5)

Others 220 (7) 149 (7) 71 (6)

Positive margins, n (%) 130 (4) 72 (3) 58 (5)

Micro vascular emboli on
pathology, n (%)

446 (15) 313 (15) 133 (13)

Necrotic component on
pathology, n (%)

1012 (32) 731 (35) 281 (26)

NSS indication, n (%)

Elective 1521 (74) 1026 (72) 495 (78)

Imperative 322 (16) 287 (20) 35 (6)

Relative 220 (11) 113 (8) 107 (17)

Missing 1309 (39) 815 (36) 494 (44)

Values in italics represent missing data for each cohort
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Model evaluation
The best predictive performance was achieved by combining multiple
imputations for missing values and Cox proportional hazards models
for time-to-event data. Once features that were not informative due to
null variance, redundancy or imbalancement as well as features that
were not independently associated with the outcome have been
eliminated, the final ML model included 24 clinical, pathological, and
biological variables. The permutation-based importance of each fea-
ture is displayed in Fig. 2. Tumor size, histological subtype and age at
surgery were found to be the most important features of the
ML model.

This ML model demonstrated good discrimination and calibration
abilities when applied to test dataset, with an integrated AUC of 0.81 [95%
CI 0.77–0.85] and an integrated Brier score of 0.11 [0.10–0.13] (Table 2).
The robustness of the signaturewas verified,with stable estimatedpredictive
metrics between the training stage and the external validation stage. Both
calibration and discrimination performance decreased over time, certainly
due to the decrease over time in both the number of patients still at risk and
the number of events observed.

Decision curve analysis (Fig. 3) highlights the clinical utility of using the
ML model to predict the recurrence risk within 5 years following surgery,
with higher net benefit for the ML model than the competing decisions,
assuming that all patients or no patient will recur, for all threshold prob-
abilities between 10% and 50%. For a threshold probability of 30%, the ML
model achieved a net benefit of 0.10, which means that 10 additional
recurrences for every 100 patients would have been identified, without
increasing the number of false positive predictions.

Individual prediction and stratification into risk groups
Each individual prediction was displayed using SHAP values, with char-
acteristics that increase the risk of recurrence in red and protective factors in
blue. An example is given in Fig. 4a, in which the patient has a 5-year
recurrence risk of 63%(comparedwith anaverage risk of 20% in the training
population). This increased risk is explained by the clear cell histological
subtype, theFuhrmangrade 4, thepresence of anecrotic component and the

large tumor size. The young age of the patient reduces this risk. Patients
assigned to the test cohortwere stratified into four risk groups (Fig. 4b) using
thresholds determined from the train cohort, achieving an iAUC of 0.79
[IC95% 0.74–0.83]. The threshold for the very low-risk group was set to
include patients with a recurrence risk within 5 years lower than 10%. The
resulting group represents 19% of the population with an actual 5-year
recurrence rate lower than2%andnodeathobservedwithin this time frame.
The threshold for low and medium-risk patients was set to obtain recur-
rence riskswithin 5 years between 10%and 22% and between 22%and 41%,
respectively. This represents 43% of the population with an actual 5-year
DFS of 83% for the low-risk group and 22% of the population with a DFS of
54% for themedium-risk group. Finally, the last group isolates patients with
a recurrence risk superior to 41% within 5 years resulting in 17% of the
population having an actual 5-year DFS of 49%.

Comparison of predictive performance
The performance of the ML model was compared with conventional risk
scores on the test dataset (Table 3). The UISS, SSIGN, GRANT and Lei-
bovitch risk scores could be calculated for 882 (78%), 946 (84%), 1008 (89%)
and 578 (51%) patients, respectively, due to incomplete data. The machine
learning model outperformed the GRANT (p < 0.001), SSIGN (p = 0.01),
and UISS (p < 0.001) risk scores. Additionally, it was available for twice as
many patients as the Leibovich-2018.

Discussion
According to the literature, 20–50%7 of patients with localized or
locally advanced kidney cancer will develop recurrence after surgery.
Accurate and routinely usable predictive models of this risk are,
therefore essential to advise patients and set up follow-up or propose
adjuvant treatment.We have developed a predictivemodel of DFS after
surgery in a multicenter NCI-HAS co-labelled cohort of patients with
localized or locally advanced kidney cancer. We used clinical, biolo-
gical, and pathological data available in routine practice.

The variables that were found to be of utmost importance in our
predictive model are consistent with known prognostic factors and

Fig. 1 | Kaplan–Meier estimates of disease-free
survival stratified by train and test datasets. DFS
curve of the train cohort (in blue) and of the test
cohort (in yellow) were similar (p = 0.67).

https://doi.org/10.1038/s41698-024-00532-x Article

npj Precision Oncology |            (2024) 8:45 3



have been used in several prognostic models. Indeed, the tumor, node,
and metastasis (TNM)14 classification has been one of the most used
prognostic factors for years. The same applies to Fuhrman grade15 and
histological subtype, which are recommended by the EAU
guidelines4. Several studies have shown that patients with ccRCC have
a worse prognosis than those with papillary and chromophobe
RCC16,17. Performance status is recognized as an important predictor
of clinical outcomes and is a common inclusion criterion in clinical
trials. Finally, a meta-analysis including almost 15,000 patients
showed a 2-to-3-fold higher risk of recurrence, metastatic progres-
sion, and cancer-related death in patients with vascular emboli on
pathology18.

The association of inflammatory markers with poor prognosis has
been demonstrated in several cancers19 and the neutrophil-to-lymphocyte
ratio (NLR) is often used as a prognostic biomarker20. In kidney cancer, its
predictive value has been evaluated several times21–23.

The UISS24, developed on a retrospective cohort of 661 patients,
classifies patients with localized kidney cancer into 3 risk groups based
on Fuhrman grade, ECOG score and pT stage. Its predictive value is
moderate with a c-index ranging between 0.56 and 0.72 in different
external validation studies25–27. The SSIGN system, which integrates
stage, tumor size, Fuhrman grade and the presence of a necrotic com-
ponent, predicts cancer-specific survival (CSS) in patients with ccRCC,
with a c-index of 0.84 in the initial cohort. However, the accuracy is

somewhat lower in different external validation studies, with c-indexes
ranging between 0.63 and 0.7826. Leibovich et al. developed three dif-
ferent models depending on the histological type of the patient (clear
cell, papillary or chromophobe). They used a CoxPH model on a
monocentric cohort, with c-indexes for DFS and CSS of 0.83 and 0.86,
respectively. Once again, the performance seems to be slightly lower in
external validation studies (c index ranging from 0.73 to 0.8125,28).
Finally, the GRANT score has been recently published. It includes
Fuhrman grade, age, stage, and lymph node involvement, classifying
patients into two risk groups. Its external validation revealed a low
concordance score of 0.5929.

As the predictive performance of these models appears to be
moderate, a few articles have suggested using machine learning to
predict recurrence with greater accuracy. Therefore, Buyn et al. 30

developed a model to predict recurrence-free survival (RFS) and CSS in
a cohort of 2139 ccRCC patients. The best results were obtained with a
DeepSurv model. Meanwhile, Kim et al. 31 described a high accuracy in
predicting recurrence using a Naive Bayes model in a cohort of 2814
patients. Nevertheless, the methodology used to develop and validate
these models is poorly described and no individual predictions are
presented in these articles.

More recently, Khene et al. 25 published a model based on a cohort
of 4067 patients randomly assigned to either a training or a test group.
They tested three machine learning algorithms and found that the

Fig. 2 | Permutation-based feature importance of
the developed ML model. ECOG Eastern Coop-
erative Oncology Group performance status, NLR
Neutrophils to Lymphocytes Ratio; ASA American
Society of Anesthesiologists score; NSS Nephron-
Sparing Surgery.
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Random Survival Forests model achieved the highest c-index (0.79).
However, the paper had somemethodological limitations and statistical
biases. It lacked external center validation, did not investigate risk group
stratification, had unclear handling of missing data, and did not address
the applicability of usual risk scores in cases of incomplete observations.
Patients included in this study were also enrolled in the UroCCR
database, which may lead to minimal patient overlap between the two
studies. However, considering that the UroCCR database comprises
over 16,500 patients from 44 different centers and that the methodol-
ogies of our two studies differ, the cohorts and findings of our studies are
distinct. This contributes new evidence to the prediction of recurrence
in localized or locally advanced kidney cancer.

Furthermore, Gui et al. 32 published a multimodal model that
combines genomic and pathomic with clinical features to predict the
recurrence-free interval after surgery in a cohort of patients with
ccRCC, using a nomogram. Nevertheless, there are several limitations,
beginning with data obtained from a retrospective review of clinical
files, in contrast to our data obtained from a real-world database col-
lected prospectively. Clinical data are also selected a priori and based
on the outdated Leibovich 2003 score33, which was revised in 2018.
Additionally, the utilization of pathomics and genomics remains in the
realm of research. These technologies are indeed prohibitively
expensive and not readily available for routine clinical use. The authors
themselves acknowledge that the associated tasks are too time-
consuming for large-scale clinical application.

Recently, results from theKeynote 564 trial34 were reported, showing
for the first time a benefit of adjuvant immunotherapy onDFS in patients
who underwent surgical management for localized kidney cancer. How-
ever, with a median follow-up of 30 months, approximately 60% of
patients in the placebo group remained disease free, while about 19% of
patients in the experimental group experienced grade 3–5 adverse events.
Therefore, it is essential to identify the right candidates for such treatment,
specifically patientswhose risk of recurrence justifies theuse of a drugwith
potentially significant and long-lasting side effects. Furthermore, other
phase III adjuvant trials have failed to demonstrate any post-surgery
benefits35,36, and the selection of patients deemed high risk is a matter of
controversy. Patients with relatively low recurrence risk may have been
included, potentially masking the improvements in clinical outcomes
offered by adjuvant therapy. Utilizing ML algorithms could enhance
patient screening and the selection of patient profiles that would derive
greater benefits from adjuvant treatment.

Our model provides individual DFS prediction following surgery
for localized RCCwith a high degree of accuracy. It outperformedmost

of the common prognostic scoring systems and offers the advantage of
predicting outcomes for every single patient, even with incomplete
data, in contrast to traditional scores. Displaying the SHAP values
allows to explain the prediction and the impact of each factor at the
individual patient level. Integrating this tool into the UroCCR data-
base will automatically provide physicians with the individual risk
assessment for each patient included, enabling personalized man-
agement and follow-up. The prediction algorithm will also be publicly
available on the website of the French kidney cancer research network
(www.uroccr.fr). The model variables will then have to be entered
manually.

Additionally, our model can be used to stratify patients into four dis-
tinct prognostic categories with strong discriminatory power. This allows us
to identify a groupof patientswith a very low risk of recurrence, constituting
19% of the overall cohort. In this population, a less intensive post-operative
follow-up can be considered, thus reducing medical costs and radiation
exposure.

While the strengths of our study include a large number of patients
who are representative of the population managed for localized or
locally advanced kidney cancer, and a method for external validation of
the model that allows for its generalization, it also has some limitations.
First, the study is retrospective, secondly the median follow-up time of
30 months is relatively short. We should also mention that ethnicity
distribution is not available, as research in France is strictly regulated by
the CNIL (French National Commission for Information Technology
and Civil Liberties), which prohibits any ethnic categorization. This
model is therefore probably not generalizable to African and Asian
populations, which are poorly represented in France. Finally, the data
are extracted from a multicenter database. Management and follow-up
may therefore vary from one center to another. Although most cases
were monitored, we can also question the disparity in database com-
pletion, particularly in event reporting, which could lead to a potential
bias when designing the model.

Finally, as previously mentioned, models perform differently when
validated on different cohorts. The same likely applies to our model, which
should therefore be validated on other populations and prospectively.

Fig. 3 | Decision curve. Decision curve for prediction of recurrence risk within 5
years after surgery. The green curve assumes no patient will recur. The red curve
assumes all patients will recur. The blue curve is associated with the use of machine
learning model. The graph shows the expected net benefit for a range of threshold
probabilities. The expected net benefit corresponds to the number of patients for
every 100 patients who were correctly predicted with recurrence, without increasing
the number of false positive predictions. Themachine learning model showed better
net benefit than the competing decisions for all the plausible threshold probabilities,
comprised between 10% and 50%.

Table 2 | Predictive performance of the developed ML model

Predictive metrics Train dataset (cross-
validation; n = 2241)

Test dataset (external
validation; n = 1131)

Integrated AUC (0.5, 5
years) [95% CI]

0.81 [0.77–0.84] 0.81 [0.77–0.85]

AUC (t = 0.5 yr) [95% CI] 0.85 [0.81–0.89] 0.86 [0.80–0.91]

AUC (t = 1 yr) [95% CI] 0.83 [0.79–0.87] 0.86 [0.82–0.90]

AUC (t = 2 yr) [95% CI] 0.81 [0.76–0.86] 0.81 [0.76–0.85]

AUC (t = 5 yr) [95% CI] 0.77 [0.72–0.82] 0.71 [0.61–0.80]

Integrated Brier score
(0.5, 5 years) [95% CI]

0.11 [0.09–0.12] 0.11 [0.10–0.13]

Brier score (t = 0.5 yr)
[95% CI]

0.04 [0.03–0.05] 0.04 [0.03–0.05]

Brier score (t = 1 yr)
[95% CI]

0.07 [0.05–0.08] 0.06 [0.05–0.07]

Brier score (t = 2 yr)
[95% CI]

0.09 [0.07–0.10] 0.10 [0.08–0.12]

Brier score (t = 5 yr)
[95% CI]

0.16 [0.14–0.18] 0.18 [0.14–0.22]
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Our study suggests that machine learning applied to real-world evi-
dence dataset from patients undergoing surgery for localized or locally
advanced kidney cancer can provide a more accurate individual prediction
of DFS compared to conventional prognostic scores. This has the potential
to enhance candidate selection for adjuvant therapy and identify patients
who would benefit from less intensive surveillance.

Methods
Study population
From the French research network on kidney cancer database UroCCR
(NCT 03293563), which has been labelled by the French National Cancer

Institute (NCI) and the FrenchHighAuthority ofHealth (HAS),we included
all patientswhounderwent surgerybetweenMay2000and January2020 for a
localized or locally advanced renal cell carcinoma (pTany, Nany, M0).
Patients with hereditary RCC, non-primary renal tumors, benign lesions,
concomitant malignant disease or metastases and patients without any news
after surgery or insufficient datawere excluded. The surgical procedure could
have beenpartial or radical nephrectomies, performed either via laparoscopic
or open approach in one of the 23 participating tertiary centers. To utilize
biological data, we chose to exclude patients with pathologies that could
modify blood tests (hemopathies, chronic inflammatory diseases) (Supple-
mentaryFig. 1).All datawere collectedprospectively in theUroCCRdatabase
after obtaining written consent. It was approved by the French Advisory

Fig. 4 | Interpretability tools. a SHAP value. Indi-
vidual risk of recurrence within five years after sur-
gery explained using SHAP values for a patient. The
average estimated risk in the train population (base
value) is 20%. Individual risk prediction for the
patient is higher, at 63%, with features in red that
increase the patient’s risk of recurrence and features
in blue that decrease it. b Risk groups' stratification.
Actual disease-free survival in the test cohort (n =
1131) according to the stratified risk score. 211
(18.7%) were classified as very low risk, 484 (42.8%)
patients at low risk, 245 (21.7%) patients at medium
risk and 191 (16.9%) patients at high risk of recur-
rence within 5 years following the surgery. The black
curve represents the predicted survival curve for the
patient in (a).

https://doi.org/10.1038/s41698-024-00532-x Article

npj Precision Oncology |            (2024) 8:45 6



Committeeon theProcessingofHealthResearch Informationand theFrench
Data ProtectionAgency, and it complieswith all ethical regulations including
the Declaration of Helsinki.

Study objectives
The primary objective was to predict individual disease-free survival (DFS)
based on baseline multimodal data. The secondary objective was to stratify
patients into risk groups to identify a population with very low risk and a
population at high risk of recurrence within 5 years following surgery.

Predictors
We extracted more than 200 demographic and clinical variables, including
sex, age at surgery,American Society ofAnesthesiologists (ASA) score, body
mass index (BMI), Eastern Cooperative Oncology Group performance
status (ECOG PS), symptoms at diagnosis, chronic kidney disease (CKD)
score and time from diagnosis to surgery. Biological data included hemo-
globin, thrombocytes, leucocytes, polymorphonuclear neutrophils (PMN),
lymphocytes and serum creatinine level. Preoperative tumor characteristics

encompassed size on contrast-enhanced imaging andmultifocal or bilateral
status. Surgical data collected comprised duration, nephrectomy type
(partial vs. total), approach (laparoscopic vs. open), blood loss, presence of
lymph node dissection or adrenalectomy as well as intra and postoperative
complications.

Finally, we examined pathological findings including tumor size and
stage, Fuhrman grade, histological subtype, surgical margins, and the pre-
sence of necrosis or microvascular invasion.

Follow-up and outcome
Post-operative follow-up was conducted according to common practices of
each center, typically aligning with the recommendations of the French
Society of Urology37, including visits at post-operativemonth 1–3 and every
6 months for 3 years, followed by annual visits. Radiological follow-up
involved a contrast-enhanced examination of the abdomen and pelvis (CT
scan or MRI) and a chest CT scan.

The primary outcome was DFS, defined as the time elapsed between
surgery and the diagnosis of local recurrence, metastatic progression, or
death from any cause, whichever occurred first.

Table 3 | Comparison of the predictive performance of the models in terms of calibration and discrimination

Risk score N (%) Integrated AUC (0.5, 5 years) [95% CI] Brier score (5 years) [95% CI]

Prognostic score ML model p-value Prognostic score ML model p-value

ML model 1131 (100) – 0.81 [0.77, 0.85] – – 0.18 [0.14–0.22] –

GRANT 1008 (89) 0.65 [0.61–0.70] 0.82 [0.77, 0.86] <0.01 0.20 [0.15–0.26] 0.13 [0.11–0.16] <0.01

SSIGN 946 (84) 0.78 [0.73–0.83] 0.81 [0.76, 0.85] 0.01 ND ND ND

UISS 882 (78) 0.70 [0.65–0.75] 0.82 [0.77–0.86] <0.01 0.15 [0.13–0.18] 0.13 [0.10–0.16] < 0.01

Leibovich 2018 578 (51) 0.76 [0.67–0.83] 0.78 [0.70–0.85] 0.17 0.13 [0.10–0.17] 0.13 [0.09–0.16] 0.20

Calibration for SSIGN could not be computed on DFS outcome as estimated risks are only provided for cancer-specific survival (CSS).

Fig. 5 |Workflow formachine learningmodel (ML) development and evaluation.
Two thousand two hundred and forty-one patients from 10 centers were randomly
assigned to the training cohort. Missing data were multiply imputed and several

time-to-event models were trained. The best trained model was then externally
validated on the testing cohort of 1131 patients from 13 different centers and
compared with existing risk scores.
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Hold-out validation
Participating sites were randomly assigned to either the training or testing
cohort, ensuring an approximate 2:1 ratio of patients and similar distribu-
tions of DFS. The model and risk groups thresholds were optimized on the
training cohort and then applied to the testing cohort to evaluate predictive
performance. The workflow for machine learning model development and
evaluation is illustrated in Fig. 5.

Model development
Categorical features with unbalanced modalities were recoded. Cate-
gorical features were then one-hot encoded while numerical features
were normalized. Missing data were multiply imputed (3 imputations)
using the MICE (Multiple Imputation using 5 Chained Equations)
algorithm38,39 and gradient-boosted decision trees. Several time-to-

event models were trained on the training data set including Cox
Proportional Hazards models with LASSO regularization40, random
survival forests and gradient-boosted survival trees. Hyperparameters
of each algorithm (Table 4) were tuned using repeated cross-validation
procedure (3 × 10 folds) and Bayesian optimization of the integrated
AUC (iAUC) over the time window (6, 60 months after surgery). Table
4 lists the explored spaces of each hyperparameter. The discriminative
power of the machine learning (ML) models was assessed using iAUC,
which represents the averaged cumulative-dynamic time-dependent
area under the ROC curve (AUC) over the studied time interval. The
iAUC values range from 0 to 1, with 0.5 for a random prediction and 1
for a perfect discrimination ability. Blanche et al. 41 argued that the
AUC should be preferred to the C-index42 because the former compares
the ranks of the predictions with the binary event status while the latter
compares the ranks of the predictions with the ranks of the actual event
status.

Model evaluation
The ML model with the best cross-validated predictive performance was
chosen and evaluated on the test dataset for external validation.

The model was assessed in terms of both discrimination and
calibration using the time-dependent AUC and the time-dependent
Brier score. The Brier score is used to measure the model calibration,
ranging from zero to one with zero being the best score and one the
worst. The metrics were estimated using Kaplan–Meier-based inverse
probability censoring weighting (IPCW) to consider censoring. 95%
confidence intervals were calculated, using Nadeau and Bengio
correction43 for the cross-validation stage on the training dataset, and
percentile bootstrapping for the external validation on the test
dataset.

The clinical utility of the model was assessed using a decision
curve based on the estimated risks of recurrence within five years
following surgery. The permutation-based importance of each feature

Table 4 | Models’ parameters space for Bayesian optimization

Model Parameter Parameters space Optimal value

Min value Max
value

COXPH Alpha 0.000001 0.1 0.004852664490837273

L1 ratio 0.01 1 0.2422240393513387

Random
Forest

Number of
estimators

50 300 109

Min sam-
ples split

20 100 24

Gradient
Boosting

Number of
estimators

10 100 100

Learning rate 0.01 1 0.342195080906687

Min sam-
ples split

5 40 40

Fig. 6 | Negative predictive value and positive predictive value at 5 years on the training cohort.Determination of the stratification thresholds on the training cohort. The
left-side Figure shows the false omission rate (equivalent to 1—Negative Predictive Value) at five years according to various decision thresholds. The right-side Figure shows
the positive predictive value at five years according to various decision thresholds. The machine learning model provides a relapse risk for all horizon times t that have been
seen in the training dataset. For our use case, we decided to set t to 5 years as it is the standard horizon clinicians would consider building surveillance plan for their patients.
Our primary goal is to find a significant group of patients with a very low risk of recurrence at 5 years. To do so, we decided to plot the false omission rate as a function of the
cumulative frequency of patients in the very low-risk group by varying the risk threshold. We define our very low risk threshold such as there is a significant increase in the
false omission rate. We can then use a similar strategy with the positive predictive value (PPV) to determine a high-risk group of patients. We look for PPV “plateau” to
determine the risk thresholds. This method is reused to differentiate medium and low-risk groups.
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in the wholeMLmodel was evaluated by computing the decrease in the
optimization metric when the values of a given feature are randomly
shuffled. SHAP (SHapley Additive exPlanations) values44 were then
computed to explain each patient’s predicted probability of recurrence
within the 5 years following surgery.

Stratification into risk groups
Patients were stratified into four risk groups of recurrence within five years
following surgery: very low, low, medium, and high-risk groups. The
thresholds were notably set to obtain a large proportion of patients with a
very low actual relapse rate (very low-risk group) and a significant pro-
portion of patients with a high actual relapse rate (high-risk group). These
stratification thresholds were determined using the training dataset and
then applied to patients in the test dataset (Fig. 6). The DFS curves for the
four risk groups were estimated using the Kaplan–Meier method and
compared using log-rank tests.

Comparison with usual risk scores
TheMLmodel was compared to four prognostic scores commonly used
in guidelines and clinical trials: the UISS (University of California at Los
Angeles Integrated Staging System)24, the SSIGN (Stage, Size, Grade,
and Necrosis)45, the GRANT (GRade, Age, Nodes and Tumor)46 and,
the Leibovich47 scores. These prognostic scores could not be computed
for the entire testing cohort due to incomplete observations. Each
pairwise comparison was conducted on the subset of patients for whom
the prognostic score was available, with one-sided p-values estimated
using bootstrapping.

This model has been developed in accordance with the SPIRIT-AI
guidelines48, and its integration does not require any specific requirements.
The data and algorithm can be made available upon request.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Requests for specific data will be considered by the UroCCR scientific
committee immediately following the publication of the manuscript for
researchers who provide a methodologically sound proposal. Data include
access to the deidentified participant data collected during the study. The
request should be sent to uroccr@chu-bordeaux.fr. To gain access, data
requestors will sign an NDA.

Code availability
Requests for specific information regarding code or algorithm construction
will be provided on demand by theUroCCR team. Table 4 lists the explored
spaces of each hyperparameter of the algorithm. The algorithm will be
publicly available on the UroCCR website (www.uroccr.fr).
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