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Decoding gene regulatory circuitry
underlying TNBC chemoresistance
reveals biomarkers for therapy response
and therapeutic targets

Check for updates

Ryan Lusby1, Ziyi Zhang1, Arun Mahesh1,2 & Vijay K. Tiwari 1,2,3,4,5

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by
extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor
clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC
patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched
longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell
subpopulations intricately associated with chemoresistance and the signature genes defining these
populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the
expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and
associated transcription factor networks across TNBCsubtypes. Furthermore, genetic screens reveal
that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss
increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and
transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and
improve the treatment of patients with a high risk of developing resistance.

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease
defined by the absence of oestrogen receptor (ER) and progesterone receptor
(PR) expression and human epidermal growth factor receptor 2 (HER2)
overexpression1. It is associated with a poorer clinical outcome due to a lack
of early prognostic techniques, high incidences of relapse, metastasis and a
lack of targeted therapeutics2. In the neoadjuvant setting, chemotherapy is
the standard treatment, which includes a combination of taxanes and
anthracyclines. However, ~30–50% of patients develop resistance, and their
prognosis worsens to 13–15 months survival3,4. Despite TNBC being
grouped as a single disease, clinical, histological, and molecular profiling
have highlighted its intrinsic heterogeneity5. This heterogeneity is further
highlighted with the identification of unique TNBC subtypes (TNBC type-4
classification) that include: basal-like 1 (BL1), basal-like 2 (BL2), mesench-
ymal (M) and luminal androgen receptor (LAR)6. Each subtype displays
unique transcriptional patterns, biology and chemotherapy response7,8.

The distal gene regulatory landscape plays a critical role in driving
disease-associated altered cell-fates9. A super-enhancer (SE) is a cluster of
enhancers initially found to be essential in determining cell identity during
differentiation but have progressively been implicated in disease initiation
and progression, including tumorigenesis10–12. In breast cancer, it has been
demonstrated that enhancer and SE transcription can reveal insights into
subtype-specific gene expression programmes13. SEs exhibit high tran-
scription factor density, especially for core regulatory circuitry (CRC)
transcription factors (TFs) and drive the expression of key genes that
strongly influence cellular identity and function11,14,15. These CRC TFs have
been shown to self-regulate, where they inwardly bind to SE regions and
outwardly regulate SE-associated genes with the CRC, forming a forward-
feeding loop.Accordingly, disrupting SE structure or inhibiting SE targeting
factors has shown promising results as a potential therapeutic avenue for
certain cancers16,17. Surprisingly, however, the contribution of SEs and
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associated CRC landscapes in regulating the gene regulatory programmes
underlying TNBC aggressiveness remains unknown. In particular, it
remains to be knownwhether TNBC subtype-specific super-enhancers and
CRCs exist to confer different degrees of chemoresistance in these subtypes.

In this study, we aimed to address these longstanding questions by
characterising the epigenomic, transcriptomic and TF landscape underlying
chemoresistance in TNBC patients. By profiling matched longitudinal
single-cell RNA-sequencing data (scRNA-seq) of chemoresponsive and
chemoresistant TNBCpatients, we identified unique cellular subpopulations
associated with chemoresistance and revealed genes that define these sub-
populations.Notably, a subset of these signaturegenesoutperformedexisting
gene panels in classifying pathologic complete response versus persistent
residual disease against pre-operative neoadjuvant chemotherapy in TNBC.
Furthermore, by analysing data from H3K27ac Chromatin immunopreci-
pitation followed by sequencing (ChIP-seq) of TNBC subtype patients, we
define the SE architecture and CRCs associated with the gene expression
programme underlying chemoresistance and reveal several TFs whose
depletion can improve the efficacy of chemotherapy across TNBC subtypes.

Results
A subpopulation-specific gene expression signature associates
with aggressiveness in chemoresistant TNBC patients
Webegan by outlining a stepwise plan to reveal the gene regulatory circuitry
underlying chemoresistance in TNBC patients (Fig. 1a). Due to the high
degree of intra-tumour heterogeneity associated with TNBC, scRNA-seq
provides a higher level of resolution and enables the identification of minor
changes in gene expression profiles within tumour cells, being embedded
with multiple cell types in a varying proportion which could be lost in bulk
RNA-seq analysis. To uncover the underlying mechanisms of chemoresis-
tance in TNBC, we conducted an in-depth analysis of a scRNA-seq dataset
initially published by Kim et al.18 (SRA: SRP114962). This dataset consisted
of 6862 cells sampled from both pre- and post-treatment time points of
three patients classified as chemosensitive and four patients classified as
chemoresistant to neoadjuvant chemotherapy (NAC) (SupplementaryData
1). It is noteworthy that this dataset exclusively comprised tumour cells, as
they were pre-selected using fluorescence-activated cell sorting (FACS)
based on aneuploid distributions, before undergoing sequencing (Supple-
mentary Data 1). To classify the tumours as sensitive or resistant in the
scRNA analysis, Kim et al.18 had performed deep-exome sequencing on 20
patients in which they identified 10 patients where NAC led to clonal
extinction (sensitive) and 10 patients where clones persisted (resistant) after
treatment. From these 20, Kim et al. selected 7 patients (3 sensitive and 4
resistant) for single-cell RNA sequencing18. We hypothesised that by pro-
filing TNBC chemoresistant patient data at the single-cell level, we could
identify critical markers driving chemotherapy response. Furthermore,
identifying these markers could enable the prediction of chemotherapy
response in untreated patients.

As it is thought that chemoresistanceoccurs due to the clonal evolution
of pre-existing clones18,19, we focused our analysis onmarkers unique to the
pre-treatment chemoresistant patients to identify the critical transcriptional
landscape defining chemotherapy response. In the original study18, the
authors hadhighlighted that the batch effectswereminimal between patient
samples and hence we were convinced we could proceed with merging. In
the first instance, using Seurat, we performed SCtransform and scaled each
patient’s data beforemerging to ensure batch effectswereminimal across all
7 patients, next we integrated each sample and extracted the cells of the pre-
treatment samples and confirmed that batch effects wereminimal and gene
expression was not affected (Fig. 1b, Supplementary Fig. 1a–d). Clustering
analysis of pre-treatment cells revealed that chemoresistant and chemo-
sensitive patients had overlapping clusters, highlighting the lack of batch
effects identified by Kim et al., but also a distinct, separate cluster of che-
moresistant cells, highlighting a subset of cells that may play a role in
patients showing a poor response to chemotherapy (Fig. 1b). Cell annota-
tion analysis, performed by SCSA using established cell type markers from
two public databases: CellMarker and CancerSEA. database20, revealed that

chemoresistant clusters were predominately basal epithelial cells whilst
chemosensitive clusters contained luminal progenitor and luminal epithelial
cells (Supplementary Fig. 1b). Interestingly, progenitor cells are more likely
to be sensitive to anti-cancer therapies21, whilst luminal epithelial cells can
give rise to basal epithelial cells upononcogenic stress22. Furthermore,whilst
the presence of luminal epithelial cells in TNBC tumours may initially
appear surprising, it is essential to emphasise that these luminal epithelial
cells were indeed tumour cells based on their aneuploid distributions per-
formed by Kim et al. To gain an insight into the transcriptional landscape
driving chemoresistance, in pre-treatment patient samples, we applied
pseudobulk differential gene expression analysis between chemosensitive
and chemoresistance annotations. We identified distinct and statistically
significant gene expression patterns for each condition (p-value ≤ 0.05 and
logfc ≥ 1) (Fig. 1c, Supplementary Fig. 1e). Gene ontology analysis showed
enrichment of extracellular matrix remodelling and transforming growth
factor-beta (TGF-β) signalling (Fig. 1d), processes associated with EMT,
confirming the results from Kim et al. and which have previously been
implicated in TNBC chemoresistance23. Together these results highlight the
existing differential transcriptional landscape of chemoresistant and che-
mosensitive TNBC patients prior to NAC treatment.

Due to the lowpatient numbers in the scRNA-seq data, we next sought
to identify genes with a reproducible expression in a larger cohort of
patients. To address this issue, we obtained and processed bulk RNA-seq
datasets (GSE20271, GSE25055, GSE25065, GSE20194 and GSE163882)
consisting of 397 TNBC patients, pre-NAC, with known outcomes of
pathologic complete response (pCR) and residual disease (RD). To ensure
that batch effects between studies were minimal, we corrected using the
established R package SVA and the function ComBat which uses empirical
Bayes frameworks for adjusting data for batch effects24.We found that there
were very fewbatch effects beforemerging thatwere corrected to ensure that
any residual variations were addressed and did not unduly influence the
downstream analysis. (Supplementary Fig. 2a, b). To assess the reproduci-
bility of the genes in a larger patient cohortwe comparedexpression levels of
each gene between RD and pCR across 397 TNBC patients total. This
resulted in the identification of 300 marker genes which showed a sig-
nificantly higher expression across all patients with RD (Fig. 1e). By
implementing Kaplan–Meier estimator survival analysis on RNA-seq data
from the TNBC METABRIC cohort, we revealed that high average
expression of these 300 genes is associated with a significantly decreased
relapse-free survival in TNBC patients whilst using the median expression
as the cut-off point to stratify patients into high and low subgroups (Fig. 1f).
In addition, following the reduction in gene numbers due to many having
non-detectible expression in bulk RNA-seq data, Gene Ontology analysis
revealed that these genes were significantly involved in EGFR signalling
pathway (Fig. 1d), which is previously implicated in TNBC
chemoresistance25–27.

Distinct transcription factor regulons are active in pre-treatment
chemoresistant cells
Currently, the regulatory landscape driving TNBC chemoresistance is
unknown. We sought to address this by investigating potential regulatory
mechanisms that govern the expression of chemotherapy-resistant genes.
By deploying a single-cell regulatory network inference and clustering
(SCENIC)28 computational pipeline to identify regulons (TFs and their
targets) we sought to assess their activity in the chemoresistant cell popu-
lations compared to chemosensitive populations (Fig. 2a). In brief, first co-
expression modules were identified using GRNBoost. Next, the motifs
driving resistant cells were discovered using cisTarget. Finally, the regulon
activity was quantified by assessing the enrichment of the regulon target
genes using AUCell29. Through this analysis, we identified regulons with
high activity and specificity scores for both chemoresistant and chemo-
sensitive cells (Fig. 2b, c, Supplementary Data 2). Of note, the Transcription
Factor (TF) TFAP2C was identified among the top regulons based on the
AUCell score in chemoresistant cells andnot present in chemosensitive cells
(Fig. 2c, d) and has previously been implicated in EMT signalling and
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Fig. 1 | scRNA-seq analysis reveals subpopulations of cells and key genes
underlying TNBC chemoresistance. a Graphical abstract illustrating the study
workflow outlining the comprehensive workflow of our study. Created with BioR-
ender.com b UMAP projection showcasing the pre-treatment samples of chemor-
esponsive and chemoresistant patients. c Volcano plot highlighting differentially
expressed genes that are significantly upregulated or downregulated in chemore-
sistant patients, providing critical insights into potential molecular drivers of che-
moresistance. d Gene Ontology Enrichment Analysis: The Gene Ontology analysis
results elucidate the functional significance of markers identified in pre-treatment

chemoresistant and chemoresponsive patients. The analysis reveals their substantial
involvement in signalling pathways and cell migration, shedding light on the bio-
logical processes associated with these genes. e Reproducibility analysis demon-
strating that the 300 markers identified in pre-treatment chemoresistant patients
exhibit higher expression in residual disease compared to pathologic complete
response across all bulk RNA-seq datasets (Wilcoxon rank-sum test, p = 0.0017).
f Survival plot depicting the outcomes associated with the 300 genes in TNBC
patients from the METABRIC Cohort (Kaplan–Meier, p = 0.036).
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Fig. 2 | SCENIC analysis reveals potential chemoresistance gene regulons.
a SCENIC Workflow: (1) Co-expression modules between chemoresistant and
chemosensitive cells are identified using GRNBoost. (2) Regulons are then identified
using cisTarget. (3–4) The activity of regulons is quantified by assessing the
enrichment of the target genes using AUCell. b Heatmaps of Significant Top Reg-
ulators: Heatmaps display significant top regulators based on the Area Under the
Curve (AUC) score for chemosensitive and chemoresistant cohorts. The top motifs,
based on averaged binary scores are labelled. c RSS Plot of Top Regulons:

The regulon set enrichment score (RSS) plot illustrates the top regulons for che-
moresistant clusters, with the top motifs prominently highlighted. d UMAP visua-
lisation highlighting cells with AUC > 0.07 TFAP2C regulon activity. e Violin plots
demonstrating the expression levels of TFAP2C, TFAP2A, and SP1 in Resistant and
Responsive patients from scRNA-seq data, emphasising higher expression levels
that persist following treatment in chemoresistant patients (Wilcoxon rank-
sum test).
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chemoresistance in lung adenocarcinoma, but not yet in TNBC30,31. Addi-
tionally, we discovered SP1 which was shown to promote chemoresistance
and metastasis in ovarian cancer and breast cancer32. In both cases, it has
been implicated in EGFR transactivation and facilitating migration and
invasion through Smad3 and ERK/Sp1 signalling pathways32,33. Further-
more, another regulon TFAP2A has also been associated with chemore-
sistance in colorectal cancer but not yet in TNBC34. Interestingly, expression
of many of these TFs including TFAP2C, TFAP2A and SP1 were higher in
treatment naïve chemoresistance patients as compared to the chemor-
esponsive patients and these patterns persistedpost-chemotherapy (Fig. 2e).
To eliminate the possibility of results being driven by a specific patient, we
conducted a renewed SCENIC analysis, specifically opting for a per-patient
comparison (Supplementary Fig 2c). This reiterated analysis underscored
the shared activity of the identified transcription factors (TFs) across all
chemoresistant patients, distinctly absent in chemoresponsive individuals.
Furthermore, we examined the expression levels of each TF among patients
and consistently observed heightened expression in all chemoresistant
patients in comparison to their chemosensitive counterparts (Supplemen-
tary Fig. 2d). Such higher expression and activity of these TFs in resistant
patients compared to sensitive implicates these TFs among the key con-
tributors of chemoresistance in TNBC patients.

A minimalistic gene signature of 20 genes can predict
chemotherapy response in treatment naïve TNBC patients
with high accuracy
InTNBC, patients achieving a pathologic complete response toneoadjuvant
chemotherapy is a crucial predictor of a patient’s long-term outcomes and
can allow an early evaluation of the effectiveness of systemic therapy3,35. We
next wanted to investigate whether the genes identified are potentially the
critical drivers of chemoresistance in these patients by identifying a sig-
nificant gene set that could accurately stratify RD and pCR patients. By
utilising Lasso and Elastic-Net Regularised Generalised Linear Models, we
aimed to identify a significant gene set that could accurately differentiate
between pCR andRD inTNBCpatients.We derived our training dataset by
combining GSE20271 and GSE25055 datasets with 177 TNBC patients (57
pathologic complete response, 120 residual disease), and to derive the
validation dataset, we combined GSE25065 and GSE20194 datasets with
130 TNBC patients (46 pathologic complete response, 84 residual disease).
We combined these datasets to increase the training and testing cohorts to
improve the strength and validity of the proposed genemodel as previously
shown36. In brief, we built a single-fold lasso-penalisedmodel for all genes in
the training dataset, then performed 10-fold cross-validation (Supplemen-
tary Fig. 3a, b) to identify the best predictors ofRDvspCR.We then tookour
top predictors (Fig. 3a), built a newmodel and performed ROC analysis on
our validation dataset. This analysis revealed a total of 20 genes (CLCN3,
NDUFA6, PTPRJ, GDAP2, RNF19B, MKKS, TSHZ2, COL21A1, LOXL2,
SLC11A2, ESM1, CTDSPL, RAI1, EFEMP2, DTNA, EPHB3, EGFR,
HOXA1, MSH3 and PPFIA2) to have the strongest discriminatory power
between RD and pCR, training AUC = 0.90 (Fig. 3b), Validation AUC=
0.89 (Supplementary Fig. 3c).

Aswehave been focusing onTNBConly,wenext sought to explore the
role of the 20-gene model in other breast cancer subtypes. We first inves-
tigated the expression of all 20 genes in theTCGA-BRCAdataset containing
the four primary subtypes of breast cancers. In combination, the average
expression of the 20 genes showed significantly higher expression in the
Basal subtype compared to Luminal A and B breast cancer subtypes but
lower in the HER2 subtype (Supplementary Fig. 3d). We next wanted to
expand the utility of our 20 gene panel to include a prognostic capability
through testing 5-year relapse-free survival. Notably, survival analysis of all
TNBC patients from the METABRIC cohort, using median expression as
the cut-off value, revealed that in combination high expression of this gene
signature is associated with significantly reduced relapse-free survival over
five years (Fig. 3c). However, in luminal A/B and HER2 patients’, higher
expression of the gene set had no correlation with increased or reduced
survival (Supplementary Fig. 3e, f). Highlighting that higher expression of

these genes in TNBC patients only is underlying their chemoresistance
potential. Furthermore, when filtering TNBC METABRIC patients for
those only receiving NAC we found that high expression of the 20 genes is
again associated with reduced survival irrespective of the chemotherapy
regimen (Supplementary Fig 3h). Additionally, we filtered for luminal
patients receiving chemotherapy and found again that our gene signature
was not predictive in this cohort (Supplementary Fig 3e). Altogether, these
findings suggest that increased expression of these genes is specific to TNBC
in treatment naïve patients and may drive chemoresistance leading to poor
outcomes.

Whilst we had built and tested the model on two large external cohorts
wenext sought to further validate ourmodel’s predictive strengthby applying
it to the TNBC METABRIC cohort. Again, whilst not considering which
chemotherapy regime was applied and using patients’ relapse-free status as a
determinationof pCRandRD,ourmodel successfully predicted89.4%ofRD
and 82.9% of pCR patients correctly (Fig. 3e). This outcome successfully
highlights, not only the predictive strength of our model but also highlights
thathigh expressionof the20genes cangive insights intopatients relapse-free
survival. Unlike other breast cancer subtypes, there are currently no tests in
clinical use for TNBC patients to accurately predict NAC response and
facilitate their clinical management37. While several predictive panels have
been published for TNBC, none have achieved clinical utility due to small
sample sizes, lack of validation data and inability to achieve the necessary
predictive strength in oestrogen and HER2 positive tumours7,36,38–40.
Addressing this critical unmet need, we show that our 20 genes hold a high
predictive power in determining RD or pCR (with an area under the curve
(AUC) of 0.90) (Fig. 3b). Notably, our model utilising this minimal 20 gene
set outperformed all previous models in predicting chemotherapy response
inTNBC36,40 (Fig. 3f).The specific combinationof these20geneswas essential
for its high performance as further removal of genes (top 5) significantly
reduced the accuracy (AUC: 0.827) (Supplementary Fig. 3g).Additionally, by
applying 20 cross-validation iterations we found that the predictive strength
remained the same (Supplementary Fig. 3h).

Oneof the key factors that result inTNBCbeing themost aggressive
breast cancer subtype is tumourheterogeneity.Due to this, recent studies
have emerged that have further classified TNBC into four primary
subtypes, with each having distinct transcriptional programmes and
differing responses to chemotherapy7,8. To address this and explore the
role and potential of our 20 gene panel in classifying chemotherapy
response in scRNA-seq data and within each TNBC subtype we per-
formed pseudobulk RNA-seq analysis, on a dataset containing 6 TNBC
patients41. We successfully classified each patient into TNBC subtypes;
basal-like (BL1 and BL2), luminal androgen receptor (LAR) and
mesenchymal (M) using TNBCtype6 (Supplementary Fig. 4a, b). To
broaden our model’s applicable strength, we applied our prediction
model to the pseudobulk data, resulting in the prediction of three
patients as having a potential for developingRD (Supplementary Fig. 4c,
d).Using theRpackage “UCell”42wemeasured the average expressionof
our 20 genes across each subtype and prediction and found that our
signaturewashigher inpatientswithBL1andLARsubtypes andpatients
predicted to have RD (Supplementary Fig. 4e, f). Furthermore, we
employedUCell scoringon theoriginalKimetal. dataset, revealing that a
predominant proportion of cells were identified within the chemore-
sistant cluster (Supplementary Fig. 4g). This outcome signifies the effi-
cacy of our signature in accurately capturing and discerning cells
associated with chemoresistance within the context of scRNA-seq
(Supplementary Fig. 4g). Together these findings underscore the pre-
cision and success of our selected gene set in recognising molecular
patterns linked to chemoresistant phenotypes at the single-cell level.
These results suggest that higher expression of a distinct set of genes,
originating from specific cellular subpopulations, potentially drives
chemoresistance in certain TNBC patients. Overall, our findings
revealed a minimalistic gene signature of 20 genes that can predict
chemotherapy response in treatment naïve TNBC patients with high
accuracy and hold strong potential for prognosis in these patients.
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A distinct epigenetic landscape defines chemoresistance status
Epigenomic dysregulation is known to play a critical role in disease pro-
gression in multiple cancers, including TNBC. The acetylation of Lysine 27
at Histone H3 (H3K27ac) is a mark of active proximal and distal regulatory
elements including enhancers and known to govern the gene expression
programmes associatedwith cell identity. Therefore, we analysedChIP-seq)

data forH3K27ac for eight primaryTNBCpatients aswell as corresponding
transcriptome (RNA-seq) datasets (ENA: accession number PRJEB33558).
First, by applying our therapy resistance prediction model to the RNA-seq
data fromeach patient, wewere able to classify each as having a potential for
developing RD while normal human mammary epithelial cells (HMEC) as
pCR (Fig. 4a). While patient outcomes were unknown for this dataset, we

Fig. 3 | A 20-gene model shows high accuracy in predicting chemotherapy
response in TNBC patients. a Ranked importance of each gene: Prioritisation of
individual gene contributions in predicting response to neoadjuvant chemotherapy
(RD) in TNBC patients. b ROC curve for model accuracy: receiver operating
characteristic (ROC) curve demonstrating the predictive accuracy of our 20-gene
model for chemotherapy response in TNBC patients. c Survival analysis in
METABRIC cohort: Kaplan–Meier survival plot illustrating the survival outcomes
of TNBC patients from the METABRIC Cohort based on the expression pattern of
the 20 genes (Log-rank test, p = 0.0033). d Survival analysis in NAC-treated TNBC

patients: Kaplan–Meier survival plot revealing the survival outcomes of TNBC
patients from the METABRIC cohort who exclusively received neoadjuvant che-
motherapy (NAC) based on the expression of the 20 genes (Log-rank test, p = 0.016).
e Prediction of relapse-free survival: predictive assessment of relapse-free survival
for each TNBC patient in theMETABRIC cohort using our 20-gene model. fModel
performance comparison: ROC curve depicting the comparative performance of our
20-gene model against previously published prediction models for TNBC che-
motherapy response.
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Fig. 4 | A unique chromatin profile delineates the status of chemoresistance.
a Chemoresistance prediction: Prediction results illustrating the chemoresistance
status of 7 TNBC patients and cell lines representing each TNBC subtype.
b Correlation of H3K27ac peaks: Correlation analysis of H3K27ac peak profiles
between TNBC patients with residual disease (RD) and humanmammary epithelial
cells (HMEC) classified as pathologic complete response (pCR). c Identification of
RD-specific H3K27ac peaks: Identification of H3K27ac peaks specific to residual
disease (RD) compared to pathologic complete response (pCR). dGenomic regions

associated with chemoresistant genes: Utilising genomic locations of chemoresistant
genes identified in pre-treatment single-cell RNA sequencing data to pinpoint
gained regions in each TNBC subtype (RD) that are absent in HMEC (pCR). e Key
motifs at chemoresistance regions: Identification of TFAP2C and SP1 as key motifs
at chemoresistance-associated genomic regions. f Comparative Genomic Regions:
Comparison of genomic regions gained in chemoresistant BL1 cell lineMDAMB468
and lost in chemosensitive BL1 cell line HCC38.
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conducted predictions confidently due to extensive validation in the large
cohort where themodel originated (Fig. 3b and f, Supplementary Fig. 3a–f),
and additional validation in the well-documented METABRIC TNBC
cohort (Fig. 3e). We next classified each patient sample into four TNBC
subtypes, basal-like (BL1 and BL2), luminal androgen receptor (LAR) and
mesenchymal (M) using TNBCtype6. Using a similar approach, we also
classified TNBC cancer cell lines into TNBC subtypes (Fig. 4a). Further-
more, given the tumour-cell exclusive origin of our signature, we also
attempted to classify these cell lines as pCR and RD and were successful
(Fig. 4a).

We next investigated how the distribution of H3K27ac changes across
these subtypes and between pCR and RD. To accomplish this, we assessed
the overlap of all H3K27ac peaks within each TNBC subtype, pinpointing
regions exhibiting heightened enrichment in RD versus pCR (Fig. 4b, c).
Subsequently, for characterising chemoresistance genes using subtype-
specific H3K27ac signals, we examined alterations in H3K27ac marks
within the regions associatedwith chemoresistant genes across each subtype
and pCR samples. Differential enrichment of peaks between pCR and RD
was called using the R package “Diffbind”43, with the criteria of a minimum
of 50% overlap of peaks. This analysis further showed that there was a
significant gain of H3K27ac enrichment at chemoresistance genes across
each TNBC sample (RD) and a significant loss in pCR (Fig. 4d). However,
whilst there was a noticeable difference in the intensity of H3K27ac activity
in these gene regions when compared toHMEC, suggesting that these gene
regions are enriched in TNBC subtypes, this analysis was not able to fully
discriminate regions that gained sites (with positive fold change) and lost
sites (negative fold change)when comparingbetweenTNBCsamples.Aswe
had used these criteria to call these peaks (differential enrichment), it is
possible that some regions still had sufficient enrichment of H3K27ac that
shows up in the heat map even though it is reduced in comparison to the
other condition.

To gain insights into the regulatory machinery, we next sought to
identify binding sites of specific transcription factors at chemoresistance
geneswith acquiredH3K27acmarks in RDpatients.Motif analysis revealed
again a strong enrichment for TFAP2C and SP1 motifs among others
(Supplementary Data 3), with strongest regulon activity in chemoresistant
patients (Fig. 2b–e), clearly implying them as potent drivers of the che-
moresistance state (Fig. 4e). Furthermore, chemoresistance genes that
gained H3K27ac in BL1 RD patient data showed a stronger overlap with
similar genes in the RD cell line compared to the pCR (Fig. 4f), showing a
conserved nature of the contribution of these genes and their upstream
regulation in chemoresistance across systems.

Unique super-enhancers are associated with TNBC-subtype-
specific transcriptional programmes underlying
chemoresistance
Although we demonstrated significant H3K27ac signals for many che-
moresistant genes in TNBC patients predicted to have RD, this distinc-
tion was not highly discriminative (Fig. 4d). Consequently, our attention
shifted towards analysing super-enhancers (SEs), allowing us to char-
acterise subtype-specific features. SEs have increasingly been associated
with disease initiation and progression in various contexts, including
cancer15,44,45. This is particularly interesting as no studies have yet
investigated their contribution to TNBC chemoresistance. We, therefore,
subjected our genome-wide H3K27ac profiles for TNBC patients to the
identification of SE elements. SEs were mapped and quantified by Rank
Ordering of Super-Enhancers (ROSE) software. In summary, ROSE
analysis was performed with default parameters of 12.5 kb stitching
distance, and TSS exclusion size set to 0, with the genome set to hg3846.
SE-associated genes were identified as the “nearest gene” output from
ROSE. Samples were merged based on their subtyping, to identify
common subtype-specific SE regions (Fig. 5a), resulting in an average of
1279 SEs identified per tumour sample (Fig. 5b). The genome-wide
distribution of H3K27ac SE peaks showed its distribution mostly at
intron (59%) and intergenic (33%) locations (Supplementary Fig. 5a).

In thefirst instanceTNBCSEregionswere comparedwithHMECpCR
samples to identify TNBC-specific SE regions (Supplementary Fig. 5b).
Further analysis of these data identified 2692 unique and 276 overlapping
SEs between each TNBC subtype (Fig. 5c, d). We hypothesised that these
subtype-specific SEs govern the expression of a selected set of our marker
resistance genes to drive TNBC chemoresistance. Interestingly, of our 300
marker genes, 158were in close proximity to thediscovered subtype-specific
SEs (Fig. 5e). Next, we calculated the correlation of expression of SE-
associated genes across all patients and performed unsupervised hier-
archical clustering to identify SE-associated genes that show subtype-
specific expression (Fig. 5f). This analysis identified four prominent clusters
with unique characteristics of each subtype, and which showed no expres-
sion in HMEC cells. Interestingly, further Gene Ontology analysis showed
enrichment of specific pathways in each of these subtype-specific clusters.
For example, cluster 1, consisting of BL1-specific SEs, was enriched with
EMT-related signatures; cluster 2, consisting of M-specific SEs, was asso-
ciatedwithApoptosis related signatures; cluster 3, consisting of BL2-specific
SEs, was enriched for IL-6/JAK/STAT3 signalling signatures while cluster 4,
consisting of LAR specific SEs, showed PI3K-Akt related signatures (Fig. 5f,
SupplementaryFig. 5c).Ofnote,EGFRandRAI1, twomarkerswe identified
to have a high discriminatory effect in chemoresistant patients, were located
in close proximity to a distinct set of discovered SEs in BL1 and
BL2 subtypes. Furthermore, our analysis showed that the subtypes LAR and
BL1 exhibit the highest number of chemoresistant SEs (Fig. 5f). These
findings are in line with previous research, where LAR followed by the
BL1 subtype showed theworst response to chemotherapy47. To confirm that
these SE regions were communicating with the predicted target chemore-
sistance genes we processed existing Hi-C datasets from TNBC patients48.
By searching the SE regions output by ROSE, we indeed confirmed that
many SEs of interest are looping in close physical proximity to their pre-
dicted target genes, including EGFR and RAI1 (Supplementary Fig. 5d).
Altogether, these observations suggest that the super-enhancer landscape
plays a key role in the evolution of chemoresistance by governing the
expression of key driver genes/pathways in a TNBC subtype-specific
manner.

Distinct transcription factor core regulatory circuitries operate at
TNBC subtype-specific super-enhancers associated with
chemoresistance
Super Enhancers recruit a high density of cell type-specific master TFs to
drive cell-state-specific gene expression profiles49. Furthermore, the
expression of TFs that bind SEs is often regulated by the activity of SEs in a
forward feedback loop and is well-established in many malignant cell
types32,33. To reveal criticalmasterTF interactions responsible for driving the
TNBC subtype-specific transcriptional programme associated with che-
moresistance,wemodelled transcriptional regulatorynetworksmediated by
SEs utilising the Python package “CRCmapper”. It scans TF motifs inside
chemoresistance SE regions and then identifies both TFs binding within SE
regions and outward binding of SE-associated genes in a complete reg-
ulatory circuitry (core regulatory circuitry (CRC) cliques)50–53. CRC cliques
are then scored based on TFs which exhibit a high frequency of occurrence
across each CRC clique, and the top CRC for each TNBC subtype is
designated (Fig. 6a).

Following “CRCmapper” analysis on each sample, we calculated a
clique enrichment score (the percentage of each CRC in which a TF is a
constituent member) (Fig. 6a). Following the scoring of each CRC, we
clustered samples based on their clique enrichment scores and revealed
intrinsicCRCdifferences in topTFs acrossTNBCsubtypes and additionally
highlighted overlapping TFs common between all subtypes (Fig. 6b, Sup-
plementary Fig. 6a, b). TheTFs identified in eachTNBCCRCclique include
known lineage-defining TFs such as EN154. Other TFs, with a high clique
score, include EGR3, STAT3, ETVS, IRF1, IRF2, and IRF8.Additionally, we
performed CRC analysis using HMEC SE data to identify the top CRC in
normal (pCR) (Supplementary Fig. 6c). Of note, FOXC1 was also dis-
covered among other TFs to be a CRC TF in BL1 in line with the recent
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Fig. 5 | Epigenomic profiling reveals super enhancers in TNBC subtypes which
drive the expression of chemoresistance markers. a Super enhancer identification
workflow: Schematic illustrating the key steps involved in the identification of super-
enhancers. b Total super-enhancers in TNBC subtypes: ROSE output displaying the
cumulative count of super-enhancers identified in each TNBC subtype. c Genome
browser track of EGFR super-enhancer: Genome browser track highlighting the
EGFR super-enhancer identified in BL1 and BL2 TNBC subtypes. d Unique and
overlapping super enhancers: Visual representation of unique and shared super-

enhancer regions across different TNBC subtypes. e Super enhancers associatedwith
chemoresistance genes: Identification of super-enhancers (SEs) overlapping with
chemoresistance-related genes identified through our reproducibility analysis. f SE-
associated gene expression heatmap: Heatmap illustrating the unique expression
patterns of genes associated with super-enhancers within each TNBC subtype.
Unsupervised hierarchical clustering reveals distinct gene expression profiles gov-
erned by super-enhancers in each subtype and signalling pathways upregulated by
SE-associated genes in each subtype.
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findings of it being a SE master regulator of invasion, metastasis and che-
moresistance in TNBC55,56.

We next sought to explore the role of identified TNBC-subtype CRC
TFs in exhibiting strong genetic dependency across multiple TNBC sub-
typesOur goalwas to pinpoint potential candidateTFswith implications for
driving chemoresistance across subtypes, holding promise for novel

therapeutic interventions. Utilising viability data obtained from the Broad
DepMap project, which involved RNAi and CRISPR knockdown experi-
ments, we collected data for each CRC TF across cell lines representing
various TNBC subtypes. Subsequently, we conducted a regression analysis
to examine the correlation between cell line viability and each subtype,
following the loss-of-function assays carried out within the Broad DepMap
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cohort. This analysis revealed CRC TFs which negatively and positively
affected the viability of each TNBC cell line and identified key genetic
dependencies specific to each subtype and across all, enabling prioritisation
ofTFs shown tohave a strong genetic dependencyacross all TNBCsubtypes
(Fig. 6c). Of note, TFAP2C and SP1 were discovered to be essential for
viability across all TNBC subtypes. OtherTFs, such as STAT3, show genetic
dependencyacross all subtypes, however in some subtypes, they are stronger
when compared to others possibly due to their engagement in other net-
works (Fig. 6c). Furthermore, RREB1 has been shown to be a critical inte-
grator ofTGFβ andRas signalling pathways during bothdevelopmental and
cancer EMT programmes57.

Basedonourpriorfindings,which includeda significant enrichmentof
TFAP2C motifs at super-enhancers associated with chemoresistance genes
(Supplementary Data 3), its elevated regulon activity, and increased
expression in chemoresistant patients (Fig. 2b–e), as well as its notable
genetic dependency in TNBC cells, we were compelled to delve deeper into
the role of TFAP2C in driving TNBC chemoresistance. Leveraging the
Super-EnhancerArchive58we initiated the identificationof super-enhancers
(SEs) and their respective transcription factors (TFs). We subsequently
overlaid these findings with our CRC and ROSE analysis results, leading to
the generation of a tentative list of top CRC TFs predicted to be bound by
TFAP2C. To identify direct targets of TFAP2C, we processed TFAP2C
ChIP-seq from the TNBC cell line MDA-MB-45359. A visualisation of
TFAP2C binding at predicted SE regions indeed confirmed its strong
enrichment at these locations (Fig. 6d). Importantly, the SE RAI1, a top
chemoresistance signature gene in our prediction model, showed a sig-
nificant occupancy by TFAPC. We next overlapped all SEs bound by
TFAP2C across TNBC patients (n = 55) with all SE regions associated with
chemoresistance genes, resulting in a total of 23 chemoresistance SEs
occupied by TFAP2C (Fig. 6e). Notably, these loci included our chemore-
sistance signature genes as well as other potentially interesting candidates
(examples shown in Fig. 6d). Interestingly, gene expression analysis of
chemoresistance genes associated with TFAP2C bound super-enhancers
showed that they were expressed at significantly higher levels in all TNBC
subtypes as compared to the healthy control cells (HMEC) (Fig. 6f). Alto-
gether these observations highlight that distinct transcription factor CRCs
operate at TNBC subtype-specific super-enhancers associated with che-
moresistance genesandTFAP2Choldspotential as oneof thekeyTFsof this
process across all TNBC subtypes.

TNBC-type specific CRC TFs are essential for the viability of
TNBC cells, and their loss enhances sensitivity to chemotherapy
We next sought to experimentally investigate whether the predicted CRC
TFs actively control the expression of chemoresistance genes and conse-
quently chemotherapy response. Our results revealed that TFAP2C is
potentially a master regulator across all TNBC subtypes in driving che-
moresistance genes by targeting their SEs. Furthermore, equally interesting
was SP1 which similarly also showed a strong enrichment at SEs of che-
moresistance genes and high regulon activity and expression in chemore-
sistance cells. We, therefore, performed depletion of TFAP2C and SP1 in
four TNBC cell lines representing each TNBC subtype and measured
expression of target SE-associated genes using RT-qPCR assays (Fig. 7a and

Supplementary Fig. 6d). Interestingly, in all types, knockdown of TFAP2C
and SP1 led to a significant decrease in the expression of genes associated
with their target chemoresistance SEs (Fig. 7b). Furthermore, we propose a
conceptual model wherein chemoresistant patients exhibit elevated
expression of chemoresistance-related genes, such as EGFR and RAI1.
Exclusive activation of Chemoresistance SEs is observed solely in che-
moresistant patients, with no activity in sensitive counterparts. Specific TFs,
includingSP1,TFAP2CandTFAP2Aareuniquely expressed and selectively
bind to these SEs in chemoresistant patients. The orchestrated interplay
between the active SE and TFs increases the expression of pivotal che-
moresistance genes such as EGFR and RAI1 within this patient subgroup
(Supplementary Fig. 6e). Through SCENIC analysis we show that these
genes are intricately connected in a network, where each TF binds at SEs of
genes shared with our 20 gene model, collectively contributing to the
aggressive phenotype associatedwith chemoresistance (Supplementary Fig.
6e). However, additional studies are necessary to delve into the underlying
mechanism of this upregulation.

Given our discovery that numerous SEs are bound by TFAP2C and
SP1 and exhibit substantial genetic dependency across all TNBC subtypes,
we proceeded to assess whether the downregulation of these TFs would
enhance the response to chemotherapy by diminishing the expression of
chemoresistance genes. To investigate this, we conducted siRNA knock-
down experiments targeting each candidate TF in four cell lines, each
representing a distinct TNBC subtype. These experiments were coupled
with treatment using two chemotherapy agents, Docetaxel and Epirubicin,
and cell viability was quantified through MTT assays (Fig. 7c). Since these
TFsmay have other physiological roles34,54,60–63 in TNBCbeyond the context
of chemotherapy, we did not characterise the effect of depleting these TFs
alone, without the drugs. Notably, the depletion of TFAP2C and SP1
resulted in a marked decrease in cell viability after chemotherapy treatment
in all TNBC subtype cell lines compared to the control cells (Fig. 7d).
Particularly, TFAP2C knockdown exhibited a significant reduction in cell
viability across all subtypes, underscoring TFAP2C as a pivotal and adap-
table regulator of chemoresistance throughout all TNBC subtypes. In
summary, our findings suggest that a distinct group of TFs likely steer the
epigenomic landscape and dictate the gene expression patterns character-
ising chemoresistance-related cell subpopulations. Moreover, the targeted
inhibition of these chemoresistance-associated TFs presents a promising
avenue to enhance patient outcomes across all TNBC subtypes (Fig. 7e).

Discussion
Neoadjuvant chemotherapy (NAC) is used frequently in the treatment of
TNBC patients due to the lack of targeted therapeutics and its ability to
reduce tumour size, improve surgical outcomes and increase survival in
responders. However, due to the intratumoral heterogeneity (ITH) asso-
ciated with TNBC, patients have differing responses to NAC64. Achieving
pCR is associated with significantly improved survival outcomes in TNBC
patients65. Identifying those patients who will have RD following NAC will
enable physicians to determine the best therapeutic option at the beginning
of treatment, rather than waiting for NAC treatment results, to increase the
chances of achieving pCR. Numerous efforts have been put into developing
predictive signatures in TNBC, but currently, there is no clinically

Fig. 6 | SE–TF connectivity analysis defines core regulatory circuitry underlying
TNBC chemoresistance. a SE-based CRC analysis: Schematic outlining the SE-
based core regulatory circuitry (CRC) analysis. For each TF linked to a chemore-
sistant SE, in-degree values are calculated through motif identification, while out-
degree values are determined for each TF connected to a chemoresistant SE by
assessing all other bound SEs at each TF gene locus. Node connections among TFs
are employed to identify auto-regulatory cliques that govern the chemoresistant SE
network. b Heatmap of Clique Enrichment Scores: Heatmap displaying clique
enrichment scores for the union of all TFs associated with top SEs across all TNBC
samples. Grey boxes represent instances where a TF is not associated with a parti-
cular TNBC patient sample. TFs and samples are clustered using Euclidean distance.

c Subtype-specific genetic dependencies: Heatmaps illustrating the subtype-specific
genetic dependencies of each CRC TF, as determined through whole-genome RNA
interference (RNAi) and CRISPR screens from the Broad DepMap. Significant
subtype-specific genetic dependencies are highlighted, employing a modified T-test
corrected for multiple hypothesis testing (T-value, FDR < 0.1). Blue corresponds to
the greater effect of KD influencing genetic dependency. d TFAP2C Occupancy
Visualisation: UCSC Genome Browser visualisation of TFAP2C occupancy using
ChIP-seq data at SEs predicted to be regulated by TFAP2C. e Identification of
TFAP2C-Bound SEs: Identification of SEs bound by TFAP2C across various TNBC
subtypes. f Expression of TFAP2C-bound SEs: Expression profiles of SEs bound by
TFAP2C across each TNBC subtype and humanmammary epithelial cells (HMEC).
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recommendedpredictivebiomarkerpanel forNACresponse8,66,67.However,
these studies have focused on bulk RNA-based techniques, in small patient
cohorts to identify markers to predict therapy response and do not account
for the ITH associated with TNBC.

Here, by profiling chemoresponsive and chemoresistant patients at the
single-cell level to identify markers associated with chemotherapy, we have
developed a predictive model that has high accuracy in defining che-
motherapy response in TNBC patients. Our utilisation of scRNA-seq was

Fig. 7 | TNBC-type specific CRC TFs are essential for TNBC cell survival, and
their depletion improves chemotherapy response. a Depletion of selected TFs:
Schematic representation of the depletion of specific TFs in cell culture, followed by
RT-qPCR experiments to assess the impact on SE-associated gene expression.
Created with BioRender.com. b RT-qPCR analysis: RT-qPCR analysis of subtype-
specific chemoresistant super-enhancers (SEs) following knockdown (KD) of
TFAP2C and SP1. Statistical significance was determined using a Student’s t-test.
Error bars are defined as standard deviation. c Workflow for TF depletion: an

overview of the workflow for depleting CRC TFs in selected cancer cell lines Created
with BioRender.com. d Improved cell viability: Reduced cell viability observed fol-
lowing chemotherapy treatment inTNBC subtype-specific cell lines when combined
with TF depletion. Statistical significance was determined using a Student’s t-test.
e Enhanced chemotherapy efficacy: Targeting TFs associated with chemoresistant
SEs has the potential to eliminate subpopulations linked to chemoresistance, thereby
improving the efficacy of chemotherapy. Created with BioRender.com.
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not aimed at an exhaustive analysis of chemoresistance but rather focused
on defining markers. Notably, Kim et al. had conducted a comprehensive
analysis in their study. Our emphasis was on identifyingmarkers specific to
pre-treatment chemoresistant cells, utilising single-cell resolution to pin-
point molecular characteristics associated with this phenotype. This
approach provides valuable insights into understanding chemoresistance in
TNBC without undertaking an exhaustive analysis of individual cell
responses, building upon the foundational work by Kim et al. Our 20-gene
model, through the identification of markers in scRNA-seq and validation
in over 300 patients, holds a high potential for aiding in the clinical man-
agement of TNBC patients by enabling the assessment of NAC response
upfront. Additionally, we have demonstrated that it outperforms all existing
signatures for predicting chemotherapy response in TNBC. Furthermore,
higher expression of our models’ genes is also associated with reduced
survival and could accurately predict the chemoresistance potential in
TNBC patients from the METABRIC cohort. It is strongly associated with
EGFR signalling, which has been shown to play a critical role in TNBC
chemoresistance25–27.

The predictive strength of our model’s combination of genes was
further demonstrated by predicting chemotherapy response in the eight
untreatedTNBCpatientswithH3K27acdata.Whilst patient outcomeswere
not known for these samples, our past analysis in model development (Fig.
3b and Supplementary Fig. 3e) and validation in the METABRIC TNBC
cohort (Fig. 3e), in cohorts where patient outcomes were well-documented,
gave us great confidence in the accuracy of predicting each sample as RD
and HMEC and pCR. This provided the unique opportunity and the
rationale to map and quantify enhancers genome-wide to shed light on the
previously uncharacterised SE landscape underlying chemoresistance in a
subtype dependant manner for the first time. By overlapping with che-
moresistance genes identified to have a reproducible expression in bulk
RNA data, we could identify a subset of chemoresistance genes in close
proximity to SEs. Interestingly, BL1 and LAR subtypes had the highest
proportion of SEs. LAR followed by BL1 are the top two TNBC subtypes
associated with increased chemoresistance and poorer outcomes47. The SE-
associated genes were significantly involved in EMT and PI3K-Akt signal-
ling processes in BL1 and LAR subtypes. Both have previously been
implicated in chemoresistance in multiple cancer types, including breast
cancer and specifically TNBC68,69.

Additionally, whilst the dysregulation of gene expression in TNBC has
beenpreviously characterised, it has not been adequately explained, inwhich
previous studies have not fully elucidated or comprehensively uncovered the
underlying gene regulatory circuitry including key transcription factors
responsible for the observed dysregulation of gene expression programmes
in TNBC by standard or conventional transcriptomic analysis, such as dif-
ferential gene expression analysis alone. Instead, such extensive changes are
attributed to the widespread transcriptional rewiring occurring in breast
cancer cells, including the utilisation of core transcription factors, as well as
the activation of many gene-regulatory elements, including enhancers and
super enhancers13,70. Defining epigenomic characteristics is instrumental to
dissecting gene regulatory programmes which underlie cancer disease
progression. Here, for the first time, we have profiled and characterised the
TF regulatorynetwork, using subtype-specific SEprofiles, underlyingTNBC
chemoresistance. This systematic identification of active TNBC subtype
regulatory elements has led to several enabling observations. By constructing
the TNBC TF regulatory network using subtype-specific SE profiles, we can
identify the critical TF nodes that enforce the TNBC subtype epigenome
underlying chemoresistance. Of note, TFAP2C, TFAF2A, and SP1 were
shown to have higher expression in chemoresistance pre- and post-single-
cell data, highlighting their implication indriving chemoresistance inTNBC.
Additionally, by profiling TFAP2C ChIP-seq in a TNBC cell line we found
that many chemoresistance-associated SEs, including RAI1, were bound by
TFAP2C, establishing its direct function in driving TNBC chemoresistance.
Furthermore, we depleted key chemoresistance TFs predicted to function at
subtype-specific chemoresistance SEs of chemoresistance genes and mea-
sured their expression using RT-qPCRs (Fig. 7b). These results show a clear,

significant reduction in the expression of target chemoresistance genes,
validating our proposal for the role of these TFs in regulating their expres-
sion. These results are also in linewith our observations that the depletion of
these TFs can significantly overcome chemoresistance (Fig. 7d). Altogether,
these observations conclude that chemoresistance is governed by a distinct
set of genes that are controlled by CRC TF networks through a subtype-
specific set of SEs. Additionally, they were shown to have a high genetic
dependency in each TNBC subtype cell line. Of note, suggesting that inhi-
bitionmay provide an approach to overcome chemotherapy resistance in all
TNBCsubtype tumours. In recent years, targetingTFsusing smallmolecules
that bind to specific nuclear hormone receptors has proven to be successful
in many cancers71, in particular, the SP1 inhibitor Mithramycin A has been
shown to inhibit and suppress cell survival in in vitro models of basal
TNBC72. Along these lines, targeting TFAP2C may dramatically improve
chemotherapy efficacy in patients with a high risk of chemoresistance.

In BL1, FOXC1 was highlighted as one of the top TFs driving che-
moresistance SEs. In the single-cell data, FOXC1 was shown to have higher
expression in chemoresistant cells pre- andpost-chemotherapy. FOXC1has
recently been shown to be a master TF, encoded by SEs in TNBC55. Addi-
tionally, TFAP2C has never been shown to drive SE expression in TNBC,
nor has it previously been implicated in TNBC chemoresistance. Its key role
in potentially driving TNBC chemoresistance is further highlighted by our
SCENIC analysis. We identified TFAP2C, along with several other CRC
TFs, as key regulons in defining the chemoresistance subpopulations in the
scRNA-seq data. While it was identified as a core TF in BL2, we have
demonstrated it has a high genetic dependency and potential regulator of
chemoresistance SEs in all TNBC subtypes. Additionally, it has been
implicated in chemoresistance in several cancers29,73 and, notably, Docetaxel
resistance in lung adenocarcinoma74. The TFs TFAP2C and SP1 were
identified throughout our study from the single-cell to CRC analysis as
potentially having a significant role in driving chemotherapy resistance-
associated gene expression programme. We have successfully shown that
direct targeting of these TFs has the potential to increase the efficacy of
chemotherapy agents across each TNBC subtype. Whilst there are no clear
TFs that act in a unique subtype dependantmanner, we have shown that the
TF TFAP2C is a master regulator of subtype-specific chemoresistance SEs
across all TNBCsubtypes resulting in potential for the development of novel
therapeutics that can aid in improving the efficacy of NAC.

Our results have clearly highlightedhowabetter understandingof gene
regulatory circuitry allows identifying novel therapeutic avenues. This study
creates the rationale for further functional studies to determine their
mechanistic roles in chemoresistance and potentially lead to the develop-
ment of novel targeted therapeutics. Additionally, as the model was devel-
oped based on a combination of NAC, it may be possible to extend its
application range to develop drug-specific or secondary therapeutic pre-
dictionmodels and further stratify TNBC patients. One potential limitation
of our study is the low number of patient samples for SE identification.
However, the genes identified in close proximity to SEs were shown to have
higher expression in RD TNBC patients across multiple studies and TNBC
subtype-specific cell lines, validating their role in TNBC chemoresistance.

In summary, we reveal cell subpopulations associated with TNBC
chemoresistance and the signature genes defining these populations of
which a subset acts as a best-in-class gene signature for an accurate pre-
diction of chemotherapy response. Notably, we show that these chemore-
sistance genes are controlledby a specific set of transcription factornetworks
and super-enhancers in a TNBC-subtype-specific manner. Importantly, we
demonstrate that targeting these TFs holds the potential to overcome che-
moresistance and ultimately improve patient survival.

Methods
Identificationof chemoresistant cell types using single-cell RNA-
sequencing analysis
To identify cell types and their markers associated with TNBC chemore-
sistance, scRNA-seq analysis was performed on the data set obtained from
Kim et al.18, consisting of matched pre and post-chemotherapy
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(anthracycline and a taxane) samples from four responsive and four resis-
tant patients with a total of 6,862 cells. Raw scRNA-seq data underwent
quality control, including library size,mitochondrial gene content, andUMI
detection. Cells failing quality control criteria were excluded. The ‘sctrans-
form’ method from Seurat v3 was applied for normalisation to address
technical variability across samples. The integrated dataset was generated
using the ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions from
Seurat v3. Subsequently, the datawere scaledusing the “ScaleData” function
from Seurat v3. The analysis pipeline post-integration included variable
feature selection, principal component analysis (PCA) for dimensionality
reduction, and clustering using the ‘FindClusters’ function in ‘Seurat’.
Uniform manifold approximation and projection (UMAP) was employed
for the visualisation of clustered cells. Cluster annotation was performed
using the Python programme “SCSA” to identify associated cell types and
cancer-related processes. All significantly expressed markers for each
treatment time point and therapy response were polled to identify uniquely
expressed markers in pre-chemoresistant patients that could potentially
have a crucial role in driving TNBC chemoresistance.

Reproducible signature marker identification
For the reproducibility of the gene set identified using scRNA-seq analysis,
we used five independent bulk RNA-seq datasets, GSE20271, GSE25055,
GSE25065, GSE20194, GSE163882, of 397 TNBC patients where their
chemotherapy response was available (RD, PCR). Patient samples were
excluded if the therapeutic outcome (residual diseaseorpathologic complete
response) was unknown and not classified as TNBC. The raw data was
normalised, batch corrected, and log-transformed using the R package
“affy” and “TDM and the Python package “pyComBat”. In total, 397
patient’s data were selected for reproducibility analysis. The 300 genes
identified in the scRNA-seq dataset were extracted from the normalised
bulk RNA-seq count files. A custom R script was used to compare each
gene’s expression in patients with residual disease and pathologic complete
response, Wilcoxon Rank Sum and Kruskal-Wallis tests were used to cal-
culate significance.

Pseudobulk analysis
All six patient data files were downloaded from: GSE118390 and the che-
moresistant scRNA-seq was analysed using the same parameters in the R
package “Seurat”. First, cells with feature counts of greater than 2500 or less
than 200 were removed, including mitochondrial reads of greater than 5%.
Following the removal of cells, downstream analysis, including normal-
isation, variable feature selection, dimensionality reduction and UMAP
clustering, was performed. Signature scoring was performed by the R
package UCell42 using default parameters. Following downstream analysis,
pseudobulk analysis was performed using the R package SingleCellExperi-
ment and the function “AggregateExpression”.

Implementation of GENIE3 and SCENIC
Single-Cell regulatoryNetwork Inference andClustering (SCENIC) analysis
was performed to reveal the core TFs in chemoresistant and chemosensitive
clusters28. We performed the SCENIC analysis using the latest version of
pySCENIC. The gene-motif rankings (500 bp upstream or 100 bp down-
stream of the transcription start site) were used to determine the search
space around the TSS. The motif database was used for RcisTarget and
GENIE3 algorithms to infer the core TFs. Wilcoxon rank sum and
Kruskal–Wallis tests were used to calculate significance.

Identification of significant gene set and construction of the
prognostic prediction model based on residual disease vs.
pathologic complete response
Raw microarray expression (CEL) files of all 310 TNBC patients were
downloaded from Gene Expression Omnibus, GSE20271, GSE25055,
GSE25065 and GSE20194. Gene expression profiles were quantile nor-
malised and log2-transformalised using “BART”, followed by batch cor-
rection using “ComBat” from the R package “sva”. To identify the most

significant gene set, GSE20271 and GSE25055 datasets with 177 TNBC
patients (57 pathologic complete response, 120 residual disease) were used
to build the model. To verify the strength of the geneset, GSE25065 and
GSE20194 datasets with 130 TNBC patients (46 pathologic complete
response, 84 residual disease)were used as the external validation cohort. To
identify the significant gene set and develop a predictive model to dis-
criminate pCR and RD groups, we first used Lasso and Elastic-Net Reg-
ularisedGeneralisedLinearModels using theRpackage “glmnet”on the 300
markers to identify the best combinationwith the greatest predictive power.
Then, we used the 10-fold cross-validation method to evaluate the dis-
crimination ability, between pCR and RD, to obtain a relatively unbiased
estimate. After the LASSO regression analysis, a predictive model based on
20 was used to fit a generalised linear model. The predictive capability was
measured by the receiver operating characteristic curve (ROC curve) area
under the curve (AUC)using theRpackage “pROC”. Resultswere evaluated
using the area under the ROC curve. The optimal model was selected by
maximisingAUC. Themodel was tested on data with known and unknown
chemotherapy responses using the function predict.glm with the ideal
lamda as the s variable.

TNBC subtyping
The TNBCtype web-based tool (http://cbc.mc.vanderbilt.edu/tnbc/) was
used to classify each TNBC patient sample. Subtyping was performed on
RNA expression data, normalised within TNBC patients as recommended
by the tool, from each patient.

H3K27ac ChIP-seq analysis
Eight primary TNBC patients as well as corresponding transcriptome
(RNA-seq) datasets were downloaded from ENA: accession number
PRJEB33558. Reads were aligned to the human genome (GRCh38) using
Bowtie2. H3K27ac ChIP peaks were identified by the MACS version
2 software package with paired input samples with the callpeak function
using default settings, genome set to ‘hs’, and peak calling set to—broad.
Differential enrichment of peaks between pCR and RDwas called using the
package diffbind with the criteria of a minimum of 50% overlap of peaks.

Super enhancer identification and analysis
Samples were merged based on their subtyping using bedtools merge and
enhancer and SE elements were mapped and quantified by MACS and
ROSE software46. ROSE analysis was performed with default parameters of
12.5 kb stitching distance, and TSS exclusion size set to 0, consistent with
prior studies,wedidnot excludeTSS elements75.Using theoutput SEbedfile
from ROSE we identified regions unique to each TNBC subtype using
ChIPpeakanno with 50% overlap of SE regions. SE-associated genes were
identified by ROSE by assigning the discovered SEs to the nearest genes.
Hierarchical clustering on SE-associated uniquely expressed genes was
performedusing Euclidean distancemetric andWard’s linkagemethod and
plotted using theR package “ComplexHeatmap”. Colour bars for associated
pathway data for each subtype were determined using EnrichR.

Hi-C analysis in TNBC patients
Sampleswereobtained fromGSE167150andprocessedusingHiCExplorer76.
Reads were aligned to the human genome (GRCh38) using Bowtie2. Then
the HiCExplorer pipeline was implemented with default parameters.

TNBC chemoresistance CRC reconstruction
We performed the core transcriptional regulatory circuitry analysis using
CRC mapper (https://github.com/linlabcode/CRC) as previously
described77. Within Super Enhancer regions, the CRC software uses FIMO
tofind enriched (q value < 1e−5) TFmotif occurrences. CRC first identified
TFs that are active, regulated by a proximal, overlapping, or the closest SE
region.The total degree is ameasure of howoften a givenTFparticipates in a
regulatory interaction with other TFs. It is defined as the number of unique
TFs participating in a regulatory interaction that affects a given TF plus the
number of unique TFs that are regulated by a given TF.
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Genetic dependency
Gene expression for each CRC TF was extracted from TNBC cancer cell
lines from CCLE in DepMap (https://depmap.org/portal/). To identify
genetic dependencies of subtype-specific CRC TFs, Achilles gene effect
scores and dependency scores were downloaded for each subtype of TNBC
cell lines screened by RNAi and CRISPR from DepMap. We built linear
regression models of each TF correlation strength and viability of each
subtype across all TNBC cell lines tested. T-statistic testing was used to
evaluate association strength between subtype correlation strength and
viability.

Cell culture
The TNBC lines HCC1806 and HCC70 were maintained in RPMI 1640
(Gibco, 21875034) medium supplemented with 10% FBS, 1% glucose and
1mM sodium pyruvate (Thermo, 11360070). MDA-MB-468, MDA-MB-
453, and MDA-MB-231 cells were maintained in DMEM (Dulbecco’s
modifiedEagle’smedium)with 10%FBS.Cellswere grownasmonolayers at
37 °C in a humidified CO2 (5%) incubator.

siRNA transfection
The scrambled siRNA control and ON-TARGETplus SMARTpool siRNA
targeting human TFAP2C, TFAP2C, SP1, STAT3, TCF7L2, PRDMI, and
FOSL2 were purchased from Dharmacon. Transfection was performed
using Lipofectamine™ RNAiMAX (Invitrogen, 13778150) according to the
manufacturer’s instructions. In brief, cells were seeded at 180k/well for
MDA-MB-231, MDA-MB-453, HCC1806 and HCC70. Cells were seeded
at 250k/well forMDA-MB-468 cell lines.All cellswere seeded the daybefore
the transfection. siRNA at a final concentration of 5 pmol was diluted in
45 μl of Opti-MEM (Gibco, 31985047) and 2.25 μl of Lipofectamine
RNAiMAX was diluted in 45 μl of OPTI-MEM. The diluted siRNA and
Lipofectamine RNAiMAXweremixed and incubated at room temperature
for 10min. Ninety microliters of transfection mixture were added to each
well of 12-well plates. Twenty-four hours later, the transfection cocktail was
replaced with complete media for each cell line.

RNA isolation and RT-qPCR
Total RNA was isolated from cells in culture using Trizol reagent (Ambion,
15596018) according to themanufacturer’s instructions. RNA concentration
and purity were measured using the NanoDrop Spectrophotometer. cDNA
was synthesised using Verso cDNA synthesis kit (Thermo, 01280858). RT-
qPCRwas performed in the SybrGreen programme: 5min pre-incubation at
95 °C; amplification 45 cycles at 95 °C for 10 s, 60 °C for 10 s and 72 °C for
10 s; melting was performed at 95 °C for 5 s, 65 °C for 1min, 97 °C on hold;
final cooling was performed at 40 °C for 30 s. Results were analysed and
normalised by the relative quantity (ΔΔCt) method. Wilcoxon Rank Sum
and Kruskal–Wallis tests were used to calculate significance.

MTT assay and drug sensitivity analysis
siRNA-transfected cells were cultured for 24 h and treated with Epirubicin
andDocetaxel at the desired concentration for each cell line. DMSO served as
vehicle control. The treated cells were incubated for 48 h, and a cytotoxicity
assay was performed using an MTT assay kit (Roche, 11465007001)
according to the manufacturer’s protocol. Briefly, 10 μl MTT (5mg/ml) was
added to each well and allowed to form formazan crystals for four hours in
the incubator. 100 μl of solubilisation solution was added to each well and
incubated overnight in the incubator in a humidified atmosphere. The next
day, complete solubilisation of the purple formazan crystals was confirmed
and then the absorbance values were determined using a microplate reader
(BMG FLUOstar Omega) at 590 nm. The experiments were repeated twice,
and data are represented as mean ± SD from three technical replicas. Wil-
coxonRank Sum andKruskal–Wallis tests were used to calculate significance.

Statistical analysis
All the statistical analyses were performed using R (version 4.1.1) and
GraphPad Prism 9. Student’s t-test, Wilcoxon rank-sum test and

Kaplan–Meier were utilised in this study. p-values of <0.05 were considered
statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Accession numbers for all publicly available datasets used are in Supple-
mentary Data 1 Sheet 1.

Code availability
Themergedmicroarray datasets and all scripts used in this study are located
at: Github.com.
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