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Weperformed adeepproteogenomic analysis of bulk tumor and lasermicrodissection enriched tumor
cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad
spectrum of purity. We identified patients with longer progression-free survival had increased
immune-related signatures and validatedproteins correlatingwith tumor-infiltrating lymphocytes in 65
tumors from an independent cohort of HGSOCpatients, aswell aswith overall survival in an additional
126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are
enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in
independent patient cohorts.We further identified that polycombcomplex protein BMI-1 is elevated in
HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not
HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.

Epithelial ovarian cancer is the fifth most common cause of cancer death
among women in the US where 19,710 are predicted to be diagnosed with
and 13,270 are predicted to succumb to ovarian cancer in 20231.High-grade
serous ovarian cancer (HGSOC) represents the most prevalent ovarian
cancer histotype, where patients often present with advanced-stage disease
and extensive disease burden. Although bevacizumab and poly [ADP-
ribose] polymerase (PARP) inhibitors have provided exciting new treat-
ment options for ovarian cancer patients, additional therapeutic options are
needed for those with poor prognostic clinical features. This may in part be
related to the diverse nature of HGSOC, which also hasmultiple prognostic
molecular subtypes2–5. Recent investigations of these various molecular
subtypes in HGSOC by our group6 and others7 have identified that the
mesenchymal (MES) subtype is characterized by having a high proportion

of stromal cells, correlating with low tumor purity. Historically, deep pro-
teogenomic analyses ofHGSOChave been conducted on bulk tumor tissues
with inclusion criteria that biased the analysis towards high “purity” tumors
(≥70% tumor cell nuclei)8,9. However, as many “impure” HGSOC tumors
correlate with poor disease prognosis3,4, there exists the opportunity to add
important new molecular knowledge by investigating HGSOC tumors
across a broad purity continuum more reflective of the patient population.

To investigate proteogenomic alterations within the tumor epithelium
inHGSOC,we employed lasermicrodissection (LMD) to enrich tumor cells
in a cohort of 70 chemo-naive, advanced stage HGSOC patient tumors
spanning a purity continuum of less than 20% to greater than 90% tumor
cells. LMDenriched tumor (ET) collectionsunderwentdeepproteogenomic
analysis including whole genome sequencing (WGS), transcriptomic, and
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multi-modal proteomic analyses, and were directly compared with parallel
data levels generated from matched, bulk tumor (BT) tissue collections,
along with a subset of cases from which the stromal compartment was
enriched by LMD from the tumor microenvironment. A comprehensive
and integrative analysis of these data identified and validated HGSOC
tumor epithelial-specific proteogenomic alterations correlating with tumor
purity, tumor-infiltrating lymphocytes (TILs), and disease prognosis, and
identified an expression-based signature of homologous recombination
deficiency (HRD).

Results
Ovarian cancer cohort characteristics and analyses
An integrative proteogenomic analysis was undertaken in bulk tumor (BT)
collections and matched LMD procured tumor cells from 70 chemo-naive,
HGSOC patient tumors (hereafter referred as the “APOLLO-2” cohort).
Bulk tissue serial sections andmatchedLMDprocured epithelial tumor cells
were analyzed using four molecular profiling technologies: deep whole
genome sequencing (WGS), mRNA sequencing (RNA-seq), mass spec-
trometry (MS)-based global proteomics, and reverse phase protein arrays
(RPPA) (Fig. 1a, Table 1, Supplementary Data 1, and Supplementary Data
2). Our analytical strategy involved a comprehensive and integrative
investigation of the proteogenomic data from BT tissue and LMD ET cells
separately for each case as well as enriched stromal (ES) cells in a subset
of cases.

Molecular characterization of bulk tumor preparations
Patient tumors in the APOLLO-2 cohort had a median tumor purity of
~50%, admixed with varying levels of stromal and immune cells (Supple-
mentary Data 2); tumor purity estimates calculated from WGS somatic
mutation analysis correlated well with tumor purity assessments from
expert pathology review (Spearman Rho = 0.561, p < 0.001, Supplementary
Data 2). Single nucleotide variants (SNVs) and structural variant (SV)
subtypes identified in the APOLLO-2 cohort were highly similar to those
recently described for HGSOC10 (Fig. 1b, Supplementary Data). We iden-
tified common genomic signatures and relationships associated with
HGSOCpatient outcomes, including an association with superior outcome
in patients (n = 18) with HRD-duplicated SV subtype tumors compared to
those harboring fold-back inversions (FBI, n = 36, Log Rank, p = 0.0084,
Supplementary Fig. 1A).

The overall protein:transcript pair (n = 7290) correlation quantified in
global proteome and transcriptome analysis of BT collections for each
patient tumor (Spearman Rho, R = 0.47) (Supplementary Data 2) was
similar to BT samples from an independent proteogenomic analysis of
HGSOC reported by the NCI’s Clinical Proteomics Tumor Assessment
Consortium (CPTAC) (R = 0.47)8.We found a significant and large positive
correlation of gene-wise transcript:protein correlation values between our
APOLLO-2 cohort and the CPTAC HGSOC cohort (R = 0.598, p = 0.0001
from 5721 co-measured protein:transcript pairs, Fig. 1c). Protein:transcript
correlation values were significantly associated with tumor purity (R = 0.44,
p = 0.0001, Supplementary Data 2) and inversely correlated with immune
(R =−0.223, p = 0.06) and fibroblast (R =−0.322, p = 0.007) scores calcu-
lated using ConsensusTME11 gene signatures (Supplementary Fig. 1B).
Assessment of consensus molecular subtypes from BT transcriptome data
(ConsensusOV)12 showed that tumors classified as proliferative (PRO) had
higherpurity estimates andwere comparable todifferentiated (DIF) subtype
tumors (~73.92% purity, p = 0.8623, Supplementary Fig. 1C, Supplemen-
tary Data 2). Tumors classified as immunoreactive (IMR) or MES had
significantly lowerWGS tumor purity estimates than PRO tumors (IMR vs
PRO, p = 0.035 and MES vs PRO, p = 0.0004, respectively; Supplementary
Fig. 1C). Evaluation of transcriptome-derived immune scores calculated
using ConsensusTME as a surrogate of immune cell admixture or fibroblast
scores as a surrogate of stromal cell admixture demonstrated that IMR
tumors had higher immune scores (p = 0.014) andMES tumors had higher
fibroblast scores (p < 0.0001) compared to other tumor types (Supple-
mentary Data 2). We identified significantly higher protein:transcript

correlation values in PRO tumors (average R = 0.55) than DIF (R = 0.46,
p = 0.02), IMR (R = 0.48, p = 0.0089), or MES (R = 0.39, p = 0.0003) tumor
subtypes in the APOLLO-2 cohort, a finding we validated in data from the
CPTAC HGSOC cohort (Fig. 1d).

Integration of weighted gene co-expression network analysis
(WGCNA)13 with hierarchical cluster analysis of BT proteome data iden-
tified five primary clusters (Fig. 1e, Supplementary Data 2). These clusters
align with conventional HGSOC prognostic molecular subtypes and are
strongly correlated with pathways enriched in WGCNA modules (Sup-
plementary Fig. 1D)12. Comparison of these results with similar WGCNA
analysis of proteomic data from bulk HGSOC tumor proteomic data from
CPTAC8 showed a high conservation of Hallmark pathways and protein
alterations within modules identified between these two independent
cohorts prepared and analyzed as bulk tumor tissue (Supplementary Fig. 1E,
Supplementary Data 3).

AsMES tumors have been correlated with high stromal cell admixture
and worse disease prognosis3,6, we were motivated to investigate protein
alterations correlating with tumor purity and patient prognosis. We iden-
tified that a high proportion of cluster 1 tumors (Fig. 1e) classified as the
MES subtype are from metastatic loci (Fisher’s Exact, p = 0.0001, Supple-
mentary Data 2). Recently, Eckert et al.14 identified a protein signature of
cellular stroma in adnexal and omental metastasis in HGSOC tumors.
Correlation of the 47 stromal signature proteins from Eckert et al. co-
quantified in enriched stroma collections from our APOLLO-2 cohort
(n = 32 adnexal and n = 16 metastatic specimens) showed that metastatic
stromal proteins were highly correlated with omental metastasis
(Mann–Whitney U, MWU, p = 0.0025; Supplementary Fig. 1F). A differ-
ential analysis of BT proteome data from low purity MES tumors (n = 27)
with high purity DIF (n = 13) and PRO (n = 12) tumors identified 653 sig-
nificantly altered proteins (LIMMA, adjusted p < 0.05), among which nine
proteins were significantly correlated with overall survival (OS,multivariate
Wald p < 0.05 adjusting for patient age, disease stage and residual disease
status, Supplementary Data 4). Each of these nine proteins were correlated
with an increased risk of death and all, except for intraflagellar transport 122
(IFT122) anddynein cytoplasmic 2 light intermediate chain 1 (DYNC2LI1),
were elevated inMES tumors. Patients whose tumorswere highly correlated
with the abundance of these nine prognostic proteins (upper quartile,
n = 18), experienced significantly shorter OS (Log Rank, p = 0.017) com-
pared to the rest of the cohort (lower quartiles, n = 52, Fig. 1f). We further
identified the relationship of these features with poor disease outcome
remained significant following multivariate analysis as noted above further
adjusting for treatmentwith neoadjuvant chemotherapy, PARP inhibitor or
mutational status for BRCA1 or 2 (aHR = 2.23, 1.07–4.65, p = 0.032, Sup-
plementaryData5).We investigated this associationat the transcript level in
an independent HGSOC cohort that includes a population of exceptional
survivors15 and found that patients with a high (n = 61 tumors) vs. low
(n = 65 tumors) correlation have an increased risk of death (Log Rank,
p = 0.011, Fig. 1g, Supplementary Data 5). We evaluated a subset of these
proteins mapping to data from a recent study of intratumoral proteoge-
nomic heterogeneity in HGSOC tumors conducted by our group6 and
identified that most of these proteins are significantly elevated in stroma
relative to tumor cells (MWU, p < 0.05) (Supplementary Fig. 1G). We also
evaluated transcript level data derived from bulk tissue collections for an
independent cohort of 129 patient tumors recently reported15 relative to
estimates of tumor purity and identified that the abundance of these nine
transcripts are significantly, inversely correlated with tumor purity
(R =−0.381, p < 1E−4). Among these prognostic proteins, metalloprotei-
nase inhibitor 3 (TIMP3, continuousWald, p < 0.05 and Log-Rank p < 0.05,
Supplementary Fig. 1H) and matrix remodeling-associated protein 8
(MXRA8, continuous Wald, p < 0.05) are also significantly associated with
OS in proteomic data from the CPTAC HGSOC cohort.

Molecular characterization of enriched tumor preparations
In addition to proteogenomic analysis of bulk tissue in the APOLLO-2
HGSOC cohort, LMD was used to selectively harvest tumor epithelium
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from serial histologic sections for each of the 70 HGSOC cases followed by
comprehensive molecular analyses (WGS, RNA-seq, MS-proteomics, and
RPPA). As anticipated, we found that LMD enrichment significantly
increased themedian tumor purity as estimated byWGSas compared toBT
tissue (83.5% vs 62.5%, respectively,MWU p < 0.0001, SupplementaryData

2). Analysis of WGS from ET samples showed substantial and significant
increases in the identification of somatic single nucleotide variants (SNV,
MWU p = 4.8e−3), indel (p = 7.7e−5), and structural variants (SV, p = 1.1e−8)
as compared to matched BT tissue (Fig. 2a). Although we did not identify
new recurrent somatic genemutations or SNVor SV subtype classifications

Fig. 1 | Proteogenomic analysis of high-grade
serous ovarian cancer (HGSOC). a Bulk tumor
(BT) and laser microdissection (LMD) enriched
tumor (ET) epithelium from adnexal (n = 48) and
metastatic (n = 22) HGSOC tumor specimens were
prepared and DNA, RNA, and protein extracts were
profiled by deep whole genome sequencing, RNA
sequencing, and proteomics by mass spectrometry
and reverse phase protein arrays; LMDwas also used
to collect stromal cell populations for a subset of
cases (n = 48) for proteomics (Created in part with
BioRender.com). b Hierarchical cluster analysis of
somatic mutations (tumor protein 53, TP53), breast
cancer type 1 and 2 susceptibility protein (BRCA1/
2), cyclin-dependent kinase 12 (CDK12), copy
number variation (cyclin E, CCNE1), SNV, and SV
signatures previously investigated in HGSOC, and
sum SNV and SV statistics per case inwhole genome
sequencing (WGS) data from BT collections.
c Comparison of gene-wise protein and transcript
correlations (5721 protein:transcript pairs) between
BT data with HGSOC data from CPTAC HGSOC
cohort (Spearman Rho = 0.598, p < 0.0001).
dComparison of protein and transcript correlations
by molecular subtypes (ConsensusOV classifica-
tions, DIF – differentiated, IMR – immunoreactive,
MES –mesenchymal, PRO – proliferative) classified
using BT transcriptome data (n = 70) as well as for
the CPTAC HGSOC cohort (n = 169); *designates
p-values corresponding to Mann–Whitney U
(MWU), p < 0.1, **MWU p < 0.05, *** MWU
p < 0.005. e Hierarchical analysis of consensus
clusters calculated from the top 25% variably
abundant proteins from 70 APOLLO-2 HGSOC BT
proteome data. f Kaplan–Meier plot of overall sur-
vival in patients with tumors harboring high
(MES_Upper: upper quartile, n = 18) versus low
(MES_Lower: lower quartile, n = 52) correlation
with nine prognostic proteins significantly elevated
inMES vsDIF&PRO tumors (Log Rank, p = 0.017).
g Kaplan–Meier overall survival curves from a
9-candidate expression signature correlating with
differential tumor purity from an independent
HGSOC cohort (n = 126)15 (Log-Rank, p = 0.011).
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between ET and BT WGS data, we did identify significant increases in
variant allele frequencies of somatic mutations in ETWGS data (e.g., TP53,
Supplementary Fig. 2A), along with significant increases in predicted
neoepitopes observed in both WGS as well as RNA-seq data (Supplemen-
tary Fig. 2B, Supplementary Data 2).

Evaluation of the ET WGS data showed that IMR and MES tumors
have significantly lower purities than DIF tumors (Supplementary Fig. 1C,
67.6%, p = 0.005 and 72.9%, p = 0.003, respectively) and have higher
immune cell and fibroblast scores, respectively (p ≤ 0.005, Supplementary
Data 2), whereas DIF and PRO tumors have comparable tumor purities
(~84.5%,p = 0.2761).We conducted globalMS-basedproteomic analyses of
BT and ET collections for a subset of metastatic tumors from ten patients
from whom we also analyzed BT and ET proteomes from the matched
adnexal tumor specimen (Supplementary Data 2). This paired analysis
demonstrated that BT proteomic profiles generally cluster by anatomic
location whereas ET proteomic profiles cluster in a patient centric manner,
suggesting that molecular profiles in ET preparations are highly conserved
irrespective of whether the tumor is from the adnexal or metastatic location
(Supplementary Fig. 2C, comparing average distances between matched
tumors for BT vs ET collections, p = 0.002).

An unsupervised analysis of ET proteome data identified 5 pre-
dominant consensus clusters that are associated with conventional HGSOC
molecular subtypes; cluster 1 is significantly associated with PRO, cluster 2

withDIF, cluster 3with IMR, andcluster 5withMES tumors (Fisher’s Exact,
p < 0.05, Fig. 2b), and are enriched for similar pathways (Supplementary Fig.
2D). Cluster 4 is comprised predominantly of IMR and DIF tumors and a
differential analysis compared to other clusters identified 145 significantly
altered proteins (LIMMA, p < 0.01, Supplementary Data 6) that, from
GSEA, are associated with pathways regulating mitosis, cell cycle, and
cytoskeletal organization.

Comparison of molecular subtypes in BT and ET collections
showed that a significant number of tumors classified as MES (n = 17,
39%) from BT transcriptome data transition to DIF (n = 9) as well as
IMR (n = 3) or PRO (n = 5) when classified from ET transcriptome
data (Mann–Whitney U p = 0.0016, Fig. 2c). This analysis is con-
sistent with a recent study published by our group6 showing that
molecular subtype classifications are impacted by tumor purity. To
this end, we performed a correlation analysis of molecular subtype
classifications for tumor cores, enriched and bulk tumor collections
for a single HGSOC patient tumor (Fig. 5a)6, and identified molecular
subtypes are well correlated between tumor cores and enriched tumor
collections (Spearman Rho = 0.81 ± 0.21), but poorly correlated
between tumor cores and whole tumor collections (average Spearman
Rho = 0.161 ± 0.71, MWU p < 1E−4, Supplementary Fig. 3), owing
largely to differential tumor purity. Pathology review of tumors that
did not reclassify from MES following LMD enrichment showed that
the tumor epithelial cells were highly infiltrated with stromal fibro-
blast cell populations that were not effectively decoupled using LMD.
Analysis of gene-wise protein:transcript abundance correlation values
for each patient tumor showed a significantly lower median corre-
lation for BT (R = 0.47) compared to ET collections (R = 0.52, MWU,
p = 0.0007, Fig. 2d). We investigated protein:transcript abundance
correlation for tumors exhibiting the largest difference in WGS-
informed tumor purity between BT and ET collections; the purity of
these 23 tumors increased by an average of 38.7% ± 7.7% (lower
tertile, Supplementary Data 2), and found that the median correlation
for BT collections was significantly lower (R = 0.379) versus enriched
tumor collections (R = 0.496, MWU, p = 0.0002) for these tumors. In
summary, comparison of overarching pathways enriched following
hierarchical cluster analysis shows that most tumors are explained by
conventional HGSOC molecular subtypes and tumor purity, with
lower purity MES tumors having the greatest propensity to be
reclassified to other molecular subtypes due to the enrichment of
tumor epithelium from stromal cells by LMD.

Identification of expression patterns that correlate with immune
cell infiltration and disease prognosis
Using bothunivariate (continuousCox and categorizedLog-Rank, p < 0.05)
and multivariate analyses as described above (continuous Chi-Square,
p < 0.05), we identified 69 proteins and 257 transcripts from ET datasets
associatedwith progression-free survival (PFS, SupplementaryData 7).One
candidate, NEK9 (NIMA Related Kinase 9), was significantly correlated
with altered disease prognosis at both the transcript and protein level.
Hierarchical analysis of these candidates shows that patient tumors organize
into four consensus clusters (Fig. 3a). We also identified that patients in
cluster 2 (n = 30) have a significantly longer progression-free interval (~1.5
years) than patients in the other clusters (Fig. 3b, Log-Rank, p < 0.0001) and
a significantly lower risk of death (Log Rank, p = 0.001, Supplementary Fig.
4A, Supplementary Data 8). We further identify cluster 2 patients experi-
ence improved disease prognosis following multivariate analysis (aHR, for
progression-free interval = 0.17, 0.09–0.35, Wald p-value < 1E−4 and for
overall survival aHR = 0.32 (0.15–0.68), Wald p-value = 0.003). We also
assessed whether cluster 2 patients were likely to be enriched for somatic
copynumber variations (CNVs), CCNE1amplification, tumors classified as
HRD by CHORD score, or to have mutations in BRCA1, BRCA2 or other
DNA damage response (DDR) genes recently described by Garsed et al.15

Our results showed cluster 2 patients aremore likely to harbormutations in
DDRgenes compared to other patients in our cohort (odds ratio,OR = 3.43,

Table 1 | Clinical characteristics of the APOLLO-2 high grade
serous ovarian cancer patient cohort

Clinical characteristic Case (%)

Age at diagnosis

<50 years old 5 (7)

50–59 years old 23 (33)

60–69 years old 27 (39)

70–80+years old 15 (21)

Race and ethnicity

Non-Hispanic White 62 (89)

Non-Hispanic Black 4 (5.5)

Hispanic, Asian/Pacific Islander, Mixed 4 (5.5)

Stage at diagnosis

III 52 (74)

IV 18 (26)

Topographic site

Ovarian 36 (51)

Tubal 15 (21)

Tubo-Ovarian 13 (19)

Peritoneal 6 (9)

Disease distribution

High 49 (70)

Moderate 17 (24)

Low 4 (6)

Residual disease

R0 (none or microscopic) 27 (39)

R1 (macroscopic >1 cm) 43 (61)

Progression-free survival

No Recurrence or Progression 10 (14)

Recurrence or Progression 60 (86)

Vital status

Alive 26 (37)

Dead 44 (63)
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95% CI = 1.24–9.44, Fisher’s Exact, p = 0.02). DDR genes implicated
included ATM, ATR, BRCA1, BRCA2, CDK12, CHEK1, CHEK2, FANCM,
and RB1 (Supplementary Data 2). A high proportion of cluster 2 patient
tumors were classified as IMR (Fisher’s Exact, p = 0.0001), had higher

immune scores (MWU, p < 0.003), and were more likely to have immune
cells present as determined by expert pathology review (Fisher’s Exact
p = 0.022, Supplementary Data 2). Using CIBERSORTX16, we found that
cluster 2 patient tumors were enriched withM1macrophages, CD8 T-cells,
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Fig. 2 | Proteogenomic analysis of high-grade serous ovarian cancers (HGSOC) -
characterization of enriched tumor collections. a Single nucleotide variants
(SNVs), insertion/deletion (indel), and structural variants (SVs) identified from
whole genome sequencing (WGS) data from laser microdissection (LMD) enriched
tumor (ET) cell populations compared to bulk tumor (BT) tissue collections from
the same specimen (*p reflects significance of Spearman Rho). b Hierarchical ana-
lysis of consensus clusters calculated from top 25%most variably abundant proteins

fromHGSOC ET proteome data (n = 70). c Sankey plot illustrating the transition of
molecular subtypes classified by ConsensusOV in BT and ET transcriptome data.
d Correlation analysis of global proteome and transcriptome data (7209 protein:-
transcript pairs) in BT collections (Spearman Rho = 0.47) is significantly lower
(Mann–Whitney U, MWU p = 0.0007) than the correlation (Spearman Rho = 0.52)
in ET collections (7598 protein:transcript pairs).
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treatment alone (blue line, baseline AUC = 0.701) or in conjunction with exhibiting
high correlation with 15 candidate immune signature (AUC = 0.829, P = 0.028).
e Kaplan–Meier PFS curves from an analysis of HGSOC long-term survivor tumors
with high (n = 61 tumor samples) vs. low (n = 65 tumor samples) correlation with a
15 candidate expression signature of immune cell infiltration (Log Rank, p = 0.036)
f Kaplan–Meier overall survival curves from an analysis of HGSOC long-term
survivors with high (n = 61) vs. low (n = 65) correlation with a 15 candidate
expression signature of immune cell infiltration (Log Rank, p < 0.001).
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and plasma cells (LIMMA, p < 0.05, Supplementary Data 9). Differential
analysis of ET proteomic data identified several significantly elevated pro-
teins in cluster 2 that are associated with immune cell activation, including
interferon-induced guanylate-binding protein 1 and 5 (GBP1 and GBP5)17,
cluster of differentiation 38 (CD38)18, and antigen processing including
transporter associated with antigen processing 1 and 2 (TAP1/2)19

(LIMMA, adjusted p < 0.05, Fig. 3c, Supplementary Data 10). Data from
RPPA showed that cluster 2 patients had significant (LIMMA, adjusted
p < 0.05) elevations in leukocyte common antigen, CD4520, major histo-
compatibility complex subunit, β2 macroglobulin21, as well as growth factor
receptor-bound protein 2 (GRB2), the latter of which plays important roles
in immune cell regulation22 (SupplementaryData 11). Despite these signs of
anti-tumor immunity, there were no significant differences in the propor-
tion or binding affinities of neoepitopes predicted in cluster 2 versus other
patient tumors (Supplementary Data 2, data not shown). We further
investigated the literature for drivers of immune exclusion and identified the
discoidin domain receptor 1 (DDR1) as regulating this event within other
solid tumor malignancies23. We then compared DDR1 protein abundance
relative to immune scores (ConsensusTME) using bulk and enriched tumor
collections and identified DDR1 protein as inversely correlated with
immune scores in bulk (Rho =−0.372, p = 0.0015), and trending as such in
enriched tumor (Rho =−0.18, p = 0.136) collections.

A recent analysis of the HGSOC tumor microenvironment described
by Zhang et al. illustrated that TILs have discrete infiltration patterns into
both tumor epithelium and stroma (ES-TIL type) or are restricted to stroma
(S-TIL); it was also identified that ES-TIL and S-TIL patients have a better
disease prognosis in comparison with patient tumors with low or no
immune cell infiltration (N-TIL)24. To further explore this immune infil-
tration pattern at the protein level, we procured representative specimens
from the Zhang et al. cohort and conducted a quantitative MS-based pro-
teomic analysis of ES-TIL (n = 11 tumor samples), S-TIL (n = 12), and
N-TIL (n = 42) BT tissues (Supplementary Data 12). Consistent with
transcript-level evidence from Zhang et al., our proteome-level data simi-
larly suggested that ES-TIL and S-TIL tumors have significantly higher
immune scores thanN-TIL tumors (Supplementary Fig. 4B). The proteome
profile of ES-TIL tumors strongly correlated with cluster 2 tumors, but not
with N-TIL tumors (MWU, p = 0.0024) (Supplementary Fig. 4C). We
identified 15 proteins significantly altered between cluster 2 versus other
patient tumors that were strongly associated with PFS (multivariate Chi-
Square, p < 0.05). We further investigated the impact of high correlation
with these 15 features on prediction of disease recurrence alongwith clinical
variables known to correlate with this risk (Fig. 3d) and identified that
integration of all features was correlated with a significant improvement in
predicting disease recurrence (AUC = 0.829) in comparison with clinical
variables alone (AUC = 0.701, p = 0.028). These 15 proteins were also sig-
nificantly associated with ES-TIL (median R = 0.48) (Supplementary Fig.
4D) and IMR tumors in the CPTAC HGSOC cohort (MWU, p < 0.0001,
Supplementary Fig. 4E)8. We further investigated protein abundance of
DDR1 in the cohort from Zhang et al. and identified this protein is sig-
nificantly decreased in ES & S-TIL in comparison to N-TIL tumors (ES &
S-TIL vs N-TIL: −0.42 logFC, LIMMA p = 0.02). We investigated the
relationship of these 15 TIL-related proteins in transcript-level data from a
cohort of 126 HGSOC patients characterized by long-term (>10 years,
n = 60), moderate-term (3–9 years, n = 32) and short-term (<2 years,
n = 34) OS15 and found significant associations with PFS (Log Rank,
p = 0.036, Fig. 3e) andOS (LogRank, p < 0.001, Fig. 3f, SupplementaryData
8). We investigated this TIL-related protein panel in the CPTAC HGSOC
cohort and, although none of these proteins were independently associated
with PFS or OS, patients with tumors having higher expression correlation
values (R ≥ 0.5, n = 17) for these fifteen proteins had an 80% lower risk of
death (odds ratio, OR= 0.2, 95% CI = 0.055–0.72, Fisher’s Exact, p = 0.014)
in comparison to patients with tumors with lower correlations (R ≤−0.5,
n = 31). This finding is strongly supported by transcript level evidence from
TCGAwhereHGSOCpatients with tumors that correlatedwith this feature
set (upper quintile,n = 97)were less likely todie compared to lower quartiles

(n = 392, OR = 0.58, 95% CI = 0.37–0.91, Fisher’s Exact, p = 0.02, Supple-
mentary Fig. 4F).

Identification of HRD-associated proteins and transcripts in
enriched tumor cell populations
Homologous recombination deficiency status was determined from BT
WGS-derived somatic mutation data by estimating telomeric allelic
imbalance, loss of heterozygosity, and the number of large-scale transitions
using scarHRD25, aswell by a random forest classifier developed fromapan-
cancer analysis of HRD tumors (CHORD score)26. Eighteen tumors were
classified as HRD using CHORD that also have significantly higher
scarHRD scores than HR proficient (HRP) classified tumors (MWU,
p < 0.0001, Supplementary Data 2), many of which not surprisingly harbor
germline or somatic alterations in BRCA1 and BRCA2 genes (Fig. 4a),
genetic alterations known to underpin HRD26. Patient tumors classified as
HRD for which we did not identify BRCA1 or BRCA2mutations did have
lower levels of the BRCA1 transcript relative to HRP tumors and we iden-
tified that the BRCA1 gene promoter was significantly (LIMMA, adjusted
p < 0.05) hypermethylated in these cases compared to others (Supplemen-
tary Data 2, Supplementary Data 13). Patients with tumors classified as
HRD by CHORD had a significantly lower risk of death relative to patients
withHRP tumors (OR= 0.31, 95%CI = 0.1–0.94, Fisher’s Exact, p = 0.039).
We did not, however, observe significantly different immune scores
(ConsensusTME) between tumors classified as HRD (average score = 0.01)
versus HRP (average score =−0.008, MWU, p = 0.31).

A differential analysis of HRD vs HRP from ET specimen MS-
proteomics data identified 350 significantly altered proteins (LIMMA,
p < 0.01),many ofwhich are involved in pathways regulatingmitochondrial
and metabolic activity in HRD tumors (Supplementary Data 14). Of note,
we observed amarked elevationof core subunits ofmitochondrial complex I
(Fig. 4b, Supplementary Data 14) in HRD tumors, which we found to not
likely be from altered mitochondrial load based on an orthogonal immu-
nohistochemical analysis of COX-IV27 in a subset of HRD (n = 8) andHRP
(n = 9) patient tumors (Supplementary Data 2). We compared protein
alterations in matched metastases for two HRD patients (A072, A096) and
identified 92 proteins elevated in these tumors compared to metastatic
specimens from HRP patients, and these again were associated with path-
ways regulating mitochondrial regulation and metabolic activity. We also
compared protein alterations between HRD (n = 13) and HRP (n = 35)
tumors for a cross-section of our cohort with global proteome data gener-
ated for matched enriched tumor and stroma collections (Supplementary
Fig. 5). We identified little overlap of significantly altered proteins between
enriched tumor or enriched stroma populations between HRD and HRP
tumors (Supplementary Fig. 5A) and observed enrichment of pathways
regulating mitochondrion organization in tumor, but not stroma cell
populations (Supplementary Fig. 5B). We further compared proteins sig-
nificantly altered betweenHRD andHRP tumors with differences in tumor
purity estimates betweenbulk and enriched tumor collections and identified
that high correlation of protein alterations in bulk and enriched tumor
collections was negatively correlated with tumor purity differences (Spear-
man Rho =−0.562, p = 0.046, Supplementary Fig. 5C). These analyses
suggest the HRD associated expression features prioritized are highly spe-
cific for tumor cell populations.

We next sought to identify whether proteins and/or transcripts iden-
tified inHRD versusHRP tumors could effectively classify tumors based on
HR status. A differential analysis of proteome and transcriptome level data
identified 54 altered protein and transcript candidates between HRD and
HRP tumors (LIMMA, adjusted p < 0.05, Fig. 4c, Supplementary Data 15).
Further investigation identified five of these candidates are significantly co-
altered (LIMMA adjusted p < 0.05) at protein and transcript levels and
exhibit concordant abundance trends, including EPPK1 and Pyrroline-5-
carboxylate reductase (PYCRL) elevated inHRD vsHRP tumors and BMI1
Proto-Oncogene, Polycomb Ring Finger (BMI1), WD Repeat Domain 41
(WDR41), KH RNA Binding Domain Containing, Signal Transduction
Associated 1 (KHDRBS1) reduced in HRD vs HRP tumors. There are also
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36 candidates co-quantified at the protein and transcript levels with sig-
nificantly correlated abundance trends in HRD vs HRP tumors (Spearman
Rho = 0.813, p < 1E−4). Using sparse Partial Least Squares Discriminant
Analysis (sPLS-DA), we found that this expression-based signature could
classify HR status (n = 18 HRD and n = 51 HRP) with high sensitivity and

specificity based on ET transcript data (RNA-seq, average AUC = 0.987
following 1000 iterations in sPLS-DA, average p < 1.01E−9). We assessed
performance of this signature in transcript-level data (RNA-seq) in an
independent HGSOC cohort (n = 69 HRD and n = 57 HRP) from Garsed
et al. where HR was also classified fromWGS data by CHORD15. Not only

Fig. 4 | Identification of proteins and transcripts in enriched tumor cell popu-
lations associated with homologous recombination deficiency in high-grade
serous ovarian cancer. a Integration of germline and somatic mutation status for
breast cancer type 1 and 2 susceptibility protein (BRCA1/2), and classification of
tumors as homologous recombination deficient (HRD) or proficient (HRP) by
probability of HRD (continuous) by CHORD score and scarHRD. b Top pathways
enriched among proteins significantly altered (LIMMA p-value < 0.01) between
patient tumors classified as HRD or HRP; default settings in metascape.org.

c Differential analysis of enriched tumor cell proteome (left panel) and transcript
(right panel) data from HRD (n = 18) vs HRP (n = 51) patients (LIMMA, adjusted
p < 0.05). d Correlation analysis of 54 HRD-associated transcripts with an inde-
pendent cohort of HGSOC patients classified as HRD (n = 69) or HRP (n = 57) by
CHORD score (R = Spearman Rho). e Classification of HRD (n = 69) vs HRP
(n = 57) tumors using an integrated 54 protein/transcript HRD expression signature
in an independent cohort of HGSOC patients (receiver operating characteristic
curve, AUC = 0.81, p < 1E−9).
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didwe identify a strong quantitative correlationwith theGarsed et al. cohort
(Fig. 4d, R = 0.856, p < 2.2E−16), but further identified that the APOLLO-2
54 transcript signature classified HR status in the Garsed et al. cohort with
high sensitivity and specificity (Fig. 4e, average AUC = 0.81 for 1000 itera-
tions in sPLS-DA considering coefficients identified in our training analysis
noted above in our model, average p < 3.35E−9). Finally, we evaluated the
performance of our HRD expression signature in proteome- and
transcriptome-level data from CPTAC and TCGA, respectively8,9. We
found that 33 candidates from our HRD signature mapped to global pro-
teome data from the CPTACHGSOC cohort8 and identified that these are
strongly correlated with BRCA1 and BRCA2mutant (n = 15) compared to
wild type (n = 125) CPTAC HGSOC tumors (Supplementary Fig. 6A,
R = 0.493, p = 0.004). In TCGA, 43 of the 54 transcripts mapped to
microarray gene expression data and we also found these to be highly
correlated between BRCA1 and BRCA2 mutant (n = 67) or wild type
(n = 422) HGSOC tumors (R = 0.74, p < 1E−6, Supplementary Fig. 6B)9.

Pharmacologic small molecule BMI1 inhibitors selectively kill
HRP HGSOC cells
Arising from the lack of therapeutic options for HRP HGSOC patients and
the absence of “targetable”drivermutations in this population, we sought to
uncover putative drug targets in our expression level data.We identified that
BMI1 is significantly elevated at the protein and transcript level in HRP
HGSOC tumors26 in our APOLLO-2 cohort, as well as in the Garsed et al.15

cohort and inHGSOCtumorswithoutmutations inBRCA1orBRCA2 from
the TCGA9 study (Fig. 5a). We also find that elevated BMI1 expression is
correlated with an increased risk of disease progression (aHR = 2.39, Chi-
square p = 7E−5, Fig. 5b) in a cohort of 126 HGSOC patients15 and worse
overall survival in this same cohort (aHR = 2.12, p = 1E−3, Supplementary
Fig. 5C) and an independent cohort of 440 HGSOC patients9 (aHR = 1.34,
p = 0.016, Supplementary Fig. 7A) following multivariate analysis (aHR for
Garsed et al. reflects 122 patients, excluding 4 patients that received
neoadjuvant chemotherapy, Supplementary Data 16). We also identified
that elevatedBMI1 is correlatedwithworsedisease outcome inHRP (n = 57,
aHR = 2.47, p = 0.02), but not HRD (n = 69, aHR = 1.6, p = 0.153, Fig. 5d)
HGSOC patients, as well as in HGSOC patients with wild-type BRCA1 or
BRCA2 (n = 379, aHR = 1.36, p = 0.02) compared to patients harboring
mutations in these genes (n = 61, aHR= 1.00, p = 0.997, Supplementary Fig.
7B) following adjustment for covariates noted above (Supplementary Data
16). We investigated the impact of BMI1 inhibition in a previously
described28 isogenic cell line model of HRD (UWB1.289) and HRP
(UWB1.289+ BRCA1) HGSOC cells. We confirmed BRCA1 expression
and assessedBMI1protein levels inUWB1.289+ BRCA1versusUWBcells
(Supplementary Fig. 7C). We then assessed two pharmacologic small
molecule inhibitors of BMI1 (PTC-02829 and PTC596) in these cell lines by
colony survival assay and observed that UWB1.289+ BRCA1 cells are >2-
fold and>1.5-foldmore sensitive toPTC-028andPTC596, respectively (Fig.
5e, Supplementary Data 17).

Discussion
Our study employedLMDto conduct an integrated proteogenomic analysis
of matched, BT and ET collections from 70 HGSOC tumors. Key findings
from our comparison of BT and ET show that most MES tumors classified
from BT collections reclassify to the DIF subtype in ET collections. Recent
evidence from our group6 and others7,30 has shown that MES tumors are
typified by having high stromal cell content and the data presented here
corroborates these findings at a cohort level. Our data show that the pro-
tein:transcript correlation values are higher in high purity PRO subtypes
versus the lower purity IMR and MES subtypes. Recent evidence from our
group6 and others31,32 has shown that protein:transcript abundance corre-
lations are lower innormal tissues in comparison to tumor cells.Ourfinding
that molecular subtypes with high proportions of normal cell populations
(e.g., immune and stromal cells) also have lower protein:transcript corre-
lation values are consistent with these previous reports. Our data demon-
strate significant increases in sensitivity for identifying somatic mutations

and structural variants from WGS generated from ET samples and, most
notably, higher proportions of predicted neoepitopes. This latter finding
suggests that LMD enrichment of tumor epithelium may improve the
coverage of neoepitopes and further that this workflow may better support
personalized immunotherapy workflows, such as adoptive T-cell transfer.

We identifiednine proteins elevated inMES tumors that correlate with
an increased risk of death and validated this association in an independent
cohort of HGSOC patients (n = 126), which includes a large proportion of
exceptionally long-term survivors ( > 10 years)15. Of note, we found that
most of these proteins are elevated in stromal compared to tumor cells and
inversely correlated with tumor purity. We validated a number of these
proteins inCPTACHGSOCdata, namelyTIMP3,aprotease localized to the
extracellular matrix that has previously been correlated with poor OS in
HGSOC33, and MXRA8, a transmembrane protein that has been identified
as a marker of cancer-associated fibroblasts in pancreatic cancer34 that also
correlates with poor outcome in glioma35.

Unsupervised analysis of the proteomic data from ET collections
resulted in a cluster of HGSOC patients characterized by a sig-
nificantly longer progression-free interval (~1.5 years) than the other
patients in our cohort. We identified that these patient tumors have
transcript signatures consistent with the presence of immune cells. As
enrichment of immune transcript signatures within LMD-ET col-
lections suggests intratumoral immune cell infiltration, we were
motivated to correlate proteome alterations identified within our
cohort with an independent cohort of tumor specimens derived from
BT proteomics data from three major TIL HGSOC subtypes: ES-TIL
(tumors with substantial levels of both epithelial and stromal TILs)
S-TIL (tumors dominated by stromal TILs), and N-TIL (tumors
sparsely infiltrated by TILs). We found that proteins associated with
longer PFS were most highly correlated with ES-TIL tumors, followed
by S-TIL, and less so in those classified as N-TIL. We identified
fifteen proteins that strongly correlated with PFS in our cohort,
independent of common covariates of disease progression (e.g.,
patient age at diagnosis, disease stage and residual disease status),
that included several proteins known to regulate antigen
presentation36 (TAP2, adjusted hazard ratio, aHR = 0.76, p = 0.02),
T-cell activation37 (SPN, aHR = 0.7, p = 0.014) and have further been
correlated with regulating immune cell infiltration in other organ-site
malignancies38 (EMC2, aHR = 0.27, p = 4.4E−4). We investigated
these immune-related candidates in transcript data from an inde-
pendent cohort of 126 HGSOC patients15, many of whom survived
greater than 10 years, and confirmed that these 15 immune-related
proteins strongly correlate with PFS and OS. We further identified
the discoidin domain receptor 1 (DDR1), a protein kinase shown to
promote immune exclusion in other solid tumor malignancies23,39, as
inversely proportional to immune scores calculated using Con-
sensusTME from companion transcriptome data, suggesting similar
roles for this protein in HGSOC. We found that this immune-related
protein signature was associated with a lower risk of death in
HGSOC patients in CPTAC8 and TCGA9 data. Hence, this analysis
identified and validated proteins correlating with immune cell infil-
tration and improved disease prognosis, and future efforts will be
focused on investigating the role of these candidates in regulating
immune surveillance of HGSOC tumor cells.

We explored expression alterations in LMD ET cell populations from
HRD or HRP tumors and identified proteins associated with pathways
regulating mitochondrial and metabolic activity uniquely elevated in HRD
tumor epithelium. Recent evidence has shown that HR deficient breast and
ovarian cancers have an increased dependency on oxidative phosphoryla-
tion (OXPHOS) rather thanglycolysis for energymetabolismand thatHRD
tumor cells have elevated complex I respiratory chain subunits, such as
NADH:Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2)40–42. We
found several mitochondrial complex I subunits to be elevated in HRD
tumors, which we demonstrated by IHC was not likely due to differential
mitochondrial load within cellular subpopulations. We further compared
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proteins altered in enriched tumor and stroma populations fromHRD and
HRP tumors and confirmed the alterations correlating with altered meta-
bolism and mitochondria likely originate from tumor, not stroma cell
populations.We identified a combined protein and transcript signature that
enabled the classification of HR status with high predictive accuracy, which

we validated in an independent cohort of HGSOC tumors15. Additional
investigation of our HR expression signature in independent CPTAC8 and
TCGA9 HGSOC tumor cohort data showed a high quantitative correlation
to BRCA1 or BRCA2 mutational status. These analyses identified and
validated a non-gene centric, yet highly accurate, expression signature for
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classifyingHRD status in HGSOC tumors. Future efforts will be focused on
exploration of expression alterations we have identified as altered between
HRD and HRP tumors with the goal of defining mechanistic contributions
to the HRD phenotype.

Our proteomics analysis identified that HRP tumors are enriched in
pathways regulating chromatin and DNA replication, including elevated
polycomb complex protein BMI-1 (HRP vs HRD logFC: +0.96, adjusted
p = 0.03), which is a protein involved in regulating homologous recombi-
nation repair43 and is the target of oral, small molecular BMI-1 inhibitors44.
We further identified elevated transcript and protein levels of BMI1 in both
HRP and BRCA1/2 wild-type HGSOC tumors. That BMI1 is involved in
regulating homologous recombination repair43 and is the target of phar-
macologic small molecule inhibitors (PTC02829 and PTC59644), we sought
to further understand whether this protein represented a hitherto unrec-
ognized player in the ovarian cancer HRP phenotype. Notably, we find that
elevated BMI1 correlates with worse overall survival following multivariate
analysis in >500HGSOCpatients between two independent cohorts9,15 and,
furthermore, observe that this relationship remains significant in tumors
classified as HRP or as having wild-type BRCA1 or BRCA2 in comparison
with HRD tumors or as having mutated BRCA1/2. We further identify that
HRP (UWB1.289+ BRCA1) HGSOC cells exhibit increased sensitivity to
PTC-028 and PTC596 than HRD (UWB1.289) HGSOC cells. Notably, we
find that UWB1.289+ BRCA1 cells are more sensitive to PTC-028, a drug
that has been shown to induce cellular apoptosis via degradation of BMI129,
than PTC-596, which has also been shown to degrade BMI1 but to addi-
tionally inhibit tubulin polymerization resulting in apoptosis45. The elevated
abundance of BMI1 in HRP HGSOC tumor cells and the recently
described43 role of BMI1 in regulating homologous recombination repair
supports the increased sensitivity of HRP (UWB1.289+ BRCA1) cells to
PTC-028 and suggests these cells are more dependent on BMI1 than HRD
(UWB1.289) HGSOC cells. Additional investigation of BMI-1 abundance
and overall survival in the Garsed et al. cohort identified that there is no
significant difference between disease outcome for HRP/BMI1 low tumors
in comparison to HRD tumors regardless of BMI1 abundance status, sug-
gesting that inhibition of BMI1 in HRP backgrounds could in concept
phenocopy HRD through promotion of an HR deficient phenotype. This
further suggests that combination treatment with BMI1i and a poly (ADP-
ribose) polymerase inhibitor may represent a novel targeted therapeutic
strategy for HRP HGSOC patients and investigating this combination as
well as performing further confirmatory investigations of BMI1 inhibitor
sensitivity in HRPHGSOC cell line backgrounds will be the focus of future
efforts. These results, paired with the unique relationship of BMI1 abun-
dance with disease outcome in HRP, but not HRD patients, suggest that
targeting BMI1 may represent a hitherto unrecognized therapeutic oppor-
tunity in HRP proficient HGSOC tumors.

The clinical applications of these data are innovative and particularly
applicable to ovarian cancer patients with poor prognostic features.
Approximately 70% of the patients in this cohort had disease in the upper
abdomen anddespite aggressive cytoreductive procedures, ~60%of patients
had visible residual at the time of primary debulking surgery. Inclusion of
patients with widespread disease distribution patterns led to analysis of
tumors across awide spectrumof tumor purity (10–90%,mean 50%) unlike
TCGA and CPTAC which included tumors with >70% tumor cell nuclei.

Although the number of patients characterized as HRD is lower than the
generalized population of ovarian cancer patients46, this reflects the
aggressive cancer phenotypes included in our cohort. Using enrichment
techniques, we have demonstrated significant increases in sensitivity for
identifying somaticmutations and structural variants fromWGS generated
from ET samples (compared to BT preparations) and, most notably, higher
proportions of predicted neoepitopes. This latter finding suggests that LMD
enrichment of tumor epitheliummay improve the coverage of neoepitopes,
and thisfinding suggests that thisworkflowmaybetter support personalized
immunotherapyworkflows, such as adoptiveT-cell transfer. Theprognostic
relevance of our immune and the purity-associated expression signatures
remained significantly predictive of disease outcomes followingmultivariate
modeling with prediction models being validated in independent case sets.
Our data verify that historical expression-based tumor types are largely
reflective of tumor purity and that multiple prognostically relevant proteins
are actually stromal in origin. Our data have further identified multiple
examplesof targetable candidates identified through enrichment techniques
thatwouldotherwisehavebeenmissedwith analysis ofBT. In summary, our
proteogenomic analysis provides important new clinically relevant insights
into HGSOC tumor cell populations, and have uncovered prognostic pro-
teogenomic alterations correlating with TILs, low tumor purity, as well as
expression alterations associated with HRD status and immune infiltration.

Methods
Patient cohort
Fresh-frozen tumor tissues and blood samples were selected from patients
enrolled in the WCG IRB approved (#20110222) Tissue and Data Acqui-
sition Study of Gynecologic Disease who underwent primary debulking
surgery or a diagnostic laparoscopy at Inova Fairfax Medical Campus
(Inova), Duke University Medical Center (Duke) or the Ohio State Uni-
versity (OSU); all experimental protocols involvinghumandata in this study
were in accordance with the Declaration of Helsinki and written informed
consent was obtained from all subjects involved in the study. Patients
receiving neoadjuvant chemotherapy prior to surgery were not eligible for
analysis.Most tumor tissues were collected from adnexal sites (n = 49), such
as the ovary (n = 48) or fallopian tube (n = 1) with the remainder being
collected from metastatic sites (n = 21), such as the omentum (n = 12) or
other organ sites (n = 9) (Supplementary Data 2). Representative hema-
toxylin and eosin-stained tissue sections generated for all tumor samples
underwent expert pathology review by a board-certified pathologist (BAC
and/or PMF). Pathology review confirmed a diagnosis of high grade serous
ovarian cancer and provided relative proportions of cellular subpopulations
of interest.

Tissue collections and molecular extraction for proteogenomic
analysis
Fresh-frozenpatient tumorswere embedded inoptimal cutting temperature
(OCT) compound and sectioned (8 µm) onto glass slides for hematoxylin
and eosin (H&E) staining for pathology review or onto polyethylene
naphthalate (PEN) membrane slides for laser microdissection. All PEN
membrane sections were stained with H&E and stains for sections destined
for LMD harvests for nucleic acid extraction included RNase inhibitors
(RNAProtect, SigmaAldrich). Tissue sections destined forDNA, RNA, and

Fig. 5 | Polycomb complex protein BMI-1 is elevated in homologous recombi-
nation proficient (HRP) HGSOC tumors and HRP HGSOC cells exhibit
increased sensitivity to pharmacologic BMI1 inhibitors. a BMI1 protein abun-
dance in HRD (n = 18, APOLLO-2, AP2) and HRP (n = 51, AP2) and BMI1 tran-
script abundance inHRD (AP2& n = 69,multidisciplinary ovarian cancer outcomes
group cohort, MOCOG) and HRP (AP2 & n = 57, MOCOG) as well as in HGSOC
tumors with (n = 61, TCGA) or without (n = 391, TCGA) mutations in BRCA1 or
BRCA2; p-value reflects Mann–Whitney U rank sum testing. b Progression-free
survival curves forHGSOCpatients with BMI1 high (BMI1_high, n = 63) versus low
(BMI1_low, n = 63) BMI1 transcript levels; p-value reflects Log Rank testing.

c Overall survival curves for HGSOC patients with BMI high (BMI1_high, n = 63)
versus low (BMI1_low, n = 63) BMI1 transcript levels; p-value reflects Log Rank
testing. d Overall survival curves for HGSOC patients with BMI high (BMI1_high)
versus low (BMI1_low) BMI1 transcript levels stratified by HRD (n = 69, multi-
variate p-value = 0.153, log rank p-value = 0.44) and HRP (n = 57, multivariate p-
value = 0.02, log-rank p-value = 0.026) status (Supplementary Data 16). e Results
from colony survival assays for UWB1.289 and UWB1.289+ BRCA1 treated with
BMI1 inhibitors PTC-028 or PTC-596; p-value reflects Mann–Whitney U rank sum
testing (**p = 0.0021, *p = 0.04); the results reflect three independent, biological
replicate experiments.
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protein extractions were generated from sequential sections generated from
each patient tumor block. Laser microdissection was performed (LMD
6500, Leica Microsystems, Wetzlar, Germany) to harvest cellular popula-
tions of interest from pathologically-defined regions. Enrichment of tumor
and stroma cell populations was performed to achieve greater than 95%
purity for each cellular population, avoiding regions of fat or necrosis.

Preparation of DNA samples
Germline DNA was extracted from patient blood samples (n = 69) and
tumor DNA was collected from tumor scrolls (BT collections) or by LMD
(ET cell populations) (n = 69). Samples were collected directly into micro-
fuge tubes supplemented with ATL buffer (Qiagen Sciences, LLC, Ger-
mantown, MD). Samples were normalized to 360 µL ATL buffer and 40 µL
of proteinase K was added for lysis and incubated at 56 °C for 4 h with
intermittent shaking. DNA isolation was performed according to the
manufacturer’s protocol (DNA Purification from Tissues) using the
QiAamp DNA Mini Kit (Qiagen Sciences, LLC). DNA was eluted after a
10min incubation with 40 µL of Buffer AE, followed by another 10min
incubation with 160 µL of nuclease-free water (Thermo Fisher Scientific)
and reduced to 50 µL by vacuum centrifugation (CentriVap Concentrator,
Labconco, Kansas City, MO). Quantity and purity (260/280 ratio) were
assessed spectrophotometrically (Nanodrop 2000 Spectrophotometer,
Thermo Fisher Scientific, Inc.) and fluorometrically (Quant-iT PicoGreen
dsDNA Assay Kit, Thermo Fisher Scientific) according to manufacturer’s
protocols.

Preparation of RNA samples
Tissue sections on PEN membrane slides were manually scraped (BT col-
lections, representing all tissue sectioned onto a slide) or underwent LMD
(ET collections, representing ET cell populations) directly into Buffer RLT
with β-mercaptoethanol (Qiagen). RNA was purified using the RNeasy
Micro Kit (Qiagen) per the Purification of Total RNA fromMicrodissected
Cryosections Protocol including on-column DNase digestion. RNA con-
centrationsweredeterminedusingQubitRNAHighSensitivity kit (Thermo
Fisher Scientific, Inc.). RNA integrity numbers (RIN) were calculated using
the RNA 6000 Pico Kit on the 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA).

Specimenpreparation formassspectrometry-basedproteomics
and reverse phase protein arrays
Collection of HGSOC cancer tissues using LMD, sample digestion, pre-
paration of TMT multiplexes and offline, basic reversed-phase liquid
chromatographic (bRPLC) fractionation was performed essentially as pre-
viously described47,48. Briefly, BT, ET, and ES were harvested by LMD; the
average tissue area collected per sample was 70mm2 (BT and ET, n = 70) or
25 mm2 (enriched stroma, n = 48). Enriched tumor samples for reverse
phase protein array (RPPA) analysis were collected using LMDas described
above into SDS lysis buffer. Bulk tumor collections from fresh-frozen tissues
for HGSOC tumors previously described by Zhang et al.24 were also col-
lected for quantitative proteomic analysis as described below. Samples were
collected into 20 µL of 100mM TEAB/10% acetonitrile, pH 8.0 in Micro-
Tubes (Pressure BioSciences, Inc, South Easton, MA) and were lysed and
digestedwith aheat-stable formof trypsin (SMARTTrypsin,ThermoFisher
Scientific, Inc.) employing pressure cycling technology with a barocycler
(2320EXT Pressure BioSciences, Inc). Peptide digests were transferred to
0.5mL microcentrifuge tubes, vacuum dried, resuspended in 100mM
TEAB, pH 8.0 and peptide concentration was determined using the
bicinchoninic acid assay (Thermo Fisher Scientific, Inc.). Equivalent
amounts of peptide (40 µg for ET and BT and 5 or 10 µg for enriched
stroma), along with a reference sample generated by pooling equivalent
amounts of peptide digests from individual patient samples, were aliquoted
into a final volume of 100 µL of 100mM TEAB and labeled with tandem-
mass tag (TMT) isobaric labels (TMT-11plex™ Isobaric Label Reagent Set,
Thermo Fisher Scientific, Inc.) according to manufacturer’s recommenda-
tions.EachTMT-11multiplexwas loadedontoaC-18 reversed-phase liquid

chromatography trap column in 10mMNH4HCO3 (pH 8.0) and resolved
into 96 fractions through development of a linear gradient of acetonitrile
(0.69% acetonitrile/min) on a 1260 Infinity II liquid chromatograph (Agi-
lent Technologies). For ET and BT TMT multiplexes, concatenated frac-
tions (36 pooled samples representing 10% of the entire peptide sample)
were generated for global LC-MS/MS analysis. For ES, 36 concatenated
fractions were generated using 100% of the samples for global LC-MS/MS
analysis.

DNA PCR-free library preparation and whole genome
sequencing
TruSeq DNA PCR-free Library Preparation Kit (Illumina, San Diego, CA)
was performed following manufacturer’s instructions. Briefly, genomic
DNA (gDNA) was diluted to 20 ng/μL using Resuspension Buffer (RSB,
Illumina) and 55 μL was transferred to Covaris microTubes (Covaris,
Woburn, MA). The normalized gDNA was then sheared on an LE220
focused-ultrasonication system (Covaris) to achieve target peaks of 450 bp
with an Average Power of 81.0W (SonoLab settings: duty factor, 18.0%;
peak incident power, 45.0 watts; 200 cycles per burst; treatment duration,
60 s; water bath temperature, 5–8.5 °C). The quality of the final DNA
libraries was assessed (High Sensitivity dsDNA, AATI) as per manu-
facturer’s protocol; library peak size was in the range of 550 to 620 bp. The
DNA libraries were quantified by real-time quantitative PCR, using the
KAPA SYBR FAST Library Quantification Kit (KAPA Biosystems, Boston,
MA) optimized for the Roche LightCycler 480 instrument (Roche, India-
napolis, IN). Low input amount samples were libraried using the Illumina
DNA PCR-free Prep, Tagmentation and IDT for Illumina DNA/UD
Indexes Set A (Illumina, CA) with minor modifications to the manu-
facturer’s protocol for automation and incubation on a Hybex incubator.
Single stranded sequencing libraries were not assessed for size distribution.
DNA libraries were then normalized to 2 nM and clustered on the Illumina
cBot 2 at 200 pM using a HiSeq X Flowcell v2 and the HiSeq X HD Paired-
End Cluster Generation Kit v2. Paired-end sequencing was performed with
the HiSeq X HD SBS Kit (300 cycles) on the Illumina HiSeq X.
Tagmentation-based sequencing libraries were sequenced on a NovaSeq
6000 (Illumina, CA) using a NovaSeq S4 Flowcell and SBS Kit (300 cycles).
Mean genome coverage was >30X for germlineDNA samples and >90X for
tumor DNA samples. WGS sample raw reads were aligned to the hg38
reference genome and further processed through the Resequencing work-
flow within Illumina’s HiSeq Analysis Software (HAS; Isis version
2.5.55.1311; https://support.illumina.com/sequencing/sequencing_
software/hiseq-analysis-software-v2-1.html). This workflow utilizes the
Isaac read aligner (iSAAC-SAAC00776.15.01.27) and variant caller (starka-
2.1.4.2)49, the Manta structural variant caller (version 0.23.1)50, and the
Canvas CNV caller (version 1.1.0.5)51. Tumor purity estimates were derived
tumor WGS data by Canvas in the Illumina Tumor Normal Workflow52.

RNA-seq analyses and data processing
Sequencing libraries were prepared from 500 ng of total RNA input using
the TruSeq StrandedmRNA Library Preparation Kit (Illumina) with index
barcoded adapters. Sequencing library yield and concentration were
determinedusing the Illumina/Universal LibraryQuantificationKit (KAPA
Biosystems) on the CFX 384 real time system (Bio-Rad, Hercules, CA).
Library size distribution was determined using the Fragment Analyzer TM
(Advanced Analytical Technologies, Inc, Ames, IA) with adapter dimer
contamination confirmed to be less than 0.3%. Clustering and sequencing
were performed on theHiSeq 500 (Illumina) using aHighOutput 150 cycle
kit for paired-end reads of 75 bp length and an intended depth of 50million
reads per sample. RNA sequencing data were aligned to HG38 and pro-
cessed to normalized gene expression values as previously described52. Raw
mapped read counts underwent VST normalization using DESeq2 (3.14).

Liquid chromatography-tandemmass spectrometry
Liquid chromatography-tandemmass spectrometry (LC-MS/MS) analyses
of TMT-11multiplexes was performed essentially as previously described47.
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In brief, each concatenated TMT fraction (5 μL, ~600 ng) was loaded on a
nanoflow high-performance LC system (EASY-nLC 1200, Thermo Fisher
Scientific) employing a two-column system comprised of a reversed-phase
trap column(AcclaimTMPepMapTM100, 75 μm×2 cm,nanoViper,Thermo
Fisher Scientific) and a heated (50 °C) reversed-phase analytical column
(PepMapTM RSLC C18, 2 μm, 100 Å, 75 μm × 50 cm, nanoViper, Thermo
Fisher Scientific) connected online with an Orbitrap mass spectrometer (Q
Exactive HF-X, Thermo Fisher Scientific). Peptides were eluted by devel-
oping a linear gradient of 2%mobile phase A (2% acetonitrile, 0.1% formic
acid) to 32% mobile phase B (95% acetonitrile, 0.1% formic acid) within
120min at a constant flow rate of 250 nL/min. High-resolution (R = 60,000
at m/z 200) broadband (m/z 400–1600) mass spectra (MS) were acquired,
from which the top 12 most intense molecular ions in each MS scan were
selected for high-energy collisional dissociation (HCD, normalized collision
energy of 34%) acquisition in the Orbitrap at high resolution (R = 60,000 at
m/z200). Spray voltagewas set to2.1 kV, S-LensRF levelwas set to 40%, and
capillary temperature was set to 275 °C. Peptide molecular ions selected for
HCD were restricted to z = 2–4 and both MS1 and MS2 spectra were col-
lected in profile mode. Dynamic exclusion (t = 20 s at a mass tolerance = 10
ppm) was enabled to minimize redundant selection of peptide molecular
ions forHCD.Mass spectrometry datafiles were searched against a publicly
available, non-redundant human proteome database (Swiss-Prot, Homo
sapiens, http://www.uniprot.org) using Mascot (Matrix Science, Boston,
MA, USA), Proteome Discoverer (Thermo Fisher Scientific) and in-house
tools using identical parameters as previously described47,48. Reproducibility
of LC-MS/MS analysis was further monitored by assessing peptide spectral
match (PSM) identifications following analyses of a commercial human cell
line digest (PRV6951, Fisher Scientific) before and after analysis of each
TMT patient sample multiplex. These results demonstrated exceptionally
stable analytical performance over the course of LC-MS/MS analysis of the
APOLLO-2 cohort (4.8% CV) (Supplementary Data 18).

Reverse phase protein array
Tissue lysates derived from LMD were kept at −80 °C until they were
immobilized onto nitrocellulose coated slides (Grace Bio-labs, Bend, OR)
using an Aushon 2470 arrayer (Aushon BioSystems, Billerica, MA); case
A044 was excluded from RPPA analysis due to insufficient material. Each
sample was printed in technical triplicates along with reference standards
used for internal quality control/assurance. To estimate the amount of
protein in each sample, selected arrays (one in every 15) were stained with
Sypro Ruby Protein Blot Stain (Molecular Probes, Eugene, OR) following
manufacturer’s instructions53,54. Prior to antibody staining, the arrays were
treatedwithReblotAntibodyStripping solution (Chemicon,Temecula,CA)
for 15min at ambient temperature, washed with PBS and incubated for 4 h
in I-block (Tropix, Bedford, MA). Arrays were then probed with 3%
hydrogen peroxide, a biotin blocking system (Dako Cytomation, Carpin-
teria, CA), and an additional serum free protein block (Dako Cytomation)
using an automated system (Dako Cytomation) as previously descried54.
Each arraywas thenprobedwith one antibody targeting an unmodified or a
post-translationally modified epitope. Antibodies were validated as pre-
viously described55. Slides were then probed with a biotinylated secondary
antibody matching the species of the primary antibody (anti-rabbit and
anti-human, Vector Laboratories, Inc. Burlingame, CA; anti-mouse, CSA;
Dako Cytomation). A commercially available tyramide-based avidin/biotin
amplification kit (CSA; Dako Cytomation) coupled with the IRDye680RD
Streptavidin fluorescent dye (LI-COR Biosciences, Lincoln, NE) was
employed to amplify the detection of the signal. Slides were scanned on a
laser scanner (TECAN, Mönnedorf, Switzerland) using the 620 nm and
580 nm wavelength channels for antibodies and total protein slides,
respectively. Images were analyzed with a commercially available software
(MicroVigene 5.1.0.0; Vigenetech, Carlisle, MA) as previously described53;
this software performs automatic spot finding and subtraction of the local
background alongwith the non-specific binding generated by the secondary
antibody. Finally, each sample was normalized to its corresponding amount
of protein derived from the Sypro Ruby stained slides and technical

replicates were averaged. RPPA antibody identifiers were mapped to Uni-
Prot protein accessions and HGNC identifiers through manual inspection
of commercial antibody names and corresponding human protein entries
curated within the UniProt resource. Pan-specific antibodies were assigned
to multiple protein isoform accessions and residues for modified proteins
were mapped to curated protein model positions.

Immunohistochemical analysis of cytochrome c oxidase subunit
4 (COX-IV)
Immunohistochemistry (IHC) was performed on fresh-frozen tissue sec-
tions from representative tumors in our APOLLO-2 cohort classified as
HRD (n = 8) or HRP (n = 9) by CHORD score. Slides were fixed with 100%
methanol, 5min at ambient temperature followed with a PBS rinse.
Ambient temperature incubations in 0.5% triton-PBS for 15min and 2.5%
normal goat serum, 30min, were used to permeabilize the tissue and block
nonspecific protein binding. The slides were incubated overnight at 4 °C
with anti-COX IV antibody - Mitochondrial Loading Control, rabbit
polyclonal (Abcam, Waltham, MA, ab16056, 1:1000). Dako’s Envision
diaminobenzidine (DAB) detection system was used to label and color
bound protein complexes.Normal lung tissuewas used as the positive tissue
control. Following detection, slides were counterstained with hematoxylin
then dehydrated and coverslipped. Stained tissue sections were scanned on
an Aperio ScanScope XT slide scanner (Leica Microsystems).scanner and
digital images underwent expert pathology review (PMF).

DNA extraction, methylation array, and data processing
DNA purified from tissue samples described above was analyzed at the
Cancer Genomics Research Laboratory in the Division of Cancer Epide-
miology and Genetics at the National Cancer Institute. Briefly, DNA con-
centration was determined by the Quant-iT PicoGreen dsDNA assay
(ThermoFisher Scientific) and 400 ng was treated with sodium bisulfite
using the EZ-96 DNA Methylation MagPrep Kit (Zymo Research, Irvine,
CA) according to manufacturer’s protocol. Bisulfite-treated samples were
denatured and neutralized, then whole genome amplified isothermally, to
increase the amount ofDNAtemplate.Methylationwasmeasured using the
Infinium MethylationEPIC BeadChip (Illumina Inc.), which interrogates
over 850,000 CpG sites in the genome. Samples were run in a single batch.
DNA extracted from a laboratory internal control cell line, NA07057
(Coriell Cell Repositories, Camden, NJ), was utilized to confirm the effi-
ciency of bisulfite conversion. In addition, three samples were run in
duplicate, and correlations of methylation values for these duplicates were
greater than 0.99. All samples passed internal quality control.

Methylation array raw data files (idat files) were processed with the
minfi R package. Methylation values with detection p values > 0.01 were
assigned as missing, as these are intended to identify low quality probes by
comparingmethylation signal at each probe from negative controls probes.
Probes with >25%missing valueswere removed (n = 1027). Other excluded
probes were those that were cross-reactive (n = 43,079)56 and those in the Y
chromosome (n = 70). A total of 822,682 CpGs were included in the ana-
lysis. Missing methylation values were imputed with the R function
impute.knn (k = 5). Beta values were normalized using the BMIQ method.
The ComBat function was used to adjust the methylation values for batch
effects. CpG sites were considered to be in the promoter region if they were
located within 200 bp or 1500 bp upstream of the transcription start site
(TSS), 5′ UTRs, or exon 1, based on the manifest file of the Illumina
MethylationEPIC array57. Analysis of methylation probes mapping to
BRCA1 were prioritized for downstream analysis.

Bioinformatics analyses
Sample matching of BT and ET collections was confirmed by head-to-head
comparison of orthogonal data levels generated for each sample including
(1) comparison of WGS and RNA-seq data by hierarchical clustering of
pairwise genotype distances among select single nucleotide variants (SNV)
in germlineWGS, BT and ETWGS andRNA-seqwas performed as sample
co-clusteringwere consideredmatched and (2) correlationanalysis ofRNA-
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seq and MS-based proteomics data for BT and ET collections were com-
pared separately where the rank abundance of co-quantified proteins and
transcripts were correlated and samples with the highest correlation
(Spearman Rho) with cognate transcriptome and proteome data derived
from the sample patient tumor samples were considered matched. Differ-
ential analyses of global proteome or transcriptome matrixes were per-
formed using the LIMMA package (version 3.8) in R (version 3.5.2).
Pathway analysis was performed using Metascape (https://metascape.org/
gp/index.html#/main/step) using default parameters. Molecular subtype
analysis was generated by consensusOV (version 1.12.0) from whole and
enriched transcript matrices and transitions were plotted as a Sankey plot
with networkD3 (version 0.4) in R Studio (version 3.6.0). The clinical out-
comes included progression-free survival (PFS) and overall survival (OS).
PFS was defined as the time from diagnosis until disease progression or
death from any cause, whichever occurred first. OS was defined as the time
from diagnosis until death from any cause. Associations with PFS and OS
were evaluated using Cox modeling and Kaplan–Meier methods. For
Kaplan–Meier analyses, high versus low expression and correlation with
signature candidates of interest was defined by the median cut-point.
Multivariate analysis was performed with adjustments for age (continuous
variable), disease stage (III vs. IV), and residual disease status (residual vs no
residual) for those biomarkers with univariate p values < 0.05.
Kaplan–Meier analyses of prognostic signatures significantly correlating
with altered disease prognosis further underwent multivariate analyses
adjusting for the clinical variables noted above as well as treatment with
neoadjuvant chemotherapy, i.e., NACT (tumor collected during diagnostic
surgery prior to NACT), or PARP inhibitors during adjuvant or main-
tenance treatment aswell as forBRCA1/2mutation status usingSASSurvival
analyses were conducted using the survival package (version 2.37-7) in R
(version 3.12) andSAS (version9.4).Global proteomics data for theCPTAC
ovarian cancer cohort was downloaded from the data supplement in Zhang
et al.8 and proteins quantified in >50% of patient samples were imputed
using identical parameters as previously described47,48. Microarray gene
expression data from the TCGA ovarian9 cancer cohort was downloaded
from cbioportal.org. RNA-seq data described by Garsed et al. was provided
by collaborators at the Peter MacCallum Cancer Centre15, and proteomic
data from Hunt et al.6 was analyzed at lmdomics.org.

Consensus cluster plus
The top 25 percent most variably abundant (mean absolute deviation,
MAD) proteins from the BT and ETMS-proteomic analyses were included
in the cluster analysis. The proteome matrices were protein-wise median
centered as per the ConsensusClusterPlus documentation. For the proteo-
genomic ConsensusClusterPlus PFS signature, the enriched transcriptome
matrix was first subsetted to significant transcript PFS signature candidates
prior to z-score normalization. It was then combined with the proteome
enrichedmatrix, subset toproteome-specific significantPFS candidates, and
the entire matrix is median centered per the ConsensusClusterPlus doc-
umentation. The following parameters were used in the Consensu-
sClusterPlus (version 1.48.0) algorithm: seed 378, 1000 iterations,
hierarchical clustering algorithm with distance calculated by pearson cor-
relation, and defaults for all other parameters. Final cluster designations
were selected on criteria previously described58. Clusters comprised of fewer
than five samples were reassigned to the larger clusters previously assigned
to maximize cohort size.

sPLS-DA analysis
The sparse partial least squares discriminant analysis (sPLS-DA)model was
first optimized on a 70:30 percent split of the transcript data to optimize the
number of components selected for the final model (mixOmics version
6.8.5; caret version 6.0-86). Transcript datawas subset to thefinal significant
candidate panel list, 54 genes and proteins that overlapwith an independent
validation dataset and pass an adjusted p-value < 0.05, prior to running the
sPLS-DA model on 2 components. Performance of the model on the
training dataset was modeled by the average area under the receiver

operating curve (AUROC) by averaging the HRD and HRP predicted dis-
tances over 1000 iterations. Performance was assessed in the testing dataset
by predicting classification on the Mahalanobis distance and generating a
ROC curve (pROC version 1.16.2).

Weighted correlation network analysis
The co-expression network was constructed through the “WGCNA”
package (version 1.69) in the R environment (version 3.6.2), the top 25%
MAD proteins from BT and the top 25% MAD proteins from ET data,
derived from the ConsensusClusterPlus analysis. The WGCNA settings
werewith soft thresholding power= 9,minimummodule size = 25,medium
sensitivity (deepSplit) = 2, and the signed method were used to group the
genes into modules. Based on the hierarchical clustering and gene set
analysis of modules, smaller modules adjacent in the cluster tree and
modules with similar biological functions were merged. The correlation
heatmap between modules and consensus clusters was generated using
WGCNA functions to show the Pearson correlation coefficient and p-
values. The gene set analysis (GSA) was performed for eachmodule against
theHALLMARKdata set (gsea-msigdb.org) using the R packageOmicPath
(https://github.com/CBIIT-CGBB/OmicPath). The top GSA hit was selec-
ted to name the module. The genes in each module were compared with
every module in the CPTAC ovarian dataset (Zhang et al.8) to obtain the
overlapping gene counts and calculate the percentage of overlapping genes.

HRD analysis using scarHRD and CHORD
To run scarHRD(version0.1.1 downloaded fromhttps://github.com/sztup/
scarHRD), somatic copy number data was extracted for each tumor sample
from Canvas outputs and used as input to the ‘scar_score’ function within
the scarHRD package. Three frequency scores (loss of heterozygosity, large
scale transitions, and telomeric allelic imbalances) are reported for each
sample, with the sum of these (“HRD-sum”) representing an overall HRD
sample score.

To run CHORD (downloaded from https://github.com/
UMCUGenetics/CHORD), somatic SNV + indel and structural variant
(SV) VCF files were filtered for passing variants and supplied to the
“extractSigsChord” function with the sv.caller parameter set to “manta”.
The output from this function was then supplied to the “chordPredict”
function with bootstrapping enabled. Default classifier-predicted HR status
(“HR_proficient” or “HR_deficient”) were used for discrete classifications,
while probabilities of HRD were used for statistical classifications.

Neoepitope prediction fromWGS and RNA-seq data
To predict neoepitopes in tumor specimens, we typed theHLA class I alleles
for each tumor using the OptiType59 pipeline. Within the pipeline, RazerS3
was run using the following parameters: –percent-identity 95, –max-hits 1,
–distance-range 0. Otherwise, default parameters were applied throughout
the pipeline. For the resultant six HLA-A/B/C alleles, we utilized the default
pVACseq pipeline to create a list of stringently filtered neoepitopes60 using
MHCflurry, MHCnuggetsI, MHCnuggetsII, NNalign, NetMHC, Pick-
Pocket, SMM, SMMPMBEC, and SMMaligndefault as the epitope predic-
tion algorithms, and otherwise used default parameters. Detailed
parameters and pipeline scripts are described in https://github.com/
shahcompbio/pvacseq_pipeline.

Variant discovery in RNA-seq
To investigate if the neoepitope candidates uniquely predicted in ET (versus
BT) are also observable in the companionRNA-seq data, we used theGATK
best practice workflow for RNA-seq short variant discovery (https://gatk.
broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-
discovery-SNPs-Indels-). Reads were first aligned using the STAR aligner.
The aligned reads underwent duplicate removal, CIGAR annotation-based
read splitting, base recalibration, and finally variant calling using GATK.
Read count annotation per variant was performed using Vt package and
VCF Readcount Annotator. Detailed parameters and pipeline scripts are
available in https://github.com/shahcompbio/rnaseq_variant_discovery.
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When applying the downstream RNA-seq variant support filter for neoe-
pitope candidates, we selected the neoepitopes that had been discovered in
this RNA-seq variant discovery pipeline

Investigation of BMI1 inhibition in isogenic cell line models of
homologous recombination deficient (HRD, UWB1.289) or HR
proficient (UWB1.289+BRCA1) high-grade serous
ovarian cancer
UWB1.289 (CRL-2945) and UWB1.289+ BRCA1 (CRL-2946) cells were
purchased from ATCC (Manassas, VA) and maintained in 50% RPMI
(ATCC), 50%completeMEGM(Lonza,Walkersville,MD), 3% fetal bovine
serum (ATCC) and 1X penicillin streptomycin (Thermo Fisher Scientific,
Inc.). UWB1.289+ BRCA1 cells were maintained in G418 (200 µg/mL).
Immunoblot analysis was performed as previously described61, where
equivalent amounts of cell lysates generated from sub-confluent cultures
were resolved by 1D gel electrophoresis (BioRad) and transferred to poly-
vinylidene difluoride membranes (BioRad), blocked in 5% powdered milk,
1X Tris-buffered saline with 0.1% Tween® 20 Detergent (TBST), (BioRad),
and probed with antibodies specific for BRCA1 (OP92-100UG, Sigma
Aldrich, Burlington, MA, United States), BMI1 (#6964, Cell Signaling
Technology, Danvers MA) or beta-Actin (# 3700, Cell Signaling Technol-
ogy). Colony survival assays were conducted with equivalent numbers of
UWB1.289 or UWB1.289+ BRCA1 cells plated in six-well plates on day 1,
and treatment with drug vehicle (DMSO), PTC-028 (#S8662, Selleckchem,
Houston, TX) or PTC596 (# S8820, Selleckchem) on day 2. Cultures were
maintained for ~7 days before being stained with crystal violet62 and
counted. Three independent biological replicates of colony survival assays
were performed forUWB1.289 andUWB1.289+ BRCA1 cells treatedwith
PTC-028orPTC596andeach conditionwas assessed as a technical replicate
for each biological replicate assay.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data generated in this study (DNA sequencing, mRNA sequencing, and
proteomic data) are deposited at dbGap under study accession
phs003488v1.p1; MS-based proteomics data are also available at the Pro-
teomeXChange at PXD045417 and PXD045710. These data can also be
interactively explored at www.lmdomics.org/APOLLO2. Further informa-
tionand requests for resources and reagents shouldbedirected to andwill be
fulfilled by the lead contacts, NicholasW. Bateman (batemann@whirc.org),
Thomas P. Conrads (conrads@whirc.org) or G. Larry Maxwell
(George.Maxwell@inova.org).

Code availability
Software code generated to support primary data analysis is available upon
request.
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