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An automated deep learning pipeline for EMVI classification
and response prediction of rectal cancer using baseline MRI: a
multi-centre study
Lishan Cai 1,2, Doenja M. J. Lambregts1,2, Geerard L. Beets 2,3, Monique Mass1,2, Eduardo H. P. Pooch1,2, Corentin Guérendel1,2,
Regina G. H. Beets-Tan1,2 and Sean Benson1✉

The classification of extramural vascular invasion status using baseline magnetic resonance imaging in rectal cancer has gained
significant attention as it is an important prognostic marker. Also, the accurate prediction of patients achieving complete response
with primary staging MRI assists clinicians in determining subsequent treatment plans. Most studies utilised radiomics-based
methods, requiring manually annotated segmentation and handcrafted features, which tend to generalise poorly. We
retrospectively collected 509 patients from 9 centres, and proposed a fully automated pipeline for EMVI status classification and CR
prediction with diffusion weighted imaging and T2-weighted imaging. We applied nnUNet, a self-configuring deep learning model,
for tumour segmentation and employed learned multiple-level image features to train classification models, named MLNet. This
ensures a more comprehensive representation of the tumour features, in terms of both fine-grained detail and global context. On
external validation, MLNet, yielding similar AUCs as internal validation, outperformed 3D ResNet10, a deep neural network with ten
layers designed for analysing spatiotemporal data, in both CR and EMVI tasks. For CR prediction, MLNet showed better results than
the current state-of-the-art model using imaging and clinical features in the same external cohort. Our study demonstrated that
incorporating multi-level image representations learned by a deep learning based tumour segmentation model on primary MRI
improves the results of EMVI classification and CR prediction with good generalisation to external data. We observed variations in
the contributions of individual feature maps to different classification tasks. This pipeline has the potential to be applied in clinical
settings, particularly for EMVI classification.
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INTRODUCTION
Over the last two decades, advancements in imaging technologies
have made stage-specific and personalized treatment of rectal
cancer possible1–4. Magnetic Resonance Imaging (MRI) is the
routine modality used to stratify patients into low, intermediate
and high risk groups based on key risk factors such as tumour (T)
stage, nodal (N) stage and involvement of the mesorectal fascia5–7.
In addition, recent guidelines8 have also acknowledged extra-
mural vascular (or venous) invasion (EMVI) (see Fig. S2 for EMVI
visualisation) as an independent poor prognostic factor that
should be taken into account for baseline staging and risk
stratification. EMVI is defined as the spread of malignant cells
beyond the rectal wall into adjacent perirectal blood vessels and is
an important risk factor for local recurrence, distant metastasis
and impaired overall survival9,10.
In addition to primary staging and risk stratification, MRI also

plays an increasingly important role in assessing response to
neoadjuvant treatment11,12. High-risk (locally advanced) patients
typically undergo radiotherapy or combined chemoradiotherapy
(CRT) to induce tumour downsizing and downstaging prior to
surgery. As a result of CRT, up to 27% of patients may achieve a
complete response (CR)13. Organ-preserving (watch and wait)
treatment may be offered as an alternative to standard resection
for these patients, provided that they can be accurately selected.
This option has been associated with favourable long-term

oncological outcomes and improved quality of life14. The
combination of digital rectal examination, endoscopy and MRI
including diffusion-weighted imaging (DWI) has been shown to
yield good diagnostic performance to identify a CR after
completion of CRT15. In addition to assessing response after
completion of CRT, recent studies16 have focused on early
response prediction using imaging biomarkers derived from
baseline MRI (including DWI) scans. Predicting response before
the start of treatment could create new opportunities to further
personalise neoadjuvant treatment schemes depending on the
anticipated response. Recent studies17–20 demonstrate reasonable
results for predicting risk factors such as EMVI and response to CRT
by combining Artificial Intelligence (AI) techniques with MRI to
develop prognostic image biomarker models. So far, these models
have mostly used combinations of clinical and/or radiomics
features, which require MRI manual delineation, feature extraction,
and feature selection steps. Ao et al. 17 assessed preoperative EMVI
using quantitative Dynamic Contrast-Enhanced MRI and DWI
parameters, achieving an area under the ROC curve(AUC) of 0.856
with 84 patients from a single centre. Shu et al. 18 proposed an
EMVI prediction model using multiparametric MRI including T2-
weighted images (T2W), T1-weighted images (T1W), and DWI, with
an AUC of 0.835 on 317 patients from a single-centre dataset
without an external validation.
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Regarding CR prediction, Bourbonne et al. 21 have concluded in
their recent review that substantial efforts have been made to
improve the quality of published radiomics models. As of the 14th
of November 2022, there were 36 studies concerned MRI-only
radiomics with reported AUC ranging from 0.70 to 0.95, and most
were retrospective studies based on pre-CRT only MRIs. Also,
delineation of the tumour volumes was manually done by
radiologists in most studies, which hinders the implementation
of fully automated classification models. Some studies applied
deep learning (DL) techniques. Unlike radiomics using hand-
crafted and quantifiable features, DL is able to extract features
automatically from images. Zhu et al. 22 proposed a DL model to
predict response by training with Apparent Diffusion Coefficient
(ADC) patches delineated by radiologists. Their DL model achieved
an AUC of 0.851 (95% CI: 0.789–0.914), again based on data from a
single centre. Jin et al. 23 presented a multi-task deep learning
approach consisting of two Siamese sub-networks that are joined
at multiple layers. The multi-task model utilises both pre and post-
treatment multiparametric MRI (DWI, T2W, T1W, T1-weighted with
contrast-enhancement (T1W+ C)), achieving an AUC of 0.95 in
two independent cohorts. However, the same model was trained
by Wichtman et al. 24 in a multi-centre (4 centres) scenario. Their
model showed an AUC of 0.60 when using the combination of pre
and post-therapeutic T2W, DWI, and ADC maps as input.
Wichtmann et al. 24 demonstrated the current challenge of
constructing deep learning models using multi-institutional
medical data. Data from different origins can contain significant
variations based on specific parametrisation, creating a domain
shift problem observed in multiple medical imaging
modalities25,26.
In the management of rectal cancer using AI, there is a lack of

multi-centre studies to validate the generalisability of the models
and their feasibility for automated implementation in clinical
settings. In this study, we introduced a fully automated deep
learning pipeline. The pipeline consists of nnUNet27, a self-
configuring DL tumour segmentation model and a classification
model utilising multi-level image representations learned by
nnUNet, named as MLNet. To validate the pipeline, we used a
multi-centre dataset including data from 509 patients from 9
medical centres in the Netherlands. The proposed automated
pipeline aims to classify EMVI status and predict treatment
response using primary staging MRI further to provide potential
additional value to the preoperative clinical workflow.

RESULTS
Characteristics of cases
We used a dataset collected as part of a previously published multi-
centre study, which included the baseline staging MRI (DWI and
T2W) of 509 patient cases (obtained from one university hospital,
seven large teaching hospitals and one comprehensive cancer
centres from Southeren and Northern part of the Netherlands) with
locally advanced rectal cancer undergoing neoadjuvant CRT. Further
in- and exclusion criteria were according to those described by
Schurink et al. 28. Baseline T and N staging variables cT-stage (cT1-2,
cT3, cT4), cN-stage (cN0, cN1, cN2) were derived from the original
staging reports that were performed by a multitude of readers. The
data were grouped into mrEMVI+ and mrEMVI- cases, based on
clinical assessment by an expert radiologist (D.M.J.L.) with >10 years
of dedicated experience in rectal MRI. In total, there were 304 EMVI
+ cases and 205 EMVI- cases. Additionally, the data was divided into
pathological complete response of the primary tumour (CR) and
non-complete response (non-CR) groups. CR was defined as either a
complete pathological response after surgery (pCR= ypT0) or a
sustained clinical complete response (cCR) with no evidence of a
luminal regrowth on repeated follow-up MRI and endoscopy for a
period of longer than 2 years. There were 368 cases of non-CR and
141 cases of CR. Lymph nodes were not taken into account. The
characteristics of rectal cancer cases used in our study are
summarised in Table 1. There were no significant differences
among the basic demographic features and tumour characteristics
of the development cohort and external validation cohort (all p
values > 0.05).

Tumour segmentation
In the first part of our proposed automated pipeline, see Fig. 1, we
trained 2 nnUNet models with DWI and DWI+ T2W separately. Dice
similarity score (Dice) was used to measure the segmentation
performance. The mean Dice (mDice) of the 4-fold cross-validation
from DWI and DWI+ T2W were 0.75 and 0.76 respectively. The
mDices of external validation were 0.73 (DWI) and 0.74 (DWI
+ T2W), see Table 2. By adding T2W, the mDices for both cross-
validation and external validation increased by 1%. The Dice
difference between DWI and DWI+ T2W segmentation is not
significant with p > 0.05 (p= 0.31 for internal validation, p= 0.61 for
external validation). From the boxplot in Fig. 2b, nnUNet had
trouble with segmenting some cases (with Dice < 0.20) and failed to

Table 1. Summary of patient demographic and clinical characteristics of the multi-centre dataset.

All Development Train Internal Val External Val p value

Age (median, range) 65 (25−87) 66 (25−87) 64 (39−85) 65 (33−81) 0.37

Gender Female
Male

177 (35%)
332 (65%)

104 (33%)
214 (67%)

36 (37%)
59 (62%)

38 (39%)
59 (61%)

0.31

cT 1−2
3
4

35 (7%)
441 (81%)
60 (12%)

22 (7%)
259 (82%)
36 (11%)

8 (8%)
75 (79%)
12 (13%)

5 (5%)
80 (83%)
12 (12%)

0.56

cN 0
1
2

68 (13%)
122 (24%)
319 (63%)

34 (11%)
66 (21%)
217 (68%)

18 (19%)
37 (39%)
40 (42%)

16 (16%)
19 (20%)
62 (64%)

0.98

Response non-CR
CR

368 (72%)
141 (28%)

227 (71%)
91 (29%)

75 (79%)
20 (21%)

67 (69%)
30 (30%)

0.43

EMVI EMVI +
EMVI −

304 (60%)
205 (40%)

204 (64%)
114 (36%)

50 (53%)
45 (47%)

50 (52%)
47 (48%)

0.07

Total 509 317 95 97

Values in age parentheses are the minimum and maximum. Values in parentheses of other items are the percentages. EMVI+ : EMVI positive. EMVI-, EMVI
negative. P values were calculated using the Kruskal-Wallis test between the development cohort and the external validation cohort.
cT baseline T staging, cN baseline N staging, non-CR non-responders, CR complete responders.
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delineate several hard samples (Dice= 0.00). Figure 3 is the
illustration of the segmentation performance for cases I−IV from
external data and their corresponding Dice can be found in Table 2.
After the training of tumour segmentation, 4-stage feature

maps derived from nnUNet were inferred. The visualization of
feature maps from different stages for case I−IV can be seen in
Fig. 4. Stages 1−2 represented more superficial, finer features and
stages 3−4 showed coarser, more abstract image representations.
nnUNet failed to delineate the rectal tumour for case IV with Dice
0.00, but feature maps were able to capture the tumoural regions.

Fig. 1 Workflow diagram. a the experiment workflow. For the rectal tumour segmentation, 4-fold cross-validation was done with DWI or
DWI+ T2W from 6 centres, 412 patients. For classification tasks, 4 out of these 6 centres’ data were used as the training and 2 centres were
internal validation. The other 3 centres were external validation for both segmentation and classification tasks. b The automated pipeline
containing segmentation and classification models: Image feature maps from different stages (orange, stage 1 to stage 4) were inferred from
rectal tumour segmentation nnUNet. The inferred multi-level features (orange) were then injected by concatenation in different levels of the
MLNet, where 3D ResNet10 was used as a backbone without skip connections, to assist the classification tasks. The original MRI was used as
input for MLNet (Green).

Table 2. Segmentation results using nnUNet.

4-fold (STD) External (STD) I II III IV

DWI 0.75 (0.17) 0.73 (0.21) 0.93 0.57 0.66 0.0

DWI+ T2W 0.76 (0.14) 0.74 (0.22) 0.93 0.79 0.21 0.0

mean Dice similarity Score (mDice) was used to measure the overall
segmentation performance. STD, standard deviation. Cases I−IV from
external validation.

L Cai et al.
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Fig. 2 The segmentation performance using nnUNet in the internal and external cohorts. a The boxplot of rectal tumour Dice on 4-fold
cross-validation. b The boxplot of rectal tumour Dice on External validation. The top and bottom edges correspond to the 75th and 25th
percentiles (Q3 and Q1), respectively. The line inside the box represents the median value (50th percentile). The yellow triangle denotes the
mDice. The whiskers in the box plot extend to 2 times the interquartile range (IQR).

Fig. 3 The visualization of four predicted segmentation from the external cohort. The rows I−IV were different segmentation cases from
the external cohort. Columns from left to right represent the T2W slices, DWI slices, predicted segmentation masks from DWI nnUNet,
predicted segmentation masks from DWI+ T2W nnUNet and ground truth masks. nnUNet showed good performance on I, with dice 0.93 for
both DWI and DWI+ T2W. For case II, nnUNet with DWI+ T2 has better segmentation ability but DWI alone showed a better result in case III.
Both nnUNet models fail on the prediction of case IV.
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EMVI classification and Complete Response prediction
Tables 3–4 and Fig. 5 showed EMVI classification and CR prediction
results using MLNet with DWI only and DWI+ T2W on the external
validation. Multivariate analysis was also done for both EMVI and
CR tasks using logistic regression to compare the predictive effects
of clinical factors including age, gender, T and N staging, with
MLNet. For EMVI classification, the MLNet with DWI alone showed
better classification power with AUC 0.76 (0.66−0.84) (Table 3,
Fig. 5a) in the external validation and AUC 0.76 (0.66−0.85) in the
internal validation (Table S4). The addition of T2W resulted in an
increase of the internal AUC to 0.78 (0.68−0.87) as indicated in
(Table S6). However, the external AUC exhibited a decline to 0.73
(0.62−0.83), suggesting signs of overfitting. Nevertheless, with
respect to the prediction of CR, the combination of DWI and T2W
demonstrated superior performance, yielding an AUC of 0.66
(0.55−0.77) in the external cohort (Table 4, Fig. 5b) and 0.65
(0.52−0.77) in the internal validation set (Table S7). These results
outperformed the utilisation of the DWI-only pipeline, which
produced an external AUC of 0.62 (0.49−0.73) and an internal AUC
of 0.62 (0.50−0.74) (Table S5). MLNet demonstrated superior
performance for both EMVI and CR tasks in comparison to the

multivariate analysis in the external cohort and development
cohort (Tables S8−10).
Tables 5–6 and Fig. 6 showed the ablation analysis of the EMVI

classification and CR prediction from ResNet10, MLNet and the
individual stage of feature maps solely using DWI in the external
cohort and the results for the internal cohort can be found in the
Tables S4–5. In the case of EMVI classification (Table 5, Fig. 6a), it
was observed that features extracted from the first and second
stages, which encompassed finer details and more information-
rich attributes, played a more pivotal role in the model’s decision.
Particularly, the network solely utilizing features from the first
stage achieved noteworthy performance, yielding an AUC of 0.79
(0.70−0.87), surpassing MLNet’s performance, which incorporated
representations from all four stages and achieved an AUC of 0.76
(0.66−0.84). In contrast, for CR prediction (Table 6 Fig. 6b), features
from the third and ourth stages, characterised by coarser semantic
attributes, had a more substantial impact on the final decision.
Nevertheless, MLNet exhibited the best performance in the CR
task. Similar patterns were also observed in the ablation analysis
using both T2W and DWI, see Tables S2–3, Fig. S3 for the external
validation and Tables S6−7 for the internal validation.

Fig. 4 Feature maps visualization. Feature maps derived from nnUNet by deep supervision cases for I−IV. a using DWI alone; (b) using
DWI+ T2W.

Table 3. EMVI classification results in the external cohort.

Network AUC (95% CI) Sensitivity(95% CI) Specificity(95% CI) PPV (95% CI) NPV (95% CI) F1 (95% CI)

LR 0.62 (0.51−0.73) 0.55 (0.41−0.70) 0.56 (0.42−0.70) 0.54 (0.40−0.68) 0.57 (0.43−0.71) 0.55 (0.42−0.67)

DWI 0.76 (0.66−0.84) 0.67 (0.55−0.76) 0.70 (0.59−0.80) 0.67 (0.52−0.80) 0.69 (0.55−0.80) 0.67 (0.54−0.78)

DWI+ T2W 0.73 (0.62−0.83) 0.63 (0.53−0.73) 0.67 (0.57−0.77) 0.64 (0.50−0.77) 0.67 (0.52−0.78) 0.62 (0.52−0.74)

In the parentheses are 95% confidence intervals (95% CI). LR, Logistic regression using clinical factors. DWI, pipeline only using DWI. DWI+ T2W, pipeline using
both DWI and T2W. The best metrics were highlighted in bold.

Table 4. CR prediction results in the external cohort.

Network AUC (95% CI) Sensitivity(95% CI) Specificity(95% CI) PPV (95% CI) NPV (95% CI) F1 (95% CI)

LR 0.53 (0.40−0.65) 0.37 (0.19−0.55) 0.61 (0.49−0.73) 0.29 (0.15−0.45) 0.68 (0.56−0.80) 0.33 (0.18−0.47)

DWI 0.62 (0.49−0.73) 0.56 (0.44−0.68) 0.60 (0.49−0.71) 0.39 (0.24−0.54) 0.75 (0.63−0.86) 0.46 (0.32−0.59)

DWI+ T2W 0.66 (0.55−0.77) 0.61 (0.49−0.72) 0.65 (0.54−0.75) 0.44 (0.28−0.60) 0.79 (0.67−0.88) 0.51 (0.36−0.64)

In the parentheses are 95% confidence intervals (95% CI). LR, Logistic regression using clinical factors. DWI, pipeline only using DWI. DWI+ T2W, pipeline using
both DWI and T2W. The best metrics were highlighted in bold.

L Cai et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2024)    17 



AI explainability
To explore the interpretability of classification models, we showed
the attention maps of networks in ablation analysis for both EMVI
and response using Grad-Cam++29 (see Fig. 7). In case I, all the
classification networks including 3D ResNet10 successfully con-
centrated on the tumuoral and surrounding regions for both tasks.
In cases II and III, MLNet effectively guided its attention to the

tumour and peri-tumour areas for both EMVI and CR experiments.
While using features exclusively from the first stage, the model
exhibited a selective focus solely on tumour-related areas during
the EMVI classification, failing to encompass the same focus in the
CR task. Furthermore, with the progression to coarser features
(stages 3−4), the network lost its ability to focus on the tumour.
For cases II and III, in the response prediction task, the model with

Fig. 5 The ROC Curves for EMVI classification and CR prediction in the external cohort (n= 97). The receiver operating characteristics
(ROC) plots using DWI or DWI+ T2W with MLNet and multivariate analysis using logistic regression. a EMVI classification (b) CR prediction.

Table 5. EMVI classification ablation study using DWI only in the external cohort.

Network AUC (95% CI) Sensitivity(95% CI) Specificity(95% CI) PPV (95% CI) NPV (95% CI) F1 (95% CI)

ResNet10 0.51 (0.39−0.62) 0.44 (0.34−0.55) 0.48 (0.38−0.59) 0.45 (0.31−0.60) 0.48 (0.34−0.62) 0.44 (0.33−0.56)

MLNet 0.76 (0.66−0.84) 0.67 (0.55−0.76) 0.70 (0.59−0.80) 0.67 (0.52−0.80) 0.69 (0.55−0.80) 0.67 (0.54−0.78)

Stage 1 0.79 (0.70−0.87) 0.72 (0.62−0.81) 0.75 (0.66−0.84) 0.73 (0.60−0.85) 0.74 (0.61−0.84) 0.72 (0.61−0.82)

Stage 2 0.64 (0.52−0.74) 0.59 (0.49−0.69) 0.63 (0.52−0.73) 0.60 (0.45−0.73) 0.62 (0.48−0.75) 0.60 (0.48−0.70)

Stage 3 0.47 (0.35−0.59) 0.42 (0.32−0.53) 0.46 (0.36−0.56) 0.43 (0.29−0.57) 0.46 (0.32−0.60) 0.42 (0.31−0.54)

Stage 4 0.48 (0.36−0.60) 0.47 (0.36−0.58) 0.51 (0.40−0.62) 0.47 (0.33−0.62) 0.50 (0.36−0.65) 0.47 (0.35−0.59)

Values in the parentheses were 95% confidence intervals (95% CI). Stage1(2,3,4), classification network only infused segmentation features from stage1 (2,3,4).
The best metrics were highlighted in bold.

Table 6. CR prediction ablation study using DWI only in the external cohort.

Network AUC (95% CI) Sensitivity(95% CI) Specificity(95% CI) PPV (95% CI) NPV (95% CI) F1 (95% CI)

ResNet10 0.50 (0.38−0.62) 0.50 (0.37−0.61) 0.53 (0.43−0.65) 0.32 (0.20−0.47) 0.71 (0.57−0.82) 0.39 (0.26−0.52)

MLNet 0.62 (0.49−0.73) 0.56 (0.44−0.68) 0.60 (0.49−0.71) 0.39 (0.24−0.54) 0.75 (0.63−0.86) 0.46 (0.32−0.59)

Stage 1 0.49 (0.37−0.62) 0.46 (0.34−0.58) 0.51 (0.41−0.61) 0.29 (0.18−0.43) 0.68 (0.54−0.80) 0.36 (0.24−0.49)

Stage 2 0.51 (0.39−0.64) 0.47 (0.35−0.59) 0.51 (0.41−0.62) 0.30 (0.18−0.44) 0.69 (0.55−0.81) 0.36 (0.24−0.49)

Stage 3 0.60 (0.48−0.71) 0.56 (0.43−0.67) 0.60 (0.49−0.70) 0.38 (0.24−0.54) 0.75 (0.63−0.85) 0.45 (0.32−0.59)

Stage 4 0.60 (0.47−0.72) 0.53 (0.40−0.67) 0.57 (0.44−0.70) 0.36 (0.20−0.52) 0.73 (0.59−0.85) 0.43 (0.27−0.57)

Values in the parentheses were 95% confidence intervals (95% CI). Stage1(2,3,4), classification network only infused segmentation features from stage1 (2,3,4).
The best metrics were highlighted in bold.
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features from a single stage alone appeared to be limited in
guiding the model to concentrate on rectal tumour regions.
MLNet highlighted tumour and peri-tumoural areas in case IV,
despite the failure of tumour segmentation (Dice= 0.00). Overall,
we observed that by injecting four-stage feature maps from
segmentation networks, MLNet was guided to be able to
effectively focus on tumoural and peri-tumoural regions for
classification tasks across all four cases. In some specific cases,
features from a single stage alone were also capable of localising
the tumour and its neighbouring regions.

DISCUSSION
We have proposed a fully automated pipeline for rectal tumour
segmentation, the classification of EMVI status and the prediction
of the treatment outcome (complete response to CRT). The
pipeline consists of nnUNet and MLNet, a lightweight CNN.
nnUNet was trained to achieve automated tumour segmentation
and extract different scale features from baseline MRI. MLNet,
which fuses inferred segmentation features into 3D ResNet10, was
trained to classify EMVI status and to predict treatment response.
The nnUNet model demonstrated favourable rectal tumour
segmentation performance and generalisation capabilities, as
evidenced by achieving a mDice of 0.73 (0.74) on external
validation and 0.74 (0.76) on cross-validation using DWI (DWI+
T2W) in multi-centre background.
For EMVI classification, the performance was 0.76 (0.66−0.84) on

the external validation dataset. With only the finest feature map
(stage 1), the AUC of external validation could reach up to 0.79
(0.70−0.87) using only DWI. For CR prediction, MLNet achieved
AUC of 0.66 (0.55−0.77), outperforming the current state-of-the-art
by Schurink et al. 28 on the same external cohort. Schurink et al. 28

developed a clinical-imaging model to predict CR. The best-
performing model, using non-imaging (weeks to surgery) and
advanced staging variables (tumour height, T and N staging,
invasion depth and tumour length), achieved an AUC of 0.60
(0.53−0.76). Like other Radiomics-based or tumour-centre crop-
based models, one limitation of the study from Schurink et al. 28

was that manually annotated segmentation for both development
and test cohorts by experienced radiologists was required. To solve

this, Jin et al. 23 have proposed a multi-tasking learning model with
pre-and-post multiparametric MRI for both segmentation and pCR
assessment and the model shows the state-of-the-art results with
single-centre data. The drawback of such a multi-tasking network is
that firstly, it requires both pre- and post-MRIs. Pre-treatment
prediction of response is potentially beneficial for personalising
neoadjuvant strategies. Also, it is better to visualise the rectal
tumour in pre-treatment than post-treatment MRIs, where high
signal areas are frequently less noticeable and may be distributed
throughout the fibrosis30. Secondly, the training of such a heavy
multitasking model is computationally expensive. In our study, only
baseline MRI was used. Training and inference of lightweight
MLNet were significantly faster than the multitasking network.
Some studies have also proposed machine learning based
automated workflows. Defeudis et al. 31 have demonstrated
automated pCR radiomics models after nCRT in LARC using DWI
and T2W performed before CRT. The AUC could reach 0.81
(0.60–0.89) over external validation data. However, the main
limitation is that they have excluded all cases with automated
segmentation dice lower than 0.2 as they cannot guarantee that
radiomics features are from the targeted tumour regions with such
poor segmentation results, where prediction AUC is biased to high
Dice cases. In the multi-centre background, predicting masks with
dice lower than 0.2 could often occur due to data heterogeneity.
MLNet solved this problem by injecting tumour representations
derived from different levels of nnUNet. For instance, in the case of
IV, even though the segmentation network failed to contour the
rectal tumour, MLNet was capable of capturing hidden features for
CR prediction.
Most radiomics models were only looking at tumour core

regions. However, peri-tumoural regions also potentially contain
useful information. Delli Pizzi et al. 32 presented an MRI-based
machine learning model using clinical features and radiomics
features extracted from both “tumour core” (the whole rectal
tumour manually segmented on pre-treatment T2W) and “tumour
border” (the most peripheral portion of the tumour core and the
surrounding tissues). By adding “tumour border” features, the
machine learning model outperformed the model with “tumour
core” regions only, which demonstrated that peri-tumoural tissues
contain meaningful features to identify treatment responders.

Fig. 6 The ROC Curves for the ablation study of EMVI classification and CR prediction in the external cohort (n= 97) using DWI only. The
ROC plots of (a) EMVI classification (b) CR prediction. S1(2,3,4): classification network only infused segmentation features from stage1 (2, 3, 4).
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Rectal cancer arises in close association with white adipose tissue
(mesorectal fat). Nutrient supply and catabolite drainage to and
from the normal rectal wall and rectal tumours must travel
through the mesorectal fat by way of vessels and lymphatics19,
indicating that the mesorectal fat and structures within contain
potential predictive information. Jayaprakasam et al. 33 extracted
radiomics features from mesorectal fat in patients with LARC to
predict pathological complete responders (accuracy 83.9%) and
local (accuracy 78.3%) or distant recurrence (accuracy 87.0%).
Their study further demonstrated the potential predictive value of
peri-tumoural regions. MLNet takes not only the peri-tumoural
regions but also the global context into consideration. The original
MRI was included in the input, which allows the incorporation of
global information. In the meantime, local information is high-
lighted by injecting multi-level feature maps.
In our ablation study, we also observed that feature maps

extracted from different stages contributed differently to EMVI
classification and CR prediction tasks. The reason might be finer
features are more crucial to morphological prognostic factors like
EMVI. Conversely, for more challenging and intricate tasks like CR
prediction, the integration of multi-level features was more
beneficial.
There are some limitations of the study. First of all, despite

MLNet outperforming the current state-of-the-art28, the sensitivity
(0.61) and positive predictive value (PPV) (0.44) were

comparatively low, indicating that MLNet’s ability to correctly
identify responders was limited, which hinders the implementa-
tion of the pipeline in the clinical workflow. The relatively low
response rate (around 30%) could be one of the contributors to
low sensitivity and PPV. Even though we have applied weighted
loss, the data imbalance can still result in limited model
performance. To address this issue, Generative Adversarial Net-
works (GANs) can be used to generate synthetic data for the
responder class34. Additionally, There is currently no standardised
protocol for MRI evaluation of treatment response in locally
advanced rectal cancer, which can lead to variability in the
labelling of treatment response across different centres35.
Secondly, all the manual segmentation is based on DWI. T2W
was then downsampled in the same domain of DWI, which led to
information loss in T2W. Thirdly, the standard of reference for
EMVI was based on the assessment by the radiologist using MRI
and not pathology considering that patients who underwent CRT
and EMVI status post-CRT would no longer be representative of
the baseline setting. Fourthly, the dataset in our study was
collected over a long time frame from February 2008 and March
2018 from different centres. The significant quality variations have
a negative effect on the model performance. We have only used
nnUNet pre-processing module to deal with the data hetero-
geneity. Other state-of-the-art methods can be adopted to deal
with data heterogeneity. Modanwal et al. 36 have proposed a

Fig. 7 The visualization based on the Grad-CAM++ method of ablation studies for EMVI classification and CR prediction. a The
visualization for EMVI classification. The ground truth EMVI statuses were on the left side I: EMVI+ ; II: EMVI+ , III: EMVI+ ; IV: EMVI-. The
annotated “+“ or “-“ on the attention maps were predicted EMVI classification of corresponding models. b The visualization for CR prediction.
The ground truth response outcomes were on the left side. I: CR+ , II: CR-, III: CR-, IV: CR+ . The annotated “+“ or “-“ on the visualization maps
were CR predictions of corresponding models.
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method based on CycleGAN for MRI normalisation. Their model
can successfully learn bidirectional mapping and perform normal-
isation between MRIs produced by different vendors. Fifthly,
although we have the dataset from 9 centres, the total number of
samples is only 509. Besides the sample size limitation, the
inclusion of a solely Dutch patient cohort may impact the
generalisability of the findings. More diverse patient cohorts
may be beneficial for this study. Sixthly, some studies23 have
testified that clinical features like carcinoembryonic antigen (CEA)
level could improve the model performance. Collecting CEA and
other clinical features could be useful for the MLNet model. Also,
integrating other modalities like endoscopic imaging can further
enhance the model’s performance. Last but not least important,
the retrospective nature of the study is also one of our limitations.
A prospective cohort from multiple centres may further demon-
strate the performance of the model.

METHODS
Dataset
Patient data were retrospectively collected if they satisfied the
following criterion: (1) biopsy-proven rectal adenocarcinoma; (2)
non-metastasised; (3) available pre-treatment MRI (T2W and high
b value DWI); (4) routine long-course neoadjuvant treatment
including radiotherapy total dose 50.0−50.4 Grey with concurrent
capecitabine-based chemotherapy; (5) final treatment including
surgery or watch and wait with longer than 2 years clinical follow-
up. The study was conducted in accordance with the Declaration
of Helsinki and has been approved by the Institutional Review
Board (IRB) of the Netherlands Cancer Institute. Each participating
centre reviewed the study protocol and provided approval.
Informed consent was waived by the IRB and by each participating
centre during local ethical review and approval due to the
retrospective nature of the study. 670 patients were initially
collected and 161 patients were excluded see Fig. S1. 509 patients
data were obtained using 25 scanners, 94 protocols for DWI and
112 T2W protocols see Table S1. For DWI, b-values range from 600
to 1200. Semi-automatical algorithm using level-tracing was first
used to segment all high b value DWIs, A board-certified
radiologist with >10 years of experience in rectal MRI then
manually adjusted the segmentation slice by slice, taking the
anatomical information from T2W into consideration, taking care
to exclude the rectal lumen and any non-tumour perirectal tissues.
The same expert radiologist reported mrEMVI status for each
patient. We split patients into training, validation and external
testing centre-wise. To have a fair comparison of the CR
classification performance with the current state-of-the-art, we
kept the same external cohort (3 centres) as Schurink et al. 28. Out
of the rest 6 centres, 2 centres were randomly chosen as the
internal validation.

Segmentation
nnUNet, proposed by Isensee et al. 27, is a deep learning-based
segmentation approach that automatically configures itself for any
new task, including preprocessing, network design, training, and
post-processing. nnUNet has shown great performance over 23
public datasets used in international biomedical segmentation
competitions27. It has a state-of-the-art prepossessing technique,
which automatically generates a dataset fingerprint that contains
all relevant parameters and properties. Also, networks are trained
with deep supervision strategy37. Deep supervision is to provide
the supervision of hidden layers and propagate it to lower layers,
instead of only supervising at the output layer38. In nnUNet, deep
supervision downsamples the ground truth masks to different
scales with tri-linear interpolation such that it corresponds to the
output at each upsampling stage. The final segmenting loss is
then the weighted combination of the loss at each of these

upsampling stages. Deep supervision allows gradients to be fed
deeper into the network and facilitates the training of all layers. All
the feature maps at different stages are inferred after segmenta-
tion training for further application in classification tasks.

Classification
The second part of our automated pipeline is a lightweight CNN,
which was modified on top of a 3D ResNet1039. Other than 3D
ResNet10, different backbones were compared in the external
cohort and 3D ResNet10 outperformed all other 3D ResNet
backbones see Table S11 and Fig. S4. The original MRI was fed into
the model as input. Experiments using segmentation features as
input without original MRIs underperformed MLNet, see Table S12.
Additionally, instead of placing the residual blocks with skip
connections, feature maps of different stages inferred from
segmentation networks were injected into our classification
network as prior knowledge. The feature injection was done by
concatenation (Fig. 1b). For the ablation analysis, only the original
MRI was used as input for the 3D ResNet10. Single-stage
representations were injected into the StageN (N= 1, 2, 3, 4)
model, with the original MRI serving as the input as well.
Multivariate analysis was conducted with logistic regression using
the development cohort (412 patients, 6 centres) and external
validated with the same data as other models in the ablation
analysis.

Experiment
For the segmentation part, we trained a 4-fold nnUNet and then
inferred the predicted masks and corresponding feature maps of
4 stages (from coarse to fine, see Fig. 4 for feature visualization) for
both 4-fold validation and external validation. After segmentation
training, we split the development data (6 centres, with 412
patients) into a training set (4 centres, 317 patients) and an
internal validation set (2 centres, 95 patients). MLNet, as well as
other models in the ablation analysis, were constructed using a
training cohort, internally validated and further validated on the
external validation cohort. The pipeline was constructed using
PyTorch40. Both nnUNet and MLNet were trained on an NVIDIA
RTX 2080 Ti GPU. During the training of nnUNet, all the
hyperparameters were automatically configured. During the
training of MLNet, the batch size was set to 4 and the initial
learning rate was 1e− 4. Weighted binary cross entropy was used
as the loss function. Adam41 was used as the optimiser.
Additionally, shape-aware minimisation (SAM)42 simultaneously
minimising loss value and loss sharpness was adopted. To avoid
overfitting, training patience was set to 10. The best model was
saved with the best loss on the internal validation set.

Statistical analysis
Statistical analysis was performed by using python 3.8.15. For
further information, check MLNet github repository. The Dice is
used to evaluate tumour segmentation performance. The AUC,
sensitivity, specificity, PPV, Negative Predictive Value (NPV) and
F1 score are used to evaluate the EMVI classification and CR
prediction results. All the metrics are showed in Eqs. 1–7. The
operating points for distinguishing between EMVI+ and EMVI-, CR
and Non-CR were generated using the maximum Youden index
on internal validation cohort and the same threshold was applied
on the external set. 95% confidence intervals were generated with
bootstrap method with 10,000 replications43. The characteristics
difference of different cohorts were compared by Kruskal-Wallis
Test. Mann–Whitney U test was used to compare the difference of
indicators among different methods. All statistical analyses were
two-sided and p value less than 0.05 was regarded as statistically

L Cai et al.

9

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2024)    17 



significant. All the metrics in our study are listed as follows:

Dice ¼ 2TP
2TP þ FP þ FN

(1)

AUC ¼
P

insi2positiveclassRankinsi �
M� Mþ1ð Þ

2

M � N
(2)

Sensitivity ¼ TP
TP þ FN

(3)

Specificity ¼ TN
TN þ FP

(4)

PPV ¼ TP
TP þ FP

(5)

NPV ¼ TN
TN þ FN

(6)

F1 ¼ TP
TP þ 1

2 FP þ FNð Þ (7)

Where TP is true positive, FN is false negative and FP denotes false
positive. For AUC calculation, M, N are the number of positive
samples and negative samples. Rankinsi is the serial number of
sample i.

P
insi2positiveclassRankinsi is adding up the serial numbers of

the positive cases.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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