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Viable tumor cell density after neoadjuvant chemotherapy
assessed using deep learning model reflects the prognosis of
osteosarcoma
Kengo Kawaguchi1,2,6, Kazuki Miyama1,3,6, Makoto Endo 1✉, Ryoma Bise3, Kenichi Kohashi2,4, Takeshi Hirose 1, Akira Nabeshima1,
Toshifumi Fujiwara1, Yoshihiro Matsumoto1,5, Yoshinao Oda2 and Yasuharu Nakashima1

Prognosis after neoadjuvant chemotherapy (NAC) for osteosarcoma is generally predicted using manual necrosis-rate assessments;
however, necrosis rates obtained in these assessments are not reproducible and do not adequately reflect individual cell responses.
We aimed to investigate whether viable tumor cell density assessed using a deep-learning model (DLM) reflects the prognosis of
osteosarcoma. Seventy-one patients were included in this study. Initially, the DLM was trained to detect viable tumor cells,
following which it calculated their density. Patients were stratified into high and low-viable tumor cell density groups based on DLM
measurements, and survival analysis was performed to evaluate disease-specific survival and metastasis-free survival (DSS and
MFS). The high viable tumor cell density group exhibited worse DSS (p= 0.023) and MFS (p= 0.033). DLM-evaluated viable density
showed correct stratification of prognosis groups. Therefore, this evaluation method may enable precise stratification of the
prognosis in osteosarcoma patients treated with NAC.
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INTRODUCTION
Osteosarcoma is a high-grade intramedullary sarcoma and the
most common primary malignant bone tumor1. Advances in
chemotherapy have made long-term survival feasible in 70% of
patients with localized osteosarcoma2. However, the survival rate
in patients with metastasis or recurrence is low (<30%), and
prognosis in this patient population could still be improved3,4.
Additionally, the higher prevalence of osteosarcoma in adoles-
cents has lent social significance to improving outcomes in
patients with poor prognoses1.
Assessment of the prognosis of osteosarcoma is essential to

determine individualized treatment plans5–7. Neoadjuvant che-
motherapy (NAC) is the standard treatment strategy for osteo-
sarcoma, followed by wide resection and postoperative
chemotherapy1, wherein the postoperative treatment plan is
adjusted based on the predicted prognosis.
The prognosis of osteosarcoma is conventionally predicted

based on the pathological evaluation of response to NAC that is
based on the necrosis rate; it is calculated by dividing the necrotic
area in the maximum cross-section by area of the tumor
region8–12, using the following criteria based on the extent of
necrosis: grade I ( <50%), grade II (50–90%), grade III (90–100%),
and grade IV (100%)13. In assessments based on these criteria, a
necrosis rate of ≥90% is considered to predict a good prognosis
with a 5-year survival rate of >80%14.
However, two limitations are associated with the conventional

assessment of the necrosis rate. First, the necrosis rate does not
reflect response to NAC in individual tumor cells. As pathologists
tend to overview the area of interest and intuitively assess the
necrosis rate, this approach may ignore the presence of necrotic

cells in viable areas or, conversely, of viable tumor cells in necrotic
areas. Furthermore, there is a fundamental contradiction in using
the necrosis rate as a prognostic indicator. In sarcomas, it is
generally observed that the presence of necrosis before pre-
operative treatment reflects the high proliferative activity of the
tumor cells, implying a poor prognosis1. It is difficult to accurately
determine whether post-chemotherapy necrosis signifies a pre-
existing condition suggesting a poor prognosis or favorable
prognosis induced in response to chemotherapy. Despite varying
interpretations of necrosis, it has been traditionally employed for
prognosis prediction due to the absence of alternative methods.
Second, the method for assessing the necrosis rate shows low
reproducibility and high inter-rater differences, because it
depends on the pathologists’ intuitive evaluation. One study
reported that the necrosis-rate assessments performed by six
pathologists showed only moderate intraclass correlation (0.65),
which was not sufficiently high to confirm the viability of the
method15.
Estimation of viable tumor cell density is an approach that may

overcome these limitations. Viable tumor cell density is evaluated
by dividing the number of viable tumor cells by the area of the
tumor region in the maximum cross-section. Theoretically, viable
tumor cell density reflects not only the tumor cell necrosis
induced by chemotherapy but also the cellular proliferative
activity. With or without chemotherapy, the proliferative activity
of cancer cells should exhibit a positive correlation with
malignancy. Therefore, we hypothesized that viable tumor cell
density estimated using the deep-learning model (DLM) would
reflect the prognosis of osteosarcoma more accurately than the
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necrosis rate. However, counting viable tumor cells in all resected
tumor specimens is difficult to perform in routine clinical settings.
The application of DLM may facilitate the counting of viable

tumor cells in entire specimens. Several studies have reported that
DLM can detect tumor cells in pathological images16–20. The use of
DLM for cell counting offers two advantages, (1) absence of intra-
rater differences, ensuring objective and highly reproducible
evaluations, and (2) rapid evaluation of a large number of
pathological images and counting viable tumor cells in these
images. Using pathological images of osteosarcoma, previous
studies have reported that DLM can classify or segment
pathological images as viable or non-viable21–24. However, no
previous studies have reported the use of DLM for the detection of
preoperatively treated osteosarcoma cells or the identification of
associations between prognosis and pathological evaluation.
This study aimed to investigate whether viable tumor cell

density assessed using DLM reflects the prognosis of
osteosarcoma.

RESULTS
Overview of study
This study methodology consisted of two phases (Fig. 1). Phase 1
involved the development and evaluation of the DLM for
detecting viable tumor cells in pathological images (Fig. 2), and
Phase 2 involved survival analysis based on viable tumor cell
density (Fig. 3). In Phase 1, through discussions with pathologists,
we selected 15 cases for which clinical information was insufficient
or all slides of the largest cut face were not aligned to develop the
DLM (Fig. 1). The DLM was trained to detect viable tumor cells, and
detection performance was evaluated by 5-fold cross-validation
with an internal cohort and using an external cohort. Phase 2
included 48 patients for whom prognostic information and
resection samples with no defects were available (Fig. 1). The
participants in Phase 2 had 554 whole-slide images (WSIs);
median, 11 WSIs (interquartile range [IQR]: 7−15) per patient.

The association between viable tumor cell density and prognosis
was evaluated in 48 patients, together with the evaluation of
disease-specific survival (DSS) and metastasis-free survival (MFS).

Patient characteristics
Data from 69 patients with primary osteosarcoma who underwent
resection after NAC between 1989 and 2022 were extracted from
the archives of the Department of Anatomic Pathology, Kyushu
University (Fukuoka, Japan). All cases were reviewed by three
pathologists and diagnosed according to the 2020 World Health
Organization criteria1. Patients with parosteal, periosteal, or low-
grade central osteosarcoma were excluded from the study
because while these diseases include the term “osteosarcoma”
in their names, they are distinct from ‘conventional’ osteosar-
coma1. These sarcomas exhibit disparities with osteosarcoma in
terms of pathogenesis, clinicopathologic characteristics, and
consequently, treatment approaches.
Clinical data were retrospectively obtained from the medical

records. The clinical and pathological findings in patients in Phase
2 are summarized in Table 1. The median observation period was
74 months (IQR: 32.5−251 months). The 48 osteosarcoma patients
included 31 men and 17 women with a median age of 16 years
(IQR: 12−21 years). Most tumors were located in the proximal
limbs (humerus and femur) (64.6%), and the median tumor size
was 9 cm (IQR: 6−12 cm). Nine patients (18.8%) died of the tumor,
and seventeen (35.4%) experienced distant metastasis during the
observation period. For NAC, most patients (79.2%) received a
combination of doxorubicin, cisplatin, and methotrexate. In the
histological evaluation for NAC, almost all patients were classified
as grade I−III, while only two were classified as grade IV.

Viable cell detection performance
The average detection performance of the DLM at five-fold cross-
validation was as follows: precision, 0.74 (standard deviation [SD]
0.02); recall, 0.71 (SD 0.07); and F-measure, 0.72 (SD 0.03)

Primary osteosarcoma
69 patients from internal cohort

Lack of specimen or clinical data
21 patients

Survival analysis
48 patients
WSI = 554

Train and internal validation
15 patients 

(only biopsy: 5, biopsy + resection: 10)
WSI = 25

Phase 2

Phase 1

Selection through discussions with pathologists

Excluded
6 patients

External validation
8 patients from external cohort

WSI = 8

10 patients from external cohort

Excluded
2 patients

Fig. 1 Overview of the study and patient selection. This study comprises two phases. Phase 1 is intended to develop and evaluate the DLM,
which detects viable tumor cells in pathological images and the validation for the established DLM using the specimen from the other
hospital. Phase 2 aims to perform survival analysis based on viable tumor cell density. WSI whole-slide images, DLM deep-learning model.
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(Supplementary Table 1). For evaluations performed by the
pathologist, the precision, recall, and F-measure were 0.82, 0.69,
and 0.75, respectively. Overall, the detection performance of the
DLM did not vary significantly from the performance observed
when the pathologist annotated the images twice.
To assess the reproducibility of the constructed DLM, we

conducted external validation using osteosarcoma patient sam-
ples obtained from an external facility. The results of this external
validation demonstrated evaluation metrics for each fold, with

precision at 0.80 (SD 0.03), recall at 0.70 (SD 0.02), and F-measure
at 0.75 (SD 0.01).

Survival analysis
A consistent trend emerged in varying the threshold for the cut-
off value of viable tumor cell density to predict prognosis. When
the cut-off value for viable tumor cell density exceeded 350/mm2,
patients consistently exhibited favorable stratification, with
statistical significance observed when the cut-off value exceeded

b: 5-fold cross-validation Divide into 5 patient-disjoint subsets

Dataset in phase 1
(n=15; WSI=25)

Biopsy and resection
(n=10; WSI=20)

Biopsy only
(n=5; WSI=5)

Resection: Non-viable
(n=5; WSI=10)

Resection: Viable
(n=5; WSI=10)

a: Breakdown of the dataset in phase 1

5 patch images
(biopsy)

5 patch images
(biopsy)

5 patch images
(resection)

5 patch images
(resection)

5 patch images
(biopsy)

Pathological evaluation of 
resection specimen

Patch image

Input

Output
= Detected tumor cell

DLM

Output

Subset A Subset B Subset C Subset D Subset E

25 patch images

= train

= validation

= test

Training DLM Tuning DLM Testing DLM

Fig. 2 Schematic overview of Phase 1. a The 15 patients were divided into five subsets of 3 each. Each subset contained one patient with
only biopsy specimens and two with biopsy and resection specimens. Three pathologists selected one patch-extracted image
(1024 × 1024 pixel) at 400× magnification per WSI and annotated the nuclei of viable tumor cells by consensus. Thus, each subset had five
patch-extracted images, for a total of 25 images. b Five-fold cross-validation was performed, with three subsets used for training, one subset
for validation, and one subset for testing. DLM deep-learning model, WSI whole-slide images.
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400/mm2 (Supplementary Fig. 2). Consequently, our analysis was
continued using a provisional cut-off value of 400/mm2. The
survival analysis for DSS and MFS based on viable tumor cell
density and necrosis rate was performed (Fig. 4). The high-density
group exhibited poor prognosis for both DSS (p= 0.023, hazard
ratio [HR] 4.56, 95% confidence interval [CI] 1.05–19.19) and MFS
(p= 0.033, HR 2.87, 95% CI 1.01–8.16) (Fig. 4a, b). In contrast,
necrosis rate was not associated with DSS (p= 0.62; HR, 1.43; 95%
CI, 0.35–5.81) or MFS (p= 0.96; HR, 0.96; 95% CI, 0.36–2.64)
(Fig. 4c, d). The tumor site showed no association with DSS
(p= 0.11; HR, 4.74; 95% CI, 0.59–37.96) or MFS (p= 0.49; HR, 1.43;
95% CI, 0.50–4.07), while tumor size was associated with both DSS
(p= 0.007; HR, 11.44; 95% CI, 1.33–98.59) and MFS (p= 0.005; HR,
4.16; 95% CI, 1.35–12.82) (Supplementary Fig. 3).

Relationship between DLM-based and manual assessments
The relationship between the prognosis prediction based on the
viable cell density determined by the DLM and that based on the
necrosis rate assessed manually by pathologists is shown in Fig.
5a. Seventeen cases showed low-viable cell density and high
necrosis rate (grade III= 15, grade IV= 2), seven showed high
viable cell density and low necrosis rate (grade I= 6, grade II= 1),
and twenty-four showed low-viable cell density and low necrosis
rate (grade I= 9, grade II= 15). Furthermore, among the 31 cases
considered to show poor prognoses by the conventional method,
24 (77.4%) were judged by the method based on viable tumor cell
density to have better prognoses (Fig. 5a).
The detection examples in Phase 2 are shown (Fig. 5b–d). A case

showing low-viable cell density with a high necrosis rate (viable
tumor cell density, 79/mm2; necrosis rate, >90%) is presented (Fig.
5b). Viable tumor cell density and necrosis rate predicted a good
prognosis for this case, and neither tumor-related death nor
metastasis was observed. A case showing a high viable tumor cell
density and a low necrosis rate (viable tumor cell density, 431/
mm2; necrosis rate, 30%) is presented (Fig. 2c). The DLM could
correctly detect viable tumor cells in a high-power field view. The
viable tumor cell density and necrosis rate predicted a poor

prognosis in this case, and the patient died of cancer. In contrast, a
case with low-viable tumor cell density and low necrosis rate
(viable tumor cell density, 175/mm2; necrosis rate, 50%) is
presented (Fig. 2d). This patient was predicted to have a good
prognosis based on the viable tumor cell density method and a
poor prognosis based on the manual evaluation method, and no
adverse events were observed in this patient.

DISCUSSION
To the best of our knowledge, this is the first study to examine the
relationship between viable tumor cell density evaluated by DLM
after NAC and the prognosis of osteosarcoma. Viable tumor cell
density was calculated by counting all viable tumor cells in
resection WSIs. This counting task, which is too extensive to be
performed by humans, was facilitated by DLM. Viable tumor cell
density was strongly associated with DSS and MFS and could
stratify better or worse prognosis in patients with osteosarcoma
more precisely than manually evaluated necrosis rates.
Evaluation of viable tumor cell density using DLM offers two

advantages over conventional manual necrosis evaluation. First,
this method can be used to assess the degree of response to NAC
at the individual cell level and has the potential to reflect the
inherent malignancy of the tumor. Pathologists tend to overview
the area of interest and intuitively assess the necrosis rate25.
However, viable tumor cells may be present in areas that appear
necrotic; conversely, necrotic cells may be present in areas that
appear viable. Therefore, manual assessments may not accurately
reflect the effects of NAC. In addition, manual necrosis-rate
assessment relies on the pathologist’s experience, and there is no
clear agreement on whether to include fibrous or cystic lesions,
which may exist before treatment, in the chemotherapy-induced
necrosis area. This leads to significant inter-rater differences in
necrosis rate evaluation. Furthermore, it is challenging to
distinguish whether post-NAC necrosis is a result of chemotherapy
or the inherent malignancy of the tumor, yet these two factors
carry opposing implications for prognosis. Indeed, some reports
have suggested that the necrosis rates determined by

Osteosarcoma
patient

Pathologist DLM
(after trained)

Resection

Tumor

Slicing tumor 
and make WSIs

i-th WSI

Annotation
the border

Tumor

Patch
extraction

k-th patch image

Detection of
viable tumor 

cell

After detection
= Detected viable tumor cell

i-th WSI

=Sum

(N WSIs) (n patch images)

Area inside the 
red border
in i-th WSI

e
=

Total number of 
viable tumor cells

in k-th patch 
image

=Area (mm2)

Viable tumor cell density = Sum / Area

Step 1 Step 2 Step 3 Step 4

Step 5Step 6

Step 7

Outside tumor
Inside tumor

Fig. 3 Calculation workflow of the viable tumor cell density determination in Phase 2. The resected tumor was sliced (Step 1), and the
sliced specimens were scanned as WSIs. The pathologist annotated the resected tumor’s margins in all WSIs (Step 2). Next, patch-extracted
images were generated from inside the annotated tumor area of the WSI (Step 3). The trained DLM detected viable tumor cells inside the
tumor in patch-extracted images (Step 4), and counted the viable tumor cells (Step 5). The area inside the annotated tumor border in the WSI
was calculated (Step 6), and the area of the tumor (mm2) (“Area”) and the total number of detected viable tumor cells (“Sum”) were evaluated
(Step 7). Finally, the viable cell density defined as “Sum∕Arⅇa” was calculated. DLM deep-learning model.
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pathologists do not necessarily correlate with the prognosis in
osteosarcoma patients26–28. Theoretically, the viable tumor cell
density enables the assessment at the cellular level by detecting
individual tumor cells that persist after NAC and have the potential
to even reflect the inherent malignancy of the tumor. Thus, the
evaluation of the number of residual viable tumor cells provides a
more accurate assessment of prognosis prediction than conven-
tional necrosis assessment. Second, this approach provides an
objective and highly reproducible assessment, with an excellent

intra-rater correlation. Human evaluation is intuitive and always
subject to intra-rater error. In contrast, once DLM has been trained,
it is robust because it will produce the same output when tested
under the same conditions with the same input. Therefore, perfect
repeatability is expected across multiple evaluations of the same
specimen.
The tumor cell detection performance of the DLM was similar to

that of pathologists in both internal and external validations. Here,
we employed a DLM to calculate viable tumor cell density, a task
difficult to perform in pathologists’ daily practice. Therefore, the
performance target for this model was set at a level comparable to
that of humans. Consequently, the constructed DLM may not
surpass human performance by a significant margin, but we
deemed it capable of detecting viable tumor cells with
performance generally equivalent to that of humans and
proceeded with the experiments. In the external validation, the
higher number of false negatives in some of the included
metastatic cases and the tendency to undetected tumor cells
with patterns not present in the internal training may have
resulted in a lower recall than in the internal validation. However,
it is inferred that precision was increased because it consistently
detected typical findings common to both datasets. In summary,
as the F-measure was slightly higher in external validation than
internal validation, consistent generalizability is believed to be
assured.
The difference between the viable tumor cell density evaluated

by DLM and manual assessment of necrosis rate was that the
viable tumor cell density method could predict a better prognosis
in patients with a low-viable tumor cell density even when the
necrosis rate-based method indicated a poor prognosis due to a
low necrosis rate. This difference was evident in Grade II cases
(necrosis rate: 50−90%). Pathologists recognize necrosis as an
“area” and determine that areas with some viable cells are non-
necrotic. In contrast, the DLM determines whether a cell is viable
at the level of individual cells, not areas. For areas with incomplete
tumor cell necrosis, the pathologist would identify them as viable,
but DLM assessment would more accurately reflect cell death and
the degree of necrosis.
The determination of the viable tumor cell density cut-off in

survival analysis is controversial. Due to the rarity of osteosarcoma
and the challenges associated with obtaining a sufficient number
of cases for statistical analysis, external validation was not feasible.
To address this limitation, a sensitivity analysis involving survival
analysis at multiple cut-off values was conducted to evaluate the
impact of changing cut-offs on the study outcomes. The results
consistently indicated an association with prognosis over a certain
cut-off point. While the specific cut-off values discussed in this
study are provisional, the significance of this research lies in the
implication that viable tumor cell density, a challenging parameter
to assess by humans, can hold the potential for predicting
prognosis.
This study had other limitations. First, the sample size was not

large, as described above. One reason why necrosis rates were not
shown to be associated with prognosis in this study may be that
the study did not have sufficient statistical power due to
insufficient sample size. However, viable tumor cell density was
a significant prognostic factor under the same circumstances.
Although the CIs in that survival analysis for viable tumor cell
density were large due to the small cohort, they consistently
exceeded 1.0, which could provide a basis for a prognostic
association. Second, the recruitment period for the study was
quite long (1989–2022), and hematoxylin and eosin (H&E) staining
conditions were sometimes inconsistent in four patients in Phase
2. In these cases, we addressed this issue by re-staining the
pathological slides to obtain the WSIs. However, this limitation is
considered small because no significant difference in viable tumor
cell density was detected between the re-stained and original
specimen groups using the Mann–Whitney U-test (Supplementary

Table 1. Clinical and pathological findings in patients in Phase 2.

Factor Group Overall

n 48

Observation period
(month) [IQR]

74 [32.5,251]

Age (year) [IQR] 16 [12,21]

Sex (%) Female 17 (35.4)

Male 31 (64.6)

Site (%) Distal 17 (35.4)

Proximal 31 (64.6)

Bone (%) Femur 27 (56.2)

Fibula 2 (4.2)

Humerus 4 (8.3)

Radius 1 (2.1)

Tibia 14 (29.2)

Size (cm) [IQR] 9.0 [6.0,12.0]

Size (%) <10 cm 23 (50.0)

≥10 cm 23 (50.0)

Histological subtype (%) Osteoblastic 29 (60.4)

Fibroblastic 9 (18.8)

Chondroblastic 5 (10.4)

Giant cell rich 3 (6.2)

Telangiectatic 2 (4.2)

DOD (%) No 39 (81.2)

Yes 9 (18.8)

DSS (month) [IQR] 74.0 [32.5,117.0]

Metastasis (%) No 31 (64.6)

Yes 17 (35.4)

MFS (month) [IQR] 54.5 [13.8,100.5]

AJCC TNM stage I-III 41 (85.4)

IV 7 (14.6)

NAC (%) DOX + CDDP 1 (2.1)

DOX + CDDP + IFO 1 (2.1)

MTX + DOX + CDDP 38 (79.2)

MTX + DOX + CDDP +
IFO

5 (10.4)

MTX + DOX + CDDP +
IFO + ETP

2 (4.2)

VCR + DOX + CPM + IFO
+ ETP

1 (2.1)

Histological evaluation
of NAC

Grade 1 15 (31.2)

Grade 2 16 (33.3)

Grade 3 15 (31.2)

Grade 4 2 (4.2)

AJCC The American Joint Committee on Cancer, DOD dead of disease, DSS
disease-specific survival, IQR interquartile range, MFS metastasis-free
survival, NAC neoadjuvant chemotherapy, TNM tumor node metastasis.
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Fig. 1). Finally, as the DLM constructed in this study did not
outperform human performance, we aim to develop a more
robust DLM with a higher performance using more sufficient cases
and validated algorithms in the future.
In summary, DLM-evaluated viable tumor cell density is

objectively and a more precise prognostic factor of osteosar-
coma than the necrosis rate assessed by pathologists. This
novel approach has the potential to enhance the accuracy of
prognostic stratification of osteosarcoma patients treated
with NAC.

METHODS
Ethics
This study was conducted in accordance with the principles of the
Declaration of Helsinki and was approved by the institutional
review board (IRB) of Kyushu University (IRB number 22098-00 and
23005-01). This study involved individuals who had received prior
treatment, rendering the acquisition of individual written consent
challenging. Furthermore, there was no foreseeable harm to the
participants in this study. Consequently, the requirement for
obtaining individual informed consent was exempted by the IRB.
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Fig. 4 Survival analysis based on viable tumor cell density and necrosis rate. a, b Kaplan–Meier plots and statistical test results for DSS and
MFS on viable tumor cell density (cut-off value 400/mm2). c, d: The same analyses on manually evaluated necrosis rate. DLM deep-learning
model, DSS disease-specific survival, MFS metastasis-free survival.
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Training of the DLM
In developing a DLM for viable tumor cell detection, we adopted a
U-net-based model29. The advantages of the conventional
approach are (1) its high accuracy in cell detection and (2) the
convenience of using point-based annotations, which are simpler
than bounding boxes, for DLM training. The DLM was trained, and
its performance was verified using pathological images of 15
patients; 5 with only biopsy specimens and 10 with both biopsy
and resection specimens (4 with histologically viable cell-
dominant and 6 with non-viable cell-dominant specimens) in
Phase 1 (Fig. 2a). The 15 patients were divided into five subsets of
3 each. Each subset contained one patient with only biopsy
specimens and two with biopsy and resection specimens. The
specimens were stained with H&E and scanned using Leica Aperio
GT450 (Leica Biosystems, Buffalo Grove, IL, USA) to obtain WSIs. If
there was sample deterioration or loss over time, we re-prepared
H&E-stained specimens. Additionally, to assess the impact of
sample re-staining on the construction of the DLM, we compared
the distribution of viable tumor cell density values calculated by
the DLM between the group of cases that required sample re-
stained and the group with the original specimens, using the
Mann–Whitney U-test.
Three pathologists selected one patch-extracted image (1024 ×

1024 pixel) at 400× magnification using the pathological software
Automated Slide Analysis Platform (ASAP version 2.1, Computa-
tional Pathology Group, Nijmegen, Netherlands)30 per WSI and
annotated the nuclei of viable tumor cells by consensus using
annotation software (labelme version 5.1.1)31. Thus, each subset
had five patch-extracted images, for a total of 25 images (Fig. 2a).
Using these annotated images as the ground truth (GT), the

U-net with the ResNet-3432 backbone was trained in 1000 epochs

to detect the nuclei of viable tumor cells. A five-fold cross-
validation was performed, with three subsets used for training,
one subset for validation, and one subset for testing (Fig. 2b). The
mean squared error loss was set as the loss function during the
training process. Adaptive Momentum (Adam) was used as the
optimizer33. To improve the generalizability of the testing data,
the weights of DLM when the F-measure was the best for the
validation data were adopted. Training was performed using
PyTorch (version. 1.7.1) with NVIDIA GeForce GTX 1080 Ti.

Procedure for evaluation of the DLM
DLM detection performance was evaluated by measuring preci-
sion, recall, and F-measure. To calculate these evaluation metrics,
we defined detection success (true positive), false detection (false
positive), and missed detection (false negative) following the
previous report34. True positive is defined as the case when the
distance between the tumor detection point by DLM and GT is
within 20 pixels. The threshold of 20 pixels was set based on the
radius of tumor nuclei was approximately 20 pixels. False positive
is defined as the case when DLM incorrectly detects points that
are not annotated in GT. A false negative is defined as the case
when DLM fails to detect points that are annotated in GT.
Precision refers to the proportion of cells detected by the DLM
that were also viable tumor cells in the GT, whereas recall is the
proportion of viable tumor cells of the GT that the DLM could
detect as viable tumor cells. The F-measure is the harmonic mean
of precision and recall; this is the most important metric since it
indicates the balance between the two values. The detection
performance of the DLM was also compared with that of the
pathologist. One of the three pathologists who generated the GT

Low-power field High-power field

b: Low density with high necrosis rate

Low-power field High-power field

c: High density with low necrosis rate

Low-power field High-power field

d: Low density with low necrosis rate

a: Breakdown of the prognosis prediction by DLM and pathologists

Prediction using 
viable tumor cell density by DLM

Better Worse

Prediction using 
necrosis rate by  

pathologists

Better 17 0

Worse 24 7

= DLM: low, pathologists: high

= DLM: low, pathologists: low

= DLM: high, pathologists: low

Pathological evaluation

DLM
viable tumor 
cell density

pathologists
necrosis rate

Fig. 5 Comparison between viable cell density by DLM and manually determined necrosis rate. a Case distribution by DLM and
pathologist evaluation group. Red background squares indicate the number of cases in which both the DLM and pathologists judged the
prognosis as poor, and blue indicates cases in which both judged the prognosis as good. The yellow represents the number of cases in which
the DLM and the pathologists were divided in their decisions. b–d Example of the detection result at Phase 2. Each red circle denotes a
detected viable tumor cell by DLM. DLM deep-learning model.
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annotated the same 25 patch-extracted images again. The
pathologists’ sensitivity, specificity, and F-measure were then
measured using the second annotated image as a prediction and
compared with the DLM’s performance.
To validate the reproducibility of the detection performance of

the constructed DLM, we utilized tissue samples from osteosar-
coma patients treated at an external facility. Following consulta-
tions with Kyushu Cancer Center, these specimens were previously
stored at the Department of Anatomic Pathology, Kyushu
University. All specimens originated from Kyushu Cancer Center.
Among the 10 stored cases, we excluded 2 in which the creation
of WSIs was hindered due to specimen deterioration. From the
remaining eight cases, we used the slides designated as
representative at the time of diagnosis. These eight specimens
consisted of five primary tumor samples, three metastatic samples,
two biopsy specimens, and six resection specimens. We processed
these eight specimens in the same manner as described during
the DLM construction phase and conducted inference and
evaluation using the constructed DLM.

Workflow for calculation of the viable tumor cell density
Figure 3 shows the workflow for calculating the viable tumor cell
density. The resected tumor in Phase 2 was sliced (Fig. 3, Step 1),
and the sliced specimens were scanned as WSIs. The pathologist
annotated the resected tumor’s margins in all WSIs using software
(ASAP version 2.1)30 (Fig. 3, Step 2). Next, patch-extracted images
(1024 × 1024 pixels) were generated from inside the annotated
tumor area of the WSI (Fig. 3, Step 3), with a total of 1,635,199
images obtained. The trained DLM detected viable tumor cells
inside the tumor in patch-extracted images (Fig. 3, Step 4), and
counted the viable tumor cells (aik in Fig. 3, Step 5). The area inside
the annotated tumor border in the WSI was calculated (Si in Fig. 3,
Step 6), and the area of the tumor (mm2) (“Area”) and the total
number of detected viable tumor cells (“Sum”) were evaluated
(Fig. 3, Step 7). Viable tumor cell density was defined as Sum∕Arⅇa.
The viable cell density of 48 patients in Phase 2 was calculated as
described previously.

Statistical analysis of survival
All statistical analyses were conducted using R (version 4.2.2; R
Foundation for Statistical Computing, Vienna, Austria, https://
www.r-project.org/) and Python 3.7 (Python Software Foundation,
https://www.python.org/). The 48 patients in Phase 2 were
stratified into two groups (high- and low-density groups) based
on the viable tumor cell density. We conducted survival analysis
for DSS and MFS between the two groups while incrementally
increasing the cut-off value that separates the groups by 50/mm².
DSS was defined as the interval between the date of diagnosis and
death from the disease. MFS was defined as the interval between
the date of diagnosis and the date of identification of distant
metastasis. A cut-off value for viable tumor cell density was
obtained to determine the optimal value to produce a significant
difference in prognosis for both DSS and MFS and minimize the
difference in the number of cases between the low- and high-
density groups. Kaplan−Meier curves were plotted, and the log-
rank test was performed to evaluate patient stratification. Cox
univariate regression was performed to evaluate the HR and 95%
CI. The same survival analysis was conducted using the necrosis-
rate data obtained by three pathologists (≥90% or <90%). In
addition, the tumor site (proximal or distal) and size (≥10 cm or
<10 cm) were investigated. Statistical significance was defined by
a p-value of <0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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