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Diagnostic performance of deep learning in ultrasound
diagnosis of breast cancer: a systematic review
Qing Dan1,2,4, Ziting Xu1,4, Hannah Burrows3, Jennifer Bissram3, Jeffrey S. A. Stringer 2✉ and Yingjia Li 1✉

Deep learning (DL) has been widely investigated in breast ultrasound (US) for distinguishing between benign and malignant breast
masses. This systematic review of test diagnosis aims to examine the accuracy of DL, compared to human readers, for the diagnosis
of breast cancer in the US under clinical settings. Our literature search included records from databases including PubMed, Embase,
Scopus, and Cochrane Library. Test accuracy outcomes were synthesized to compare the diagnostic performance of DL and human
readers as well as to evaluate the assistive role of DL to human readers. A total of 16 studies involving 9238 female participants
were included. There were no prospective studies comparing the test accuracy of DL versus human readers in clinical workflows.
Diagnostic test results varied across the included studies. In 14 studies employing standalone DL systems, DL showed significantly
lower sensitivities in 5 studies with comparable specificities and outperformed human readers at higher specificities in another
4 studies; in the remaining studies, DL models and human readers showed equivalent test outcomes. In 12 studies that assessed
assistive DL systems, no studies proved the assistive role of DL in the overall diagnostic performance of human readers. Current
evidence is insufficient to conclude that DL outperforms human readers or enhances the accuracy of diagnostic breast US in a
clinical setting. Standardization of study methodologies is required to improve the reproducibility and generalizability of DL
research, which will aid in clinical translation and application.

npj Precision Oncology            (2024) 8:21 ; https://doi.org/10.1038/s41698-024-00514-z

INTRODUCTION
Breast cancer is the world’s most prevalent cancer and remains
the major cause of cancer-associated deaths globally. GLOBCAN
estimated that in 2020, there were about 2.3 million women
diagnosed with breast cancer and 685,000 breast cancer-
associated deaths worldwide1. Early and accurate diagnosis results
in better patient outcomes. Breast ultrasound (US) is low-cost,
easy-to-operate, radiation-free, portable, and typically helpful for
distinguishing between a cystic and a solid breast mass. The
effectiveness of the US as a diagnostic tool for palpable breast
abnormalities is widely recognized, especially in cases involving
dense breast tissues or mammographically occult lesions2–4.
Additionally, the US is considered the preferred imaging method
for providing guidance during breast biopsy procedures5,6.
However, the diagnostic efficacy and reproducibility of US
examinations are relatively low due to their dependence on the
knowledge and experience of the operators7,8.
Deep learning (DL), an innovative artificial intelligence (AI)

technology, excels at image-related tasks, including abnormities
detection, segmentation, and classification (Fig. 1). The integration
of DL into the US imaging workflow offers numerous benefits,
including improved efficiency, reduced errors, and automated
quantitative assessments9. Consequently, significant efforts have
been made to facilitate the clinical application of DL in medical
imaging. For instance, the DL-based ultrasonography system
known as S-Detect (Samsung Medison, Seoul, Korea) has gained
increasing popularity for breast cancer diagnosis. This system
enables automatic segmentation and interpretation of US
morphological descriptions, providing a dichotomous classifica-
tion (possibly benign or possibly malignant) that serves as a
reference for radiologists during the final diagnostic process10.

Several recent reports have suggested that DL-based inter-
pretation of breast US is on par with or even superior to that of a
human radiologist11–15. However, the application of DL in clinical
practice remains controversial and results vary across different
studies. Current reviews10,16 focused on evaluating the application
potentials of commercial products, such as S-Detect. There is a
paucity of evidence-based systematic reviews specific to the
general diagnostic performance of employing DL models in
clinical practice of breast US, in particular comprehensive
comparison between DL and human readers. Our work aims to
assess current evidence on the diagnostic performance of DL
algorithms in the detection and classification of breast lesions in
clinical US tests, including (1) whether standalone DL systems
outperform radiologists in breast cancer diagnosis and (2) whether
assistive DL systems can improve diagnostic performance when
used in concert with human radiologists.

RESULTS
Study selection and study characteristics
Database searches initially yielded 4017 unique results after
removing 1898 duplicates, among which 96 potentially eligible
studies were further reviewed through full texts. Overall, as shown
in Fig. 2, 16 studies17–32 were ultimately included in this review,
according to inclusion criteria. In addition, based on the PICO
framework (population, intervention, comparison, outcome),
exclusions and the corresponding reasons after full-text review
were presented in Supplementary Tables 1 and 2.
The main characteristics of the included 16 publications,

including 14 studies using standalone DL systems and 12 studies
using assistive DL systems, were presented in Table 1,
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Supplementary Tables 3 and 4, and Supplementary Fig. 1. These
studies comprised 9238 women in total, of which 3 studies30–32

recruited 901, 582, and 5012 female participants respectively, the
remaining 13 studies17–29 included smaller numbers of women

(from 40 to 472). Seven studies evaluated data from
China19,21,23,27,29,30,32, 6 studies enrolled participants from
Korea17,18,20,24,25,28, 2 from Italy22,26, and the remaining 1 study31

used public multisite data from which the countries were not

Fig. 1 Schematic illustration of clinical US examination workflow and the image-related task where DL-based system could have a large
impact. a Clinical US workflow comprises image acquisition, image analysis (which may involve DL), report generation, and further procedures
based on diagnostic reports. b A DL system comprises multiple layers where feature extraction, selection, and ultimate classification are
performed simultaneously during training. US images as input are analyzed and the DL model gives binary classification (benign or
malignant). Final assessment is made based on the decision of the DL system alone or in combination with human radiologists.

Fig. 2 PRISMA diagram of included and excluded studies at each stage of the review. Sixteen publications were included in the database
(PubMed, Embase, Scopus, and Cochrane Library) after removing duplicates, irrelevant studies, and studies that did not meet the inclusion
criteria.
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reported. Of all studies, 15 were conducted in a diagnostic setting,
while the remaining 1 was evaluated in a screening setting18. All
included studies employed DL convolutional neural networks, of
which 14 were commercial DL systems, including
S-Detect17–26,28–30 and BU-CAD27, and 2 were investigator-
derived DL systems31,32. In addition, there were 6 studies17,18,24–28

using retrospective US images to compare the diagnostic accuracy
of DL systems and human readers. For prospective test accuracy
studies, multiple reader multiple case studies were performed
under laboratory conditions19–23,29,30,32, without any randomized
controlled trials or cohort studies based on real-world settings.
Nine publications17–20,22,27,29–31 followed the fifth edition of Breast
Imaging Reporting and Data System (BI-RADS) to make the final
assessment, another 7 articles did not specify which version was
used. BIRAD-4a was clearly described as the cutoff value in
13 studies17–22,24,25,27–29,31,32, while 2 studies23,26 using BIRADS-4b
as the cutoff value. Another study30 evaluated the diagnostic
accuracy using BIRAD-4a and BIRADS-4b as cut-off values,
respectively. All studies used pathology as the gold standard,
among which 7 studies20,22,24,25,27,28,31 employed follow-up as a
supplement to the reference standard.

Diagnostic performance comparison
DL can function either as a standalone system where the
algorithms independently generate diagnostic decisions, or as
an assistant to radiologists where the final diagnosis is made by
radiologists considering the DL outcomes. Consequently, the
development of a successful DL product necessitates not only the
construction of robust DL algorithms but also the exploration of
how the algorithm outputs can enhance radiologists’ diagnostic
capabilities. It is crucial to investigate the usefulness of DL outputs
for radiologists, quantify the benefits of DL in patient care, and
determine strategies to optimize these advantages.
In test accuracy comparison between DL systems and human

readers, 4 studies evaluated the diagnostic performance of DL
systems as standalone19,22,26,31, 2 studies employed assistive DL
systems17,21, and another 10 studies assessed the roles of DL
systems as both standalone and assistive systems18,20,23–25,27–30,32.
Those studies employed human readers at various levels of clinical
experiences in breast US and investigated the performance of DL
systems compared to experienced and less experienced human
readers.

Standalone DL systems
In 14 studies using DL as a standalone system, the diagnostic
accuracy of DL and human readers was compared (Table 2). In a
study20 conducted by Cho et al. found DL had lower AUC than
human readers. Two studies22,24 showed DL was equivalent to
human readers in AUC. In contrast, another study32 reported a
higher AUC of DL than human readers. More specifically, DL had
superior AUC over less experienced human readers while
comparable to experienced human readers in three studies19,24,29.
As for accuracy, DL systems were more accurate than all human
readers in two studies24,32. Wei et al.29 reported that DL was more
accurate than less experienced human readers while comparable
to experienced human readers. In contrast, another study showed
DL was equivalent to less experienced human readers while more
accurate than experienced human readers. In addition, standalone
DL had lower sensitivity than overall human readers in five
studies19,20,24,30,32. Another two studies26,28 found that DL was
more sensitive than less experienced human readers but less
sensitive than experienced human readers. In four studies19,20,24,32,
DL exhibited higher specificity than overall human readers. In
another study26, DL was more specific than less experienced
human readers but less specific than experienced human readers.
The remaining studies did not report comparable diagnostic
measures between DL systems and human readers.

Assistive DL systems
In 12 studies that assessed assistive DL systems (Table 2), three
studies18,27,32 reported improved AUC of human readers when
combining with DL systems. Another study20 showed assistive DL
had a comparable AUC to human readers alone. To investigate the
assistive effects of DL on human readers with different
experiences, two studies17,24 found that assistive DL systems
had higher AUC than less experienced human readers but the
positive impacts did not work for experienced human readers. In
accuracy tests, assistive DL systems were more accurate than
human readers in three studies20,24,32. However, no studies
showed improved overall sensitivity of the combination of DL
and human readers compared to human readers alone. One
study28 reported improved sensitivity of an assistive DL system
compared to less experienced human readers but this advantage
was not maintained when used by experienced human readers.
Improved specificity in overall human readers was reported in
seven studies18,20,21,24,27,28,32 that used assistive DL systems.
Interestingly, in a study17 reported by Park and coworkers, the
assistive DL technology improved diagnostic specificity among
experienced human readers but not among inexperienced read-
ers. While in another study20, less experienced human readers
were aided in terms of specificity by the assistive DL system.
In Fig. 3, we estimated the sensitivity and specificity of DL

systems and average human readers. We tentatively infer both
standalone and assistive DL systems are more specific than
average human readers while whether they are more sensitive
remains unclear. However, complete 2 × 2 contingency tables
were not available in most studies so that we were unable to
conduct a thorough diagnostic analysis for all included studies.

Quality assessment
Based on QUADAS-2 and QUADAS-C tools, we tailored the signal
questions in four domains, including patient selection, index tests,
reference standard, flow, and timing, to assess the quality and
applicability of included studies (Supplementary Table 5). The
studies with low, high, or unclear risk of bias and applicability
concerns were summarized in Table 3, Figs. 4 and 5. Most studies
showed a high risk of bias in the four domains. For example, the
average cancer prevalence of included lesions was 39.5%, ranging
from 6% to 64.7% (Supplementary Table 4 and Supplementary
Fig. 1), which far exceeds the prevalence in screening and
diagnostic settings33. This led to a high risk of bias in patient
selection. Additionally, most study designs did not represent a
complete US testing pathway applicable to clinical practice. For
example, DL systems were used for image reading, but not
integrated into clinical decisions, such as diagnosis, further tests,
or follow-up. In contrast, the choice of patient management (e.g.,
biopsy, follow-up) to confirm disease status was based on the
decision of the human readers rather than standalone or assistive
DL systems. Meanwhile, for human readers, the testing pathway
was also not applicable to clinical routines where they have access
to patient’s clinical information as well as prior US images. The
reference standards varied among the included 16 studies, of
which 4 studies17,22,25,28 were at high risk of bias because the
follow-up time of women with negative tests was <2 years, which
is shorter than the recommended follow-up interval33 and
therefore may underestimate the rate of missed cancers and
overestimate diagnostic accuracy.

DISCUSSION
This review presents a comprehensive overview of diagnostic
performance in breast US of DL systems, which serve as standalone
roles or aids to human readers. We identified 16 studies that
compared the test accuracy measures of a commercial or in-house
DL system to that of human readers. Diagnostic test outcomes
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Table 2. Test outcomes of standalone and assistive DL systems.

Study Index test/
comparator

AUC (95% CI) PΔAUC %Acc (95% CI) PΔAcc %Sen (95% CI) PΔSen %Spe (95% CI) PΔSpec

Standalone DL system

Kim 202118 DL 0.575 NR 30 84.9

Reader 1 0.545 NR NR NR 100 NR 8.9 NR

Reader 2 0.541 NR NR NR 100 NR 8.2 NR

Reader 3 0.545 NR NR NR 100 NR 8.9 NR

Xiao
201919

DL 0.81 (0.77–0.85) NR 85.32
(79.91–89.74)

76.96
(70.97–82.24)

Less experienced
reader

0.7 (0.65–0.74) <0.0001 NR NR 92.2 (87.81–95.39) <0.05 46.96
(40.37–53.63)

<0.05

Experienced reader 0.81(0.77–0.84) NS NR NR 98.62
(96.03–99.72)

<0.05 63.04
(56.45–69.29)

<0.05

Cho
201820

DL 0.815 (0.745–0.885) 82.4 (75.5–89.2) 72.2 (60.3–84.2) 90.8 (83.7–97.8)

Less experienced
reader

0.901 (0.846–0.956) 0.004 73.1 (65.1–81.1) 0.06 94.4 (88.3–100.0) <0.001 55.4 (43.3–67.5) <0.001

Experienced reader 0.887 (0.826–0.947) 0.023 69.8 (61.5–78.0) 0.014 94.4 (88.3–100.0) <0.001 49.2 (37.1–61.4) <0.001

Segni
201822

DL 0.82 (0.71–0.91) NR 91.1 (78.8– 97.5) 70.8 (48.9– 87.4)

Less experienced reader

1 0.76 (0.66–0.86) 0 NR NR 97.7 (88–99.9) NR 54.2 (32.8–74.4) NR

2 0.83 (0.73–0.93) 0.831 NR NR 95.5 (84.5–99.4) NR 70.8 (48.9–87.4) NR

3 0.74 (0.63–0.84) 0.151 NR NR 97.8 (88.2–99.9) NR 50 (29.1–70.9) NR

4 0.75 (0.65–0.85) 0.206 NR NR 100 (92–100) NR 50 (29.1–70.9) NR

Experienced reader 0.84 (0.74 –0.94) 0.751 NR NR 93.2 (81.3– 98.6) NR 75.0 (53.3–90.2) NR

Xia 202123 DL 0.948 89.6 95.8 93.8

Reader 0.719 NR 43.8 NR 75 NR 68.8 NR

Lee 202224 DL 0.855 (0.825‒0.886) 85.4 (82.2‒88.1) 86.1 (80.7‒90.1) 84.9 (80.6‒88.4)
Lee 202224 Reader 0.895 (0.854‒0.936) 0.05 72.4 (69.1‒75.4) <0.001 95.4 (93.0‒97.0) <0.001 56.6 (52.2‒60.8) <0.001

Choi
201925

DL NR 92.1 85 95.4

Less experienced reader

1 NR NR 79.4 NR 88.8 NR 75.1 NR

2 NR NR 88.9 NR 81.3 NR 92.5 NR

Experienced reader

1 NR NR 77.9 NR 88.8 NR 72.8 NR

2 NR NR 84.2 NR 86.3 NR 83.2 NR

Nicosia
202226

DL NR NR 85.2 79.8

Less experienced reader

1 NR NR NR NR 75.4 <0.001 68.4 0.001

2 NR NR NR NR 75.4 <0.001 65.8 <0.001

Experienced reader

1 NR NR NR NR 94.4 <0.001 86.8 0.08

2 NR NR NR NR 95.8 <0.001 85.1 0.34

Lai 202227 DL 0.8591 94.77 96.92 55.14

Average readers 0.7582 (0.7014–0.8151) NR NR NR 95.77 (90.88–
100.66)

NR 24.07
(15.97–32.17)

NR

Lee 201928 DL 0.73 (0.67–0.78) NR 76 (65–86) 69 (65–74)

Less experienced
reader

0.65 (0.58–0.71) 0.013 NR NR 59 (46–71) 0.007 70 (66–75) 0.71

DL 0.79 (0.74–0.84) NR 81 (70–89) 77 (73–81)

Experienced reader 0.83 (0.8–0.86) 0.101 NR NR 97 (90–100) <0.001 70 (65–74) 0.004

Wei 202129 DL 0.874 88.3 85.5 89.3

Less experienced reader

1 0.735 <0.001 73.3 <0.001 73.9 0.057 73.1 <0.001

2 0.802 0.014 80.5 0.005 79.7 0.388 80.7 0.009

Experienced reader

1 0.843 0.255 87.2 0.749 78.3 0.227 90.4 0.851

2 0.901 0.113 91 0.146 88.4 0.625 91.9 0.267

Wei 202230 DL 0.906 (0.885–0.924) 89.6 (87.4– 91.4) 94.2 (91.0– 96.5) 87.0 (83.9– 89.6)

Wei 202230 Less experienced
readersa

0.696 (0.665–0.726) <0.001 61.6 (58.4–64.7) <0.001 98.5 (96.5–99.5) <0.001 40.7 (36.7–44.8) <0.001

0.874 (0.850–0.895) 0.007 85.9 (83.5–88.0) 0.005 89.6 (85.7–92.7) 0.458 82.1 (78.7–85.1) 0.007
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Table 2 continued

Study Index test/
comparator

AUC (95% CI) PΔAUC %Acc (95% CI) PΔAcc %Sen (95% CI) PΔSen %Spe (95% CI) PΔSpec

Less experienced
readersb

Experienced
readersa

0.734 (0.704–0.763) <0.001 66.5 (63.3–69.5) <0.001 98.5 (96.5–99.5) 0.001 48.4 (44.2–52.5) <0.001

Experienced
readersb

0.883 (0.860–0.903) 0.057 87.9 (85.6–89.9) 0.21 92.6 (89.2–95.2) 0.014 87.0 (83.9– 89.6) >0.999

Ciritsis
201931

DL 0.967 (0.86–0.99) NR 89.47 100

Reader 1 0.938 (0.82– 0.99) NR NR NR 100 NR 87.5 NR

Reader 2 0.88 (0.74– 0.96) NR NR NR 84.21 NR 95.83 NR

Gu 202232 DL 0.924 (0.879–0.957) 85.57
(79.94–90.12)

89.77
(81.47–95.22)

82.30
(74.00–88.84)

Readers 0.843 (0.819–0.865) <0.0001 66.27(63.25–
69.19)

<0.0001 96.82
(94.72–98.25)

<0.0001 42.48
(38.36–46.67)

<0.0001

Assistive DL system

Park
201917

Less experienced

Reader 1+DL 0.828 (0.745–0.912) 54 97.6 23.7

Reader 1 0.623 (0.501–0.746) <0.001 43 0.03 65.9 <0.001 27.1 0.56

Reader 2+DL 0.823 (0.742–0.904) 74 85.4 66.1

Reader 2 0.702 (0.596–0.808) 0.001 61 0.008 75.6 0.1 50.8 0.04

Reader 3+DL 0.839 (0.762–0.917) 58 97.6 30.5

Reader 3 0.759 (0.660–0.859) 0.04 51 0.15 87.8 0.05 27.1 0.59

Experienced

Reader 1+DL 0.907 (0.848–0.967) 74 90.2 66.1

Park
201917

Reader 1 0.856 (0.776–0.936) 0.02 66 0.006 85.4 0.16 52.5 0.02

Reader 2+DL 0.904 (0.837–0.971) 76 90.2 66.1

Reader 2 0.889 (0.821–0.957) 0.16 70 0.05 92.7 0.327 54.2 0.02

Kim 202118 Reader 1+DL 0.803 NR 90 70.5

Reader 1 0.545 <0.001 NR NR 100 >0.999 8.9 <0.001

Reader 2+DL 0.658 NR 100 31.5

Reader 2 0.541 <0.001 NR NR 100 NA 8.2 <0.001

Reader 3+DL 0.758 NR 90 61.6

Reader 3 0.545 <0.001 NR NR 100 >0.999 8.9 <0.001

Cho
201820

Less experienced
reader+DL

0.895 (0.835–0.956) 86.6 (80.4–92.7) 87.0 (78.1–96.0) 86.2 (77.8–94.6)

Less experienced
reader

0.887 (0.826–0.947) >0.999 69.8 (61.5–78.0) <0.001 94.4 (88.3–100.0) 0.17 49.2 (37.1–61.4) <0.001

Experienced
reader+DL

0.901(0.844–0.958) 85.7 (79.4–92.0) 94.4 (88.3–100.0) 87.7 (79.7–95.7)

Experienced reader 0.901 (0.846–0.956) >0.999 73.1 (65.1–81.1) 0.015 83.3 (73.4–93.3) 0.04 55.4 (43.3–67.5) <0.001

Wang
202121

Readers+DLc 0.777 (0.707–0.847) 0.08 75.7 (68.8–81.5) 0.095 97.4 (90.2–99.6) 1 57.9 (47.3–67.8) 0.042

Readers+DLd 0.822 (0.757–0.886) 0.01 80.9 (74.4–86.1) 0.005 94.9 (86.7–98.3) 0.681 69.4 (59.1–78.3) <0.001

Readers 0.703 (0.626–0.780) 67.6 (60.3–74.2) 97.4 (90.2–99.6) 43.2 (33.2–53.8)

Xia 202123 Less experienced
reader+DL

0.948 89.6 95.8 93.8

Less experienced
reader

0.719 NR 43.8 NR 75 NR 68.8 NR

Experienced
reader+DL

0.969 93.8 100 93.8

Experienced reader 0.802 NR 60.5 NR 79.2 NR 81.3 NR

Lee 202224 Readers+DLe 0.908 (0.876‒0.941) 0.093 75.3 (72.2‒78.2) <0.001 95.2 (92.4‒97.0) 0.725 61.8 (57.5‒65.8) <0.001

Lee 202224 Readers+DLf 0.913 (0.886‒0.941) 0.099 79.0 (76.0‒81.6) 0.001 93.8 (90.7‒96.0) 0.087 68.8 (64.7‒72.6) 0.001

Readers 0.895 (0.854‒0.936) 72.4 (69.1‒75.4) 95.4 (93.0‒97.0) 56.6 (52.2‒60.8)
Choi
201925

Less experienced
reader 1+DL

0.951 86.2 95 82.1

Less experienced
reader 1

0.906 NR 79.4 0.045 88.8 0.182 75.1 0.014

Less experienced
reader 2+DL

0.914 88.1 86.3 89

Less experienced
reader 2

0.895 NR 88.9 0.78 81.3 0.221 92.5 0.211
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varied substantially among the included studies. While we
cautiously inferred DL systems were more specific than average
human readers, which might help decrease the false positives, no
consensus of AUC, accuracy, and sensitivity was found either in
standalone or assistive DL systems. Importantly, one of the main
concerns of DL studies is better imaging sensitivity might come at
the cost of increased false positives and vice versa. Critical
performance metrics such as AUC, accuracy, sensitivity, specificity,
true positive, false positive, false negative, and true negative should
be taken into consideration together. However, not all included
studies reported these diagnostic measures. Although most of the

included studies (14/16) use FDA-approved DL systems, the clinical
effects of DL systems as standalone or assistive roles have not been
fully revealed yet due to the lack of generalizable reporting or good
study design. Therefore, our systematic review disagrees with
findings from various publications, some of which have claimed
that DL systems (e.g., S-Detect) outperform humans18,20,24 and have
a significant role in assisting human readers in distinguishing
between benign and malignant breast masses10,16. It does not
necessarily mean that the DL algorithm in breast US itself is
unreliable. It contrarily provides the directions for future improve-
ment for this promising technology.

Table 2 continued

Study Index test/
comparator

AUC (95% CI) PΔAUC %Acc (95% CI) PΔAcc %Sen (95% CI) PΔSen %Spe (95% CI) PΔSpec

Experienced reader
1+DL

0.919 90.9 86.3 93.1

Experienced reader
1

0.884 NR 77.9 <0.001 88.8 0.683 72.8 <0.001

Experienced reader
2+DL

0.942 90.1 90 90.2

Experienced reader
2

0.919 NR 84.2 0.046 86.3 0.371 83.2 0.006

Lai 202227 Readers+DL 0.8294 (0.7777–
0.8813)

NR 98.17 (0.9492–
1.0143)

30.67
(21.93–39.40)

Readers 0.7582 (0.7014–0.8151) <0.0001 NR NR 95.77
(90.88–10.066)

0.2991 24.07
(15.97–32.17)

0.0448

Lee 201928 Less experienced
readers+DL

0.71 (0.65–0.77) NR 69 (57–80) 73 (69–77)

Less experienced
readers

0.65 (0.58–0.71) 0.001 NR NR 59 (46–71) 0.008 70 (66–75) 0.033

Experienced
readers+DL

0.84 (0.81–0.87) NR 96 (88–99) 72 (68–77)

Experienced readers 0.83 (0.8–0.86) 0.451 NR NR 97 (90–100) 0.317 70 (65–74) 0.003

Wei 202129 Reader 1+DL 0.875 89.1 84.1 90.9

Reader 1 0.735 <0.001 73.3 <0.001 73.9 0.039 73.1 <0.001

Reader 2+DL 0.867 87.2 85.5 87.8

Wei 202129 Reader 2 0.802 <0.001 80.5 <0.001 79.7 0.125 80.7 0.001

Reader 3+DL 0.872 89.5 82.6 91.9

Reader 3 0.843 0.099 87.2 0.181 78.3 0.375 90.4 0.508

Reader 4+DL 0.901 91 88.4 91.9

Reader 4 0.901 >0.999 91 >0.999 88.4 >0.999 91.9 >0.999

Wei 202230 Less experienced
readers+DL

0.87 (0.85–0.89) NR 97.24
(96.17–98.31)

40.7 (37.49–43.9)

Less experienced
readers

0.7 (0.66–0.73) NR NR NR 98.47
(97.66–99.27)

NR 77.22
(74.48–79.96)

NR

Experienced
readers+DL

0.89 (0.87–0.91) NR 96.32
(95.09–97.55)

81.39
(78.85–83.93)

Experienced readers 0.73 (0.70–0.76) NR NR NR 98.47
(97.66–99.27)

NR 48.35
(45.08–51.61)

NR

Gu 202232 Readers+DLg 0.861 (0.838–0.881) <0.0001 78.71 (76.04–
81.20)

<0.0001 97.27
(95.28–98.58)

0.8036 64.25
(60.14–68.21)

<0.0001

Readers+DLh 0.908 (0.888–0.925) <0.0001 80.40 (77.81–
82.81)

<0.0001 97.73
(95.86–98.91)

0.4545 66.90
(62.85–70.77)

<0.0001

Readers 0.843 (0.819–0.865) 66.27 (63.25–
69.19)

96.82
(94.72–98.25)

42.48
(38.36–46.67)

Acc accuracy, Sen sensitivity, Spe specificity, NS not significant, NA not applicable.
aCategory 4a as the cut-off value.
bCategory 4b as the cut-off value12.
cIf both the assessments of longitudinal and transverse sections from the DL model were possibly benign, the final BIRADS category would be downgraded.
dIf any of the assessments from DL were possibly benign, the final BIRADS category would be downgraded16.
eSequential reading mode.
fSimultaneous reading mode6.
gIf the DL model assessed the lesion as malignant or benign, the final BIRADS classification would be upgraded or downgraded by one level.
hThe BIRADS assessment was flexibly adjusted by human readers after combining DL’s outcomes.
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Our review found high heterogeneity stemming from study
designs, methods, targeted populations, diagnostic measures, and
human readers’ experiences, which hinders the comparability of
evidence across included studies. There was a wide variation in
the number and pathological type of selected lesions. Thirteen
studies evaluated fewer than 500 women while the outcomes of
another three studies were based on many more participants.
Promising results from small populations may not be applicable to
larger populations. In addition, the malignant proportions far
exceed the cancer prevalence in the real world, which inevitably
overestimates the sensitivity. Importantly, most of the included
studies originated in Asia, and mostly at a single site, which may
affect the external validity of reported results. Furthermore,
compared with Caucasian women, Asian women generally have

denser breasts and younger ages of onset of breast cancer.
Discrepancies in race and ethnicity make it difficult to extrapolate
the positive findings among Asian participants to multi-race and
multi-ethnic populations. Hence, multicenter studies from differ-
ent countries that recruit participants from multiple races and
ethnicities are required to achieve higher applicability of these
studies. Additionally, the test cutoff values varied among studies
with some using BIRADS-4a while some using BIRADS-4b as the
threshold for classifying malignancies. In this regard, test bias
could have been introduced. These studies also set various
definitions of experienced or less experienced human readers,
which might lead to contrary conclusions among some studies.
Furthermore, the included studies have some variation in
reference standards, including pathological confirmation and

Fig. 3 Estimated sensitivity and specificity of standalone/assistive DL systems and human readers. a Sensitivities of standalone DL systems
and average human readers. b Specificities of standalone DL systems and average human readers. c Sensitivities of assistive DL systems and
average human readers. d Specificities of assistive DL systems and average human readers. Error bar represents SD.
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Table 3. Overview of concerns about risk of bias and applicability of studies using standalone DL systems or assistive DL systems.

Study Risk of bias QUADAS-2 Applicability concerns
QUADAS-2

Risk of bias QUADAS-C

P I R FT P I R P I R FT

Standalone DL system

Kim 202118 Low High High High High High Low High Low Low Low

Xiao 201919 Unclear Low Low Low High High Low High Low Low Low

Cho 201820 Low Low Low Low High High Low Low Low Low Low

Segni 201822 Unclear Low High High High High High High Low High High

Lee 202224 High Low Low Low High High Low High Low Low Low

Xia 202123 Low Low Low Low High High Low Low Unclear Low Low

Choi 201925 Low Low High High High High High Low Low High High

Nicosia 202226 Low Low Low Low High High Low Low Low Low Low

Lai 202227 Unclear Low Low Low High High Low High Low Low Low

Lee 201928 High Low High High High High High High Low High High

Wei 202129 High Low Low Low High High Low High Low Low Low

Wei 202230 High Low Low Low High High Low High Low Low Low

Ciritsis 201931 High Low Unclear Unclear High High Unclear High Low High High

Gu 202232 Unclear Low Low Low High High Low High Low Low Low

Assistive DL system

Park 201917 Unclear Low High High High High High High Low High High

Kim 202118 High Low Low Low High High Low High High Low Low

Cho 201820 Low Low Low Low High High Low Low High Low Low

Wang 202121 Low Low Low Low High High Low Low High Low Low

Xia 202123 Low Low Low Low High High Low High Low Low Low

Lee 202224 High Low Low Low High High Low High Low Low Low

Choi 201925 Low Low High High High High High Low High High High

Lai 202227 Unclear Low Low Low High High Low High Low Low Low

Lee 201928 High High High High High High High High High High High

Wei 202129 High Low Low Low High High Low High High Low Low

Wei 202230 High Low Low Low High High Low High High Low Low

Gu 202232 Unclear Low Low Low High High Low High Low Low Low

P patient selection, I index tests, R reference standard, FT flow and timing.

Fig. 4 Graphic display of QUDAS-2 and QUDAS-C for studies using standalone DL systems. The proportion of studies with low, high,
unclear risk of bias and concerns regarding applicability.
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follow-up time (7–35 months). The methods for obtaining
pathological results were also inconsistent, including histopatho-
logic results from US-guided biopsy, vacuum-assisted excision, or
open surgery. These discrepancies suggest that accuracy evalua-
tions are not comparable among studies. Overall, the current
evidence base is not of sufficient quality to support a broad
clinical practice recommendation of DL systems in breast US.
Furthermore, compared to other medical imaging modalities,

such as MRI, DL-assisted US shows intrinsic limitations, which
hinders its clinical applicability. For example, US imaging is
dependent on its operators, resulting in high intra- and inter-
observer variability in image acquisition and interpretation.
Moreover, unlike MRI images viewing the whole lesion range, still
US images are obtained from parts of targeted organs, which may
cause under-representation or over-exaggeration. Additionally, US
technology has been evolving fast over the recent decades. Older
ultrasonograms are generally of lower resolution and higher noise,
while up-to-date images are of higher resolution and lower noise.
Thus, DL models that are trained with older images may not be
externally valid for images acquired by advanced devices.
Methodological considerations are highly demanded for general-
ized conclusions from DL studies in US technology.
In this systematic review, we followed an established metho-

dology and stringent inclusion criteria and tailored the quality
assessment tools for included studies. Our emphasis on compar-
isons with the diagnostic performance of humans in clinical
practice may explain why our conclusions are more cautious than
many of the papers we reviewed herein. Importantly, according to
previous studies and the current guidelines, internal validation
where training and validation were performed based on the same
dataset, such as cross-validation, tends to overestimate accuracy
and has limited generalizability because of overfitting33. Hence, at
the initial stage of literature identification, only studies using
external validation of test sets were included. Therefore, our work
can provide a purposeful insight into the role of DL in the US
diagnosis of breast cancer. However, this systematic review
excluded non-English publications, which might introduce selec-
tion bias. In addition, we were unable to calculate comprehensive
diagnostic measures due to insufficient data where accuracy, true
positive, false positive, true negative, false negative, and statistical
difference (or raw data to calculate) were not reported.

To ensure reproducibility and generalizability of the results of
this promising technology, we recommend developing standar-
dized DL research guidelines for further investigations. Aligned
study designs, agreed-upon benchmarking data sets, complete
performance metrics, standard imaging protocols and reporting
formats, consistent cutoff values and reference standards will help
decrease the heterogeneity and bias. Furthermore, multicenter
studies are highly demanded to determine the diagnostic
accuracy of DL products. Prospective, randomized controlled trials
that are applicable to clinical testing pathways are significantly
important to examine DL’s role in a clinical environment. Also, we
need to identify the DL products with the best performance in
terms of accuracy, efficiency, availability, cost-effectiveness, and
safety to improve clinical workflows. DL-based breast US diagnosis
is still in its infancy, and considerable efforts are needed to realize
its positive impacts on radiologists and patients.

METHODS
Protocol and registration
This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses of
Diagnostic Test Accuracy (PRISMA-DTA) statement34. Our review
protocol was registered on the International Prospective Register
of Systematic Reviews (PROSPERO: CRD42022349609).

Literature search
Literature searches were conducted by two librarians (H.B. and
J.B.) to identify relevant studies published in English from four
databases: PubMed, Embase, Scopus, and Cochrane Library. The
publication time of studies was set from inception to 18 January
2023. The literature search was performed based on five themes:
breast cancer, US, AI, accuracy, and diagnostic. The search
keywords and strategies are shown in Supplementary Tables 6
and 7.

Study selection
Two reviewers (Q.D. and Z.X.) independently reviewed the titles
and abstracts of all retrieved records for further identification
according to the inclusion and exclusion criteria. Subsequently,

Fig. 5 Graphic display of QUDAS-2 and QUDAS-C for studies using assistive DL systems. The proportion of studies with low, high, unclear
risk of bias and concerns regarding applicability.
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the identified publications were screened by reviewing the full
texts for final inclusion. Any discrepancies were resolved through
discussion to reach a final consensus.
We applied rigorous inclusion and exclusion criteria to evaluate

the integration of DL into clinical breast cancer diagnosis using
the US. We included studies that focused on: (1) evaluating DL
algorithms for breast cancer diagnosis using US; (2) assessing the
test accuracy of DL algorithms for breast lesion diagnosis using US;
and (3) utilizing histologically confirmed and/or follow-up
reference standards. We excluded studies that: (1) did not
compare the diagnostic performance of DL algorithms to that of
human readers; (2) lacked external validation; (3) did not employ
DL algorithms (e.g., utilizing traditional AI without binary
classification or final decision); (4) solely focused on detecting
specific cancer subtypes (e.g., ductal or lobular carcinoma) rather
than overall diagnostic accuracy; (5) did not report diagnostic
metrics beyond the receiver operating characteristic area under
the curve (AUC); (6) involved participants under the age of 18; (7)
included participants with implants, lactation, prior known breast
cancer, or prior breast treatments such as surgery, radiation
therapy, and chemotherapy; (8) enrolled male patients.

Data extraction
Study characteristics and test accuracy outcomes were indepen-
dently extracted by two reviewers (Q.D. and Z.X.) from all included
studies. Any disagreements were resolved by discussion. Extracted
study characteristics included study design, population, US device
vendors, dataset characteristics (training/validation/testing set),
descriptions of the DL algorithms, descriptions of the human
readers, reference standards, and any other pertinent information.
Test performance characteristics included accuracy, AUC, sensitiv-
ity, and specificity.

Quality assessment
Two reviewers (Q.D. and Z.X.) independently assessed the quality
of the selected studies using Quality for Assessment of Diagnostic
Studies-2 (QUADAS-2) and QUADAS-C tools tailored to our review
questions based on a breast US test pathway applicable to clinical
settings (Supplementary Table 5). For risk of bias, patient selection,
index tests, reference standards, flow, and timing were assessed,
respectively. For applicability concerns, patient selection, index
test, and reference standards were assessed. Any disagreements
were resolved by discussion.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated and analyzed during this study are included in the article and its
supplementary information files.
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