
ARTICLE OPEN

CD57-positive CD8+T cells define the response to anti-
programmed cell death protein-1 immunotherapy in patients
with advanced non-small cell lung cancer
Wenjia Sun1,4, Fengqi Qiu2,4, Jing Zheng1, Liangjie Fang1, Jingjing Qu1, Shumeng Zhang1, Nan Jiang1, Jianying Zhou1,
Xun Zeng 3✉ and Jianya Zhou 1✉

Immune checkpoint inhibitors have transformed the treatment landscape of non-small cell lung cancer (NSCLC). However,
accurately identifying patients who will benefit from immunotherapy remains a challenge. This study aimed to discover potential
biomarkers for predicting immunotherapy response in NSCLC patients. Single-cell mass cytometry (CyTOF) was utilized to analyze
immune cell subsets in peripheral blood mononuclear cells (PBMCs) obtained from NSCLC patients before and 12 weeks after
single-agent immunotherapy. The CyTOF findings were subsequently validated using flow cytometry and multiplex
immunohistochemistry/immunofluorescence in PBMCs and tumor tissues, respectively. RNA sequencing (RNA-seq) was performed
to elucidate the underlying mechanisms. In the CyTOF cohort (n= 20), a high frequency of CD57+CD8+ T cells in PBMCs was
associated with durable clinical benefit from immunotherapy in NSCLC patients (p= 0.034). This association was further confirmed
in an independent cohort using flow cytometry (n= 27; p < 0.001), with a determined cutoff value of 12.85%. The cutoff value was
subsequently validated in another independent cohort (AUC= 0.733). We also confirmed the CyTOF findings in pre-treatment
formalin-fixed and paraffin-embedded tissues (n= 90; p < 0.001). RNA-seq analysis revealed 475 differentially expressed genes
(DEGs) between CD57+CD8+ T cells and CD57-CD8+ T cells, with functional analysis identifying DEGs significantly enriched in
immune-related signaling pathways. This study highlights CD57+CD8+ T cells as a promising biomarker for predicting
immunotherapy success in NSCLC patients.
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INTRODUCTION
With the widespread use of immune checkpoint inhibitors (ICIs),
immunotherapy has shown epoch-making effects in non-small cell
lung cancer (NSCLC), especially in terms of long-term survival1.
Nevertheless, immunotherapy has only demonstrated long-term
antitumor efficacy in a few patients with NSCLC2,3. Such low
objective response rates may be due to tumor heterogeneity in
systemic immunity, pathogenesis, histopathology, and the mole-
cular basis of NSCLC4–7. Currently, programmed death-ligand 1
(PD-L1) expression is an acknowledged biomarker for predicting
immunological efficacy in NSCLC and guiding the clinical practice
of immunotherapy8, however, it is not a perfect biomarker for
immunotherapeutic prediction in NSCLC because the use of this
predictor is hampered by the overlap between responders and
non-responders9–12. To date, significant efforts have been made to
identify reliable biomarkers to predict immunotherapeutic efficacy
in patients with NSCLC; however, robust biomarkers have not yet
been established to drive clinical practice13–16. Thus, potential
biomarkers to precisely identify patients who will benefit from
immunotherapy before treatment initiation are urgently required.
Analysis of tumor samples is currently considered the standard

method for identifying and characterizing immunotherapy bio-
markers. Previous studies using high-dimensional single-cell
analysis have revealed the composition of tumor microenviron-
ment in NSCLC17–21. These findings were important for

comprehending the functions of specific immune cell subsets,
such as CD39+CD8+ T cells, in response to ICIs in NSCLC21.
However, tumor biopsy is challenging because the procedure is
invasive and may lead to inadequate sample collection. Peripheral
blood, as a feasible and sensitive alternative, is appealing for
investigating predictive biomarkers for immunotherapy because
of its noninvasiveness, easy accessibility, and reproducibility in
obtaining blood versus tissue samples22. Blood is also more
homogeneous than tissues, making blood sampling easier and
more consistent. Understanding the differential responses to
immunotherapy necessitates knowledge of potential immune cell
subsets and functions. In this regard, conventional fluorescent
flow cytometry is inadequate for describing diverse tumor
subpopulations because of the limited number of features that
can be simultaneously analyzed. Therefore, to overcome this
shortcoming, single-cell mass cytometry (CyTOF), which allows the
measurement of up to 50 features in a single cell23, has been used
for tumor-related research on peripheral blood. Currently, CyTOF
has been used to explore the association between diverse cell
subpopulations and clinical responses; for instance, it has been
examining single-cell-based immune biomarkers for predicting
immunotherapy efficacy in advanced melanoma24.
Our study aimed to investigate the immune signatures in

peripheral blood associated with responsiveness to pro-
grammed cell death protein-1 (PD-1) inhibitor and identify a
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responsiveness-associated predictive signature. We examined
immune cell subpopulations in the peripheral blood of patients
with advanced NSCLC before and during PD-1 inhibitor
monotherapy using high-dimensional single-cell analysis via
CyTOF. Indeed, we discovered that the baseline frequency of
CD57+CD8+ T cells could help identify patients with durable
clinical benefit (DCB) and no durable clinical benefit (NDB) to
ICIs before therapy. An independent validation cohort of
patients with NSCLC revealed that the frequency of baseline
CD57+CD8+ T cells was higher in DCB group and had high
sensitivity and specificity for predicting the responsiveness to
ICIs, with a determined cutoff value of 12.85%. The cutoff value
was subsequently validated in another independent cohort. We
confirmed that the frequency of CD57+CD8+ T cells in tumor
tissues was associated with responsiveness using multiplex
immunohistochemistry / immunofluorescence (mIHC/IF). Tran-
scriptome analysis of pre-treatment blood revealed 475
differentially expressed genes (DEGs) between CD57+CD8+ T
and CD57-CD8+ T cells, and the DEGs were significantly
enriched in immune-related signaling pathways. This provides
a novel and strong predictive biomarker that can be used for

the effective response assessment of ICIs before therapy in
patients with NSCLC.

RESULTS
Major peripheral immune compositions were essentially the
same among patients with NSCLC with distinct responses to
anti-PD-1 immunotherapy
CyTOF analysis was performed on 34 peripheral blood mono-
nuclear cells (PBMCs) samples from a prospective discovery cohort
comprising 20 patients with NSCLC treated with PD-1 inhibitor
monotherapy to perform an in-depth evaluation of the immuno-
logical profiles of PBMCs in NSCLC (Fig. 1a). A predefined 42-
marker panel was specifically designed for patients with NSCLC,
including phenotypic and functional markers, to define the
composition and function of leukocytes (Supplementary Table
1). According to the clinical efficacy after immunotherapy, one
patient was excluded (death due to severe adverse events),
leaving 19 patients for the final analysis (6 and 13 in the DCB and
NDB groups, respectively). Detailed clinical information was
presented in Table 1. Samples were collected from these 19
patients at different time points, including before treatment

Fig. 1 Major immune lineages of PBMCs from patients with NSCLC revealed by CyTOF. a Experimental design and analysis flow for CyTOF.
b t-SNE plot identifying the 12 major immune cell subsets from PBMCs, including CD4+ T cells, CD8+ T cells, γδT, DNT, DPT, monocytes, DC,
pDC, B cells, NK cells, basophils and other cells in all samples, colored by major immune cell subsets. c, d Boxplots demonstrating the
frequencies of the 12 immune cell subsets in CD66b− cells among DCB and NDB patients before and after immunotherapy. e Paired PBMC
samples analysis before and after immunotherapy demonstrating the changes in frequencies of the CD8+ T cell subset among DCB and NDB
patients. *p < 0.05. PBMCs peripheral blood mononuclear cells; NSCLC non-small cell lung cancer, CyTOF cytometry by time of flight, t-SNE t-
distributed Stochastic Neighbor Embedding, DNT double-negative T cells, DPT double-positive T cells, DC dendritic cells, pDC plasmacytoid
dendritic cells, NK cells natural killer cells, DCB durable clinical benefit, NDB no durable clinical benefit.
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(n= 17) and 12 weeks after treatment (n= 16). Of these, 14 (DCB,
n= 6; NDB, n= 8) included paired blood samples (Supplementary
Table 2).
To analyze immune cells without granulocytes, we clustered

CD66b− cells, and characterized 12 major clusters according to the
main immune cell markers, including CD4+ T cells, CD8+ T cells,
double-negative T cells (DNT), double-positive T cells (DPT), γδT,
monocytes, dendritic cells (DC), plasmacytoid dendritic cells (pDC),
B cells, natural killer cells (NK), basophils and other cells among
patients with DCB and NDB before and after immunotherapy, as
displayed using t-distributed Stochastic Neighbor Embedding (t-
SNE) analysis (Fig. 1b, Supplementary Fig. 1a, b). Signature markers
(e.g., CD3, CD19, and CD56) revealed the distribution of immune
clusters (T, B, and NK cells; Supplementary Fig. 1c). We compared
the frequencies of immune cell subsets between the two groups
before and after immunotherapy; however, no significant
differences were observed (Fig. 1c, d). Next, we performed a
paired analysis of samples from 14 patients with paired samples
(DCB, n= 6; NDB, n= 8) before and after immunotherapy. In the
DCB group, the frequency of CD8+ T cells significantly increased
after anti-PD-1 immunotherapy compared to that before immu-
notherapy (paired t-test, p= 0.045; Fig. 1e); however, no difference
was found in the NDB group (paired t-test, p > 0.05; Fig. 1e,
Supplementary Fig. 2).

The frequency of the CD57+CD8+ T cell subset was higher in
the DCB group than in the NDB group
Using dimensionality reduction t-SNE analysis, we further char-
acterized the phenotypes of these 12 major immune cell clusters,
and revealed 37 immune cell clusters (Fig. 2a). A heatmap of the
normalized mean expression of 42 membranous or intracellular
markers used to identify the 12 major immune cell clusters is
shown in Fig. 2b. Generally, we identified one cluster in DC, pDC,
basophils, DNT, DPT, and γδT cells; three in B cells; four in NK cells;
seven in monocytes; seven in CD4+ T cells; seven in CD8+ T cells;
and three other clusters (Fig. 2b). The frequencies of immune cell
clusters subsets between the two groups before and after
immunotherapy was compared (Fig. 2c; Supplementary Fig. 3a).
Before immunotherapy, the frequency of cluster 36 (CD8+ T cells)
in the DCB group was significantly higher than that in the NDB
group (p= 0.034; Fig. 2c), whereas the frequency of cluster 32 (NK
cells) was significantly lower (p= 0.016; Supplementary Fig. 3a).
After treatment, the frequencies of clusters 2 (B cells; p= 0.043;
Supplementary Fig. 3a) and 35 (CD8+ T cells; p= 0.022; Fig. 2c)
cells were higher in the DCB group than in the NDB group. Next,
we performed a paired analysis of samples from 14 patients with
paired samples (DCB, n= 6; NDB, n= 8) before and after
immunotherapy. In the DCB group, the frequencies of clusters
35 and 36 increased for all patients after treatment compared to
baseline (paired t-test, p= 0.071 and p= 0.08, respectively),
whereas they decreased for some patients in the NDB group
(paired t-test, p= 0.53, p= 0.59, respectively; Fig. 2d, e); regret-
tably, differences were not significant. To further reveal the
heterogeneity of T cell clusters, we examined the expression of
functional markers to identify T cell subpopulations (Fig. 2b).
Cluster 36 showed a higher expression of Granzyme B, T-bet, and
CD57 than other T-cell clusters. Therefore, we hypothesized that
cluster 36 at baseline might be a biomarker of the response to
immunotherapy in NSCLC.

CD57+CD8+ T cells were predictive for response to anti-PD-1
treatment in patients with NSCLC
To further validate our findings, we conducted a prospective study
using two separate cohorts that were independent of the CyTOF
cohort. Cohort 1 comprised 27 NSCLC patients (16 in the DCB
group and 11 in the NDB group) treated with PD-1 inhibitor
monotherapy between May 2021 and April 2022. Cohort 2
consisted of 48 NSCLC patients (27 in the DCB group and 21 in
the NDB group) treated with a combination of immunotherapy
and platinum-based chemotherapy between May 2021 and
December 2022. All PBMCs were collected before immunotherapy.
Detailed clinical information was presented in Table 2.
To test our hypothesis, we conducted flow cytometry analysis

on PBMC samples obtained from both cohort 1 and 2 (Fig. 3a–c,
Supplementary Fig. 4a). In cohort 1, patients in DCB group had a
significantly higher ratio of CD57+CD8+ T cells to T cells compared
to patients in the NDB group (21.39% ± 9.29% vs. 8.67% ± 3.73%,
p < 0.001; Fig. 3d). Similarly, the DCB group showed significantly
higher ratios of CD57+CD8+ T cells to CD8+ T cells
(54.70% ± 13.61% vs. 32.53% ± 16.18%, p= 0.001; Fig. 3e) and
CD57+ T cells to total T cells (28.24% ± 11.26% vs. 14.19% ± 5.81%,
p= 0.001; Fig. 3f) compared to the NDB group. These data
suggested that upregulated CD57 expression in both CD8+ T and
T cells can predict the response to anti-PD-1 immunotherapy in
patients with NSCLC.
While previous studies have shown that CD8+ T cells, along with

other biomarkers such as PD-L1 expression, tumor mutation
burden (TMB), and human leukocyte antigen (HLA) class I
expression, can predict response to ICIs in patients with
NSCLC25–27, our study demonstrated that the ratio of CD8+

T cells to total T cells alone was not able to predict the response
(37.65% ± 9.88% vs. 28.63% ± 12.38%, p= 0.059; Fig. 3g). Receiver

Table 1. The clinical characteristics of advanced NSCLC in CyTOF
cohort (n (%)).

Characteristics CyTOF cohort
(n= 19)

DCB
(n= 6)

NDB
(n= 13)

p valvue

Gender 0.554

Male (M) 17 (89.5) 5 (83.3) 12 (92.3)

Female (F) 2 (10.5) 1 (16.7) 1 (7.7)

Age (years) 0.216

<65 7 (36.8) 1 (16.7) 6 (46.2)

≥65 12 (63.2) 5 (83.3) 7 (53.8)

Smoking 0.372

YES 15 (78.9) 4 (66.7) 11 (84.6)

NO 4 (21.1) 2 (33.3) 2 (15.4)

Line of therapy 0.636

First 8 (42.1) 3 (50.0) 5 (38.5)

Second 11 (57.9) 3 (50.0) 8 (61.5)

Histological type 0.111

LUAD 5 (26.3) 3 (50.0) 2 (15.4)

LUSC 14 (73.7) 3 (50.0) 11 (84.6)

Tumor invasion
(T_stage)

0.636

≤3 8 (42.1) 3 (50.0) 5 (38.5)

4 11 (57.9) 3 (50.0) 8 (61.5)

Lymph node
(N_stage)

0.750

≤2 15 (78.9) 5 (83.3) 10 (76.9)

3 4 (21.1) 1 (16.7) 3 (23.1)

Metastasis (M_stage) 0.750

M0 4 (21.1) 1 (16.7) 3 (23.1)

M1 15 (78.9) 5 (83.3) 10 (76.9)

Tumor stage 0.750

Stage IIIB/C 4 (21.1) 1 (16.7) 3 (23.1)

Stage IV 15 (78.9) 5 (83.3) 10 (76.9)

NSCLC non-small cell lung cancer, CyTOF cytometry by time of flight, DCB
durable clinical benefit, NDB no durable clinical benefit, LUAD lung
adenocarcinoma, LUSC lung squamous cell carcinoma.
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Fig. 2 Identification of the peripheral immune cell populations in patients with NSCLC. a t-SNE plot identifying 37 immune cell clusters
from PBMCs in all patients, and in DCB and NDB patients before and after immunotherapy, colored by immune cell subsets. b Heatmap
showing the normalized mean expression of 42 membranous or intracellular markers to identify the phenotypes of the 12 major immune cell
clusters. We characterized one cluster in DC, pDC, Basophils, DNT, DPT and γδT, three clusters in B cells, four clusters in NK cells, seven clusters
in monocytes, seven CD4+ T cells, seven CD8+ T cells, and three other clusters. Relative frequency was shown as a bar graph on the right.
c Boxplots demonstrating the frequencies of the CD4+ and CD8+ T cell clusters among DCB and NDB patients before and after
immunotherapy. d Paired PBMC samples analysis before and after immunotherapy demonstrating the changes in frequencies of the CD8+ T
cell clusters among DCB and (e) NDB patients. *p < 0.05. NSCLC non-small cell lung cancer, t-SNE t-distributed Stochastic Neighbor
Embedding, PBMCs peripheral blood mononuclear cells, DCB durable clinical benefit, NDB no durable clinical benefit, DC dendritic cells, pDC
plasmacytoid dendritic cells, DNT double-negative T cells, DPT double-positive T cells, NK cells natural killer cells.
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operating characteristic (ROC) curve analysis revealed a strong
correlation between the CD57+CD8+ T cells to total T cells ratio
and the response status (area under the curve (AUC): 0.9375; Fig.
3h). Using a cutoff threshold of 12.85% CD57+CD8+ T cells of the
total T cells, we achieved 92.6% accuracy, 100% specificity, and
87.5% sensitivity in predicting the response to anti-PD-1
immunotherapy (Fig. 3h). In our cohort, the CD57+CD8+ T cells
to total T cells ratio was the only parameter that showed
significant predictive value, while other clinicopathological para-
meters, including CD8+ T cells to total T cells ratio and PD-L1
positivity, did not reach statistical significance (Table 3). Further-
more, using the aforementioned cutoff value (12.85%), patients
were stratified into high and low CD57+CD8+ T cells/T cells ratio
groups, and none of the clinicopathological parameters were
correlated with the CD57+CD8+ T cells/T cells ratio (Supplemen-
tary Table 3). To further support these results, we observed that all
patients with a CD57+CD8+ T cells to total T cells ratio above
12.85% achieved a durable clinical benefit, while only 15.4% of
patients with a ratio below 12.85% exhibited a durable clinical
benefit (Fig. 3i). However, the CD8+ T cells/T cells ratio and PD-L1
status did not demonstrate the same level of accuracy in
predicting the response in our cohort (Fig. 3i).
To assess the predictive efficacy of the cutoff threshold of

12.85% CD57+CD8+ T cells among total T cells in a broader
context, we conducted validation using cohort 2. Consistent with
our initial cohort findings in cohort 1, the cutoff threshold of
12.85% CD57+CD8+ T cells/T cells ratio demonstrated its
effectiveness in distinguishing patients who achieved DCB from
those who did not (NDB) in the validation dataset. The AUC value
for predicting clinical response was 0.733 (Fig. 3j).
Importantly, when compared to the conventional biomarker

PD-L1 (AUC= 0.631) and the CD8+ T cells to total T cells ratio

(AUC= 0.560), the CD57+CD8+ T cells to total T cells ratio
exhibited even stronger clinical relevance (Fig. 3j). These findings
highlighted the potential of CD57+CD8+ T cells/T cells ratio in
accurately predicting the response to immunotherapy, surpassing
the performance of the traditional PD-L1 biomarker. These results
further supported the notion that CD57+CD8+ T cells have
significant potential for evaluating the clinical efficacy of
immunotherapy in a broader patient population.

CD57+CD8+T cells, as determined using mIHC/IF, predicted
response to anti-PD-1 treatment in patients with NSCLC
To further investigate the hypothesis in tissue samples, we
collected 90 pre-treatment Formalin-Fixed Paraffin-Embedded
(FFPE) tissues. These included all archived pre-treatment FFPE
tissues from the patients who had their blood collected, as well as
tissues from other patients. Overall, 90 FFPE samples were
obtained, and the response statuses of these patients were
categorized into DCB (n= 44) and NDB (n= 46). Detailed clinical
information was presented in Supplementary Table 4.
We developed a 3-marker mIHC/IF panel for patients with

NSCLC and analyzed FFPE specimens (Fig. 4a). We compared the
ratios of CD57+CD8+ T cells to other T cell subsets between the
DCB and NDB patient groups. The results demonstrated that
patients in the DCB group had significantly higher CD57+CD8+

T cells to total T cells ratio (15.83% ± 17.48% vs. 4.34% ± 5.52%,
p < 0.001) and CD57+CD8+ T cells to CD8+ T cells ratio
(41.24% ± 29.29% vs. 18.35% ± 24.29%, p < 0.001) compared to
the NDB group (Fig. 4b, c). However, the CD8+ T cells to total
T cells ratio was not able to predict the treatment response
(36.02% ± 18.28% vs. 34.30% ± 20.81%, p= 0.679; Fig. 4d).
Furthermore, we observed a significant correlation between the

frequency of CD57+CD8+ T cells/T cells ratio in tumor tissues and
that in peripheral blood (r= 0.644, p < 0.001; Fig. 4e). This finding
suggested that the trend of CD57+CD8+ T cells/ T cells ratio in
tumor tissues was consistent with that in peripheral blood,
indicating that the measurement of CD57+CD8+ T cells/T cells
ratio in blood may be used as a predictive marker for ICI
responders.
To further investigate the homogeneity of CD57+CD8+ T cells

between blood and tumor tissue, we utilized publicly available
datasets from the Gene Expression Omnibus (GEO) database. We
selected data from four patients included single-cell transcrip-
tomic and T-cell receptor (TCR) sequencing data from both blood
and tissue compartments for our analysis (Supplementary Fig. 5).
By integrating the transcriptomic and TCR sequencing data, we
conducted an analysis to assess the TCR homogeneity between
CD57+CD8+ T cells in blood and tissue. In the four patients
analyzed, except for patient 2, there was a consistent presence of
identical TCR clones in both the blood and tissue samples of
CD57+CD8+ T cells (Supplementary Fig. 5d). This finding
suggested the presence of shared clonal populations of
CD57+CD8+ T cells between these two compartments, indicating
the potential migration of CD57+CD8+ T cell populations from
blood to tissue.

Transcriptomic analysis revealed differences between
CD57+CD8+ T and CD57-CD8+ T cells
To gain further insights into the molecular mechanisms of
CD57+CD8+ T cells, we performed RNA-seq analysis. We
enrolled six patients with NSCLC who received single-agent
PD-1 inhibitors from the flow cytometry cohort. Among these
patients, three belonged to the DCB group, and the remaining
three belonged to the NDB group. For RNA-seq analysis, we
sorted both CD57+CD8+ T and CD57−CD8+ T cells from PBMCs
before immunotherapy (Supplementary Fig. 4b). We aimed to
identify DEGs between the two cell populations. Our analysis
revealed a total of 475 DEGs, with 133 genes upregulated and

Table 2. The clinical characteristics of advanced NSCLC in flow
cytometry cohorts (n (%)).

Characteristics Cohort 1 (n= 27) Cohort 2 (n= 48) p value

Gender 0.574

Male (M) 23 (85.2) 43 (89.6)

Female (F) 4 (14.8) 5 (10.4)

Age (years) 0.123

<65 8 (29.6) 23 (47.9)

≥65 19 (70.4) 25 (52.1)

Smoking 0.520

YES 22 (81.5) 36 (75.0)

NO 5 (18.5) 12 (25.0)

Line of therapy 0.083

First line 15 (55.6) 36 (75.0)

Further line 12 (44.4) 12 (25.0)

Histological type 0.079

LUAD 13 (48.1) 24 (50.0)

LUSC 14 (51.9) 17 (35.4)

Others 0 (0.0) 7 (14.6)

Tumor stage 0.404

Stage IIIB/C 5 (18.5) 13 (27.1)

Stage IV 22 (81.5) 35 (82.9)

Clinical response 0.800

DCB 16 (59.3) 27 (56.25)

NDB 11 (40.7) 21 (43.75)

NSCLC non-small cell lung cancer, LUAD lung adenocarcinoma, LUSC lung
squamous cell carcinoma, DCB durable clinical benefit, NDB no durable
clinical benefit.
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342 genes downregulated in CD57+CD8+ T cells compared to
CD57−CD8+ T cells (Fig. 5a). Clustering analysis of gene
expression clearly separated the data into two clusters
(CD57+CD8+ T and CD57-CD8+ T cell clusters), showing the
distinct transcriptomic profiles between CD57+CD8+ T and
CD57−CD8+ T cells (Fig. 5b). These findings indicated that
CD57+CD8+ T cells have distinct gene expression profiles
compared to CD57−CD8+ T cells. The identified DEGs provided
valuable information for understanding the molecular

characteristics and potential functional roles of CD57+CD8+

T cells in the context of PD-1 inhibitor treatment in NSCLC
patients.
Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA)
analyses were performed to analyze the function of DEGs. In our
study, 460 DEGs were mapped to the GO database, and the top 30
significantly enriched GO terms were shown in Fig. 5c. The
analysis revealed that the majority of the DEGs were associated

W Sun et al.
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with immune-related biological process, including immune
response, chemokine receptor activity, and positive regulation of
T cell activation. Subsequently, 209 DEGs could be annotated by
the KEGG database. Based on the top 20 pathway enrichment
analyses, DEGs were significantly enriched in immune-related
signaling pathways, including the cytokine-cytokine receptor
interaction, chemokine signaling pathway, and PI3K-Akt signaling
pathway (Fig. 5d). GSEA further revealed that the CD57+CD8+ T
cell cluster was significantly involved in immune-associated
pathways, such as regulating the immune response, interferon-
gamma-mediated signaling pathway, adaptive immune response,
positive regulation of natural killer cell-mediated cytotoxicity, and
the Fc-gamma receptor signaling pathway involved in phagocy-
tosis (Fig. 5e).
These findings collectively suggested that the DEGs identified in

CD57+CD8+ T cells were predominantly involved in immune-
related processes and signaling pathways. This supported the
notion that CD57+CD8+ T cells played a crucial role in immune
responses and potentially contributed to the therapeutic response
to PD-1 inhibitors in NSCLC.
Next, we conducted further analysis to explore potential

qualitative differences in CD57+CD8+ T cells between DCB and
NDB patients. We identified a total of 47 DEGs, with 40 genes
upregulated and 7 genes downregulated in CD57+CD8+ T cells in
the DCB group compared to the NDB group (Supplementary Fig.
6a). Furthermore, the clustering analysis of gene expression
effectively segregated the data into two distinct clusters, namely
the DCB cluster and the NDB cluster, thereby indicating
discernible transcriptomic profiles between the DCB and NDB
groups (Supplementary Fig. 6b). To gain insights into the
functional implications of the DEGs, we performed GO and KEGG
analyses. However, the outcomes of our analyses (Supplementary
Fig. 6c, d) revealed that the majority of the DEGs were not
primarily associated with immune-related processes.

Consequently, these findings suggested that the observed
differences in CD57+CD8+ T cells between DCB and NDB patients
were primarily quantitative in nature, reflecting variations in
abundance rather than qualitative distinctions.
In summary, our analysis has elucidated that the differences

observed in CD57+CD8+ T cells between DCB and NDB patients
are primarily quantitative. The transcriptomic profiles and func-
tional analysis have successfully demonstrated distinct patterns in
gene expression, thereby highlighting the significance of quanti-
tative differences in CD57+CD8+ T cells within the context of DCB
and NDB treatments.

DISCUSSION
Currently, ICIs are widely used and have made significant
advances in treating patients with NSCLC. However, ICIs are
ineffective in most patients. Despite the availability of biomarker
stratification, clinical responses differ. In this context, there is
significant interest in detecting potential biomarkers to precisely
identify patients with DCB and NDB before immunotherapy
initiation.
In our study, using a high-dimensional single-cell CyTOF

method combined with clustering analyses, we investigated
differential immune signatures of PBMCs in patients with DCB
and NDB before and 12 weeks after anti-PD-1 immunotherapy. We
found that CD57+CD8+ T cells were the strongest predictors of
responsiveness to anti-PD-1 immunotherapy. However, CD8+

T cells alone could not predict this response. Several studies have
reported that CD8+ T cells, combined with other signatures,
including PD-L1 expression, TMB, and HLA class I expression, can
predict response to ICIs in patients with NSCLC25–27. These
observations demonstrated that the predictive value of CD8
expression alone was limited; however, a further refined
subpopulation of CD8+ T cells (i.e., CD57+CD8+ T cells) might
predict the response to immunotherapy.
Next, using a different method (flow cytometry) in an

independent validation cohort, we confirmed that CD57+CD8+

T cells were associated with a good response, whereas PD-L1 was
not a valuable prognostic biomarker, even if a trend was observed.
Subsequently, we further quantified CD57+CD8+ T cells in tumor
tissues using the mIHC/IF method, suggesting that the frequency
trend of CD57+CD8+ T cells in tumor tissues was consistent with
that in peripheral blood, which could be used to predict the anti-
PD-1 response. Previously, based on a meta-analysis of 26
published studies with 7656 patients, Hu et al. investigated the
prognostic role of tumor-infiltrating CD57+ lymphocytes in solid
tumors and found that an increase in CD57+ lymphocyte
infiltration significantly improved overall survival and disease-
free survival28. Solid tumors with a high density of intratumoral
CD57+ lymphocytes showed an inverse correlation with lymph
node metastasis and Tumor, Node, and Metastasis stage. This

Fig. 3 Flow cytometry-based quantification of CD57+CD8+T cells predicts immunotherapeutic response in two prospective NSCLC
cohorts. a–c Flow cytometry-based quantification of T cells, CD8+ T cells, CD57+CD8+ T cells and CD57-CD8+ T cells in the prospective NSCLC
cohorts. d CD57+CD8+ T cells/T cells ratio (p < 0.001), e CD57+CD8+ T cells/ CD8+ T cells ratio (p= 0.001) and f total CD57+ T cells/T cells
(p= 0.001) as determined by flow cytometry predicted clinical response to immunotherapy (n= 27). g Total CD8+ T cells/T cells ratio was not
of predictive value (p= 0.059, n= 27). h ROC curve analyzed the ability of CD57+CD8+ T cells/T cells ratio to identify responders
(AUC= 0.9375, n= 27). Sensitivity (87.5%) refers to the proportion of true positive subjects with the disease among all subjects with disease.
Specificity (100.0%) refers to the proportion of true negative subjects without the disease among subjects without disease. PPV (84.6%) refers
to the proportion of patients with positive results among subjects with positive results. NPV (100.0%) refers to the proportion of subjects
without disease with a negative result among subjects with negative results. Accuracy (92.6%) refers to the proportion of subjects correctly
classified among all subjects. i DCB proportion comparing the ability of CD57+CD8+ T cells/T cells ratio as determined by flow cytometry, total
CD8+ T cells/T cells ratio by flow cytometry, and PD-L1 status by conventional IHC to predict treatment response. j ROC curves for predicting
treatment response using the CD57+CD8+ T cells/T cells ratio (AUC= 0.733), CD8+ T cells/T cells ratio (AUC= 0.631), and PD-L1 positivity
(AUC= 0.560) (n= 48). ***p ≤ 0.001. NSCLC non-small cell lung cancer, ROC receiver operating characteristic, AUC area under the curve, PPV
positive predictive value, NPV negative predictive value, DCB durable clinical benefit, PD-L1 programmed death-ligand 1, IHC
immunohistochemistry.

Table 3. Results of binomial logistic regression analysis to stratify DCB
and NDB patients.

Characteristics OR (95%CI) P value

CD57+CD8+ T cells/T cells ratio (%) 0.666 (0.448, 0.001) 0.045*

CD8+ T cells/T cells ratio (%) 1.021 (0.838, 1.245) 0.834

PD-L1 status

Negative Reference

Positive 0.950 (0.050, 18.042) 0.974

*p < 0.05, DCB durable clinical benefit, NDB no durable clinical benefit, PD-
L1 Programmed death-ligand 1.
The bold value of 0.045 is highlighted to emphasize the significant
difference in the CD57+CD8+ T cells/Tcells ratio when distinguishing
between patients with DCB and NDB.
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finding was consistent with the previous results. CyTOF results
showed that CD57+CD8+ T cells in the peripheral blood expressed
CD45RA, T-bet, and Granzyme B; however, CD27, CD28, and CCR7
were absent. These results were consistent with the study
conducted by Brenchley et al., who also reported the absence of
CD27, CD28, and CCR7 expression in CD57+CD8+ T cells29. We
speculated that a possible explanation for this observation was
the high expression of cytokines and cytotoxic molecules,
including Granzyme B and T-bet, in CD57+ CD8+ T cells. This
hypothesis was supported by previous studies, which demon-
strated that CD57+CD8+ T cells displayed a late-differentiated T-
cell phenotype with enhanced cytotoxicity and effector func-
tions30. Previous studies have linked ICI response to an increase in
T cells with late differentiation status21,31. NSCLC treatment

response was associated with CD45RA-expressing T effector
memory cells32. These results were consistent with the conclu-
sions of this study.
RNA-seq was used in our study, and 475 DEGs from CD57+CD8+

T cells to CD57-CD8+ T cells were identified. Functional analysis of
the DEGs using the GO and KEGG databases revealed that DEGs
were significantly enriched in immune-related signaling pathways.
This might explain, at least in part, our results regarding the
positive correlation between CD57+CD8+ T cells and the clinical
response to anti-PD-1 immunotherapy. This was consistent with a
previous study showing that CD57+CD8+ T cells are associated
with neoantigen-specific CD8+ T cells33. Thus, CD57+CD8+ T cells
were a useful biomarker for the response to anti-PD-1 immu-
notherapy and can be a valuable complementary approach to

Fig. 4 mIHC/IF-based quantification of CD57+CD8+ T cells predicts immunotherapeutic response in a retrospective NSCLC cohort
(n= 90). a Representative images of NSCLC tissue stained using mIHC/IF [CD3 (green), CD8 (red), CD57 (pink), DAPI (blue)]. b mIHC/IF-based
CD57+CD8+ T cells/T cells ratio (p < 0.001) and (c) CD57+CD8+ T cells/CD8+ T cells ratio (p < 0.001) predicted immunotherapeutic response in
a retrospective NSCLC cohort (n= 90). d Total CD8+ T cells/T cells ratio by mIHC/IF was not of predictive value to immunotherapy (p= 0.679,
n= 90). e Spearman’s rank correlation analysis was performed to compare the CD57+CD8+ T cells/T cells ratio (r= 0.644, p < 0.001), and f CD8+

T cells/T cells ratio (r= 0.346, p= 0.016) in blood and tumor samples (n= 48). ***p < 0.001. mIHC/IF multiplex immunohistochemistry/
immunofluorescence, NSCLC non-small cell lung cancer.
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Fig. 5 Identification of DEGs and screening of genes-based GO, KEGG and GSEA analysis between CD57+CD8+ T cells and CD57-CD8+

T cells in patients with NSCLC. a Volcano plot showing the 475 DEGs between CD57+CD8+ T cells and CD57−CD8+ T cells, including 133
upregulated genes and 342 downregulated genes. Red and blue colors represent upregulated and downregulated genes, respectively.
b Clustering analysis of DEGs and samples. The color scale bar for heat intensity indicates Log2(Fold Change). Columns, samples; rows, DEGs.
The samples were grouped into two distinct clusters: CD57+CD8+ T cell cluster and CD57-CD8+ T cell cluster. c GO analysis of DEGs. The most
enriched 30 GO terms in biological process, cellular component, and molecular function. The y axis represents GO terms and the x axis
represents the value of -log10 (p-value). d KEGG enrichment analysis of DEGs. The x axis represents enrichment score and the y axis represents
pathway. Size and color of the bubble represent the amount of DEGs enriched in pathway and enrichment significance, respectively.
e Representative GSEA results showing enrichment of the immune-associated pathways in CD57+CD8+ T cells. DEGs differentially expressed
genes, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, GSEA Gene Set Enrichment Analysis, NSCLC non-small cell lung
cancer.
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further compensate for the insufficiency of only testing for PD-L1
expression and improve the efficacy of immunotherapy.
While our study focused on the CD3+CD8+CD57+ and

CD3+CD8+CD57- subsets, it is important to acknowledge the
potential influence and confounding effects of the CD56+ subset
in our experimental system. CD56+ cells, including NKT-like cells,
have been implicated in immune regulation and gene expression
modulation34,35. They possess unique functional properties and
can interact with other immune cell subsets, such as CD8+ T cells.
The presence of CD56+ cells in our sorted subsets could
potentially influence the transcriptomic profiles and functional
outcomes observed. However, it is important to note that in this
study, we did not specifically investigate the role of CD56+ cells or
perform functional characterization of these subsets. Conse-
quently, the specific contribution of CD56+ cells to the observed
transcriptomic changes remains speculative and warrants further
investigation. Future studies that specifically address the func-
tional role of CD56+ cells, such as depletion or enrichment
experiments, would provide valuable insights into their potential
influence on the observed gene expression profiles in the
CD3+CD8+CD57+ and CD3+CD8+CD57- subsets. Additionally,
single-cell RNA-seq approaches may allow for a more compre-
hensive characterization of the cellular heterogeneity within these
subsets and help elucidate the potential interactions and
functional implications of CD56+ cells.
Our study had some limitations. First, this cohort’s hetero-

geneous nature comprised patients treated with different
immunotherapeutic agents. Second, this study conducted only
the phenotypic and transcriptional analyses and did not evaluate
the functional aspects. Thus, multicenter confirmatory studies with
larger and independent cohorts are required to validate our
observations. Furthermore, future studies should incorporate
functional assays to investigate the cytokine production and
cytotoxicity of the CD57+CD8+ population in response to therapy,
along with exploring potential pathways involved. These func-
tional assays will provide a more comprehensive understanding of
the functional capabilities of CD57+CD8+ T cells and their
contribution to therapy response.
In conclusion, our study demonstrates that both blood- and

tissue-based measurements of CD57+CD8+ T cells may serve as
promising biomarkers for predicting the response to anti-PD-1
treatment in NSCLC. However, further studies are required to
validate our observations, and additional experiments are required
to explore potential mechanisms.

METHODS
Study design and patient samples
The study included patients with advanced NSCLC who were
treated with PD-1 inhibitors at The First Affiliated Hospital, College
of Medicine, Zhejiang University (China). Patients diagnosed with
clinical stage IIIB/IIIC enrolled in this study were deemed
inoperable by the lung multidisciplinary team and suitable for
immunotherapy. Pathological or clinical staging was performed
according to the eighth edition of the American Joint Committee
on Cancer guidelines. Treatment response was investigator-
assessed based on the Response Evaluation Criteria in Solid
Tumors version 1.1. Response to immunotherapy was classified
into a DCB (complete response, partial response, or stable disease
(SD) lasting >6 months) and NDB (progressive disease or SD
lasting <6 months). The CyTOF cohort included 20 patients who
received single-agent PD-1 inhibitors between August 2019 and
July 2020. Blood samples were collected before treatment
initiation and approximately 12 weeks after the initiation of anti-
PD-1 immunotherapy. Flow cytometry analysis was performed in
two separate cohorts. Cohort 1 consisted of 27 NSCLC patients
treated with single-agent PD-1 inhibitors between May 2021 and

April 2022. Cohort 2 included 48 NSCLC patients treated with a
combination of immunotherapy and platinum-based chemother-
apy between May 2021 and December 2022. Blood samples were
collected from both cohorts before the initiation of anti-PD-1
immunotherapy. For the study, we retrospectively obtained FFPE
tissue sections. These samples were archived in the pathology
department at the First Affiliated Hospital, College of Medicine,
Zhejiang University. The FFPE samples were originally collected
from patients who underwent surgical resection or biopsy
procedures at the hospital before receiving immunotherapy. In
total, 90 patients were included in this analysis, and all FFPE
samples underwent pathological examination.

Isolation of human PBMCs
For PBMC isolation, we collected 10ml fresh whole blood from
patients with NSCLC in K2EDTA-coated vacutainer tubes (BD
Biosciences). Ficoll-Paque PLUS (GE Healthcare) was used to
separate PBMCs by density gradient centrifugation. Subsequently,
washes were performed with the FACS buffer (PBS+ 0.5% bovine
serum albumin) twice at 400 g for 10min at room temperature.
PBMCs were resuspended in the FACS buffer and counted.

CyTOF staining, data acquisition, and analysis
CyTOF data were collected and analyzed by PLTTech Inc.
(Hangzhou, China). We selected 42 markers of interest based on
previous studies on NSCLC. The MaxPAR antibody Labeling kit
(Fluidigm) was used to label antibodies with mass tags; detailed
information is presented in Supplementary Table 1. Each metal-
conjugated antibody was titrated to obtain the optimal concen-
tration. To distinguish live from dead cells, obtained PBMCs were
first stained for 5 min with 100 μL of cisplatin (250 nM, Fluidigm).
After incubating in Fc receptor-blocking solution for 20min, the
PBMCs were stained with a surface antibody cocktail for 30 min on
ice. Next, a 200 μL intercalation solution (maxpar Fix and Perm
Buffer containing 250 nM 191/193Ir, Fluidigm) was used to fix the
PBMCs overnight after which they were stained with an
intracellular antibody cocktail for 30 min on ice. After washing,
PBMCs were stained with a unique barcode isotope combination
for 30 min to label individual cell samples. Finally, the PBMCs were
washed and resuspended in deionized water, added to 20% EQ
beads (Fluidigm), and data were obtained using a mass cytometer
(Helios, Fluidigm).
For each sample, raw data was debarcoded using a doublet-

filtering scheme with mass-tagged barcodes. The bead normal-
ization method was used to normalize data from different
batches36. Next, live and single immune cells were acquired by
manual gating using FlowJo software. The X-shift clustering
algorithm37 was used to determine cell phenotypes based on the
level of marker expression. On a heat map of clusters versus
markers, cell types were annotated according to their marker
expression. Furthermore, a dimensionality reduction algorithm,
t-SNE38, was used to visualize the high-dimensional data in two
dimensions and show each cluster’s distribution, marker expres-
sion, and differences between the groups or samples. The
frequency of annotated cell populations was evaluated using a
t-test.

Flow cytometry
All antibodies used for flow cytometry were obtained from
BioLegends. PBMCs were incubated with the following Ab-
conjugates on ice in the dark: anti-CD66b-PE-Cy7 (G10F5,
305115, 1:100), anti-CD3-BV510 (UCHT1, 300447, 1:100), anti-
CD56-BV711 (HCD56, 318335, 1:100), anti-CD8a-APC-Cy7 (RPA-T8,
301015, 1:100), anti-CD57-PB (HCD57, 322315, 1:100). Incubation
was completed for 30 min, then samples were washed twice with
FACS buffer and resuspended in 300 μL of the same buffer.
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Furthermore, 7-AAD (BioLegend, 420404, 1:100) was added to
PBMCs immediately before analysis. The flow cytometry was
carried out using a BD FACSFortessa Multicolor Flow Cytometer
(BD Biosciences). The CD57+CD8+T cells/T cells ratio was
calculated using the following formula: CD57þCD8þCD3þcells

CD3þcells 100%.
The CD57+CD8+ T cells/CD8+ T cells ratio was calculated using the
formula below: CD57þCD8þCD3þcells

CD8þCD3þcells 100%. As well, the total CD8+

T cells/T cells ratio and the total CD57+ T cells/T cells ratio were
calculated as the proportion of CD8+CD3+ cells among total CD3+

cells and the proportion of CD57+CD3+ cells among total CD3+

cells, respectively.

mIHC/IF staining
The mIHC/IF staining was performed with an Opal Polaris
7-Color Multiplex IHC kit from Akoya Biosciences. Briefly, each
FFPE tissue section was baked at 65 °C for 1 h. After
deparaffinization, rehydration, and microwave antigen repair,
the slides were blocked (Akoya Biosciences, USA), and
incubated with primary antibodies against CD3 (D7A6E, CST,
85061 T, 1:200), CD57 (HNK-1, CST, 72031 S, 1:200), and CD8
(EPR22483-288, Abcam, ab245118, 1:500), respectively, followed
by incubation with Opal Polymer HRP Ms+Rb (Akoya Bios-
ciences, USA). The slides were then incubated with Opal
Fluorophore-conjugated tyramide signal amplification reagent
(Akoya Biosciences, USA). After signal amplification, microwave
antigen repair was performed to remove the detected
antibodies. This process was repeated using another Opal
Fluorophore. The above steps were repeated until the slides
were labeled with all antibodies and DAPI. Finally, the slides
were sealed with an anti-fluorescence quencher. Visualization
of slides was done using Vectra Polaris Quantitative Pathology
Imaging Systems (Akoya Biosciences, USA); analysis and scoring
were performed using inForm software (Akoya Biosciences,
USA). The CD57+CD8+ T cells/T cell ratio, CD57+CD8+ T cells/
CD8+ T cells ratio, and total CD8+ T cells/T cells ratio were
calculated the same as flow cytometry.

IHC staining
Tumor PD-L1 expression was assessed through IHC on FFPE
sections, employing an anti-PD-L1 monoclonal antibody (clone
22C3; Dako, USA). PD-L1 expression scores were reported as the
percentage of tumor cells with membranous staining as
determined by pathologists. PD-L1 subgroups were defined as
negative (PD-L1 < 1%), and positive (PD-L1 ≥ 1%).

Fluorescence-activated cell sorting assay
Cell sorting was performed on a Sony SH800 Cell Sorter (Sony
Corporation, Japan). Briefly, the PBMCs were incubated with the
following Ab-conjugates for 30 min on ice in the dark: anti-CD3-
FITC (HIT3a, 300305, 1:100, BioLegend), anti-CD8-PC5.5 (SK1,
344709, 1:100, BioLegend), and anti-CD57-PB (HCD57, 322315,
1:100, BioLegend). Following incubation, the stained PBMCs were
washed and resuspended in FACS buffer. Propidium iodide (PI; Life
Technologies) was added to the cells immediately before analysis.
CD57+CD8+ and CD57-CD8+ T cells were collected.

RNA-seq
RNA isolation and library preparation. Total RNA was extracted
with the QIAGEN RNeasy Micro Kit (Invitrogen, CA, USA). RNA
purity and quantity were evaluated using a NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific, USA). RNA integrity was
measured with the Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA). Libraries were constructed using the
VAHTS Universal V6 RNA-seq Library Prep Kit. Transcriptome
sequencing and analysis were performed by OE Biotech Co., Ltd.
(Shanghai, China).

RNA sequencing and differentially expressed genes analysis. The
libraries were sequenced using an Illumina NovaSeq 6000
platform, and 150 bp paired-end reads were generated. For each
sample, approximately 50 M raw reads were generated. Raw reads
in fastq format were processed using fastp39 and low-quality reads
were removed. A total of 45 M clean reads for each sample were
retained for further analysis. The clean reads were mapped to the
reference genome using HISAT2 software40. Each gene’s FPKM41

was calculated, and its read counts were obtained using HTSeq-
count42. Principal component analysis was performed to evaluate
the biological duplication of the samples using the R (v 3.2.0).
Differential expression analysis was performed utilizing

DESeq243. Significant DEGs were defined as Q < 0.05, fold change
>2, or fold change <0.5. Hierarchical cluster analysis of DEGs was
performed using the R (v 3.2.0) to illustrate the expression patterns
of genes among different groups and samples. A radar map of the
top 30 genes was created using the R packet ggradar to illustrate
the expression of the up- or down-regulated DEGs.
GO44 and KEGG pathway enrichment analyses45 of the DEGs

were performed based on the hypergeometric distribution using
the R (v 3.2.0) to identify significantly enriched terms. Column and
bubble diagrams of the significant enrichment terms were drawn
using the R (v 3.2.0).
GSEA was carried out with GSEA software46,47. Genes were

ranked according to their degree of differential expression
between the two groups, using a predefined gene set. We tested
whether the predefined gene set was enriched at the top or
bottom of the ranking list.

Statistical analysis
All statistical analyses were performed using GraphPad Prism 9.5
(GraphPad Software, Inc., San Diego, CA, USA) and SPSS (version
22.0; SPSS Inc., Chicago, IL, USA). Comparisons were performed
using two-tailed paired or unpaired Student’s t-test. The data in
the boxplots are presented with the central mark indicating the
median and the bottom and top edges of the box showing the
25th and 75th percentiles, respectively. The data in bar graphs are
presented as the means ± SD. Group comparisons of categorical
data were performed using Fisher’s exact test. The statistical
significance threshold was set at p < 0.05.

Written informed consent statement and ethical approval
The study was conducted in accordance with all relevant ethical
regulations including the Declaration of Helsinki the Declaration of
Helsinki. All patients, their legally acceptable representatives, or
both (if possible) provided written informed consent. This study
was approved by the relevant Institutional Review Board of the
First Affiliated Hospital, College of Medicine, Zhejiang University
(approval number: 2019-1371). In accordance with the ‘Guidance
of the Ministry of Science and Technology (MOST) for the Review
and Approval of Human Genetic Resources’ in China, formal
approval for the export of human genetic material or data was
obtained from the relevant authorities.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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