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Multi-omics analysis reveals NNMT as a master metabolic
regulator of metastasis in esophageal squamous cell carcinoma
Qi Huang1,10, Haiming Chen2,3,10, Dandan Yin4,10, Jie Wang5,6,7, Shaodong Wang2,3, Feng Yang2,3, Jiawei Li1, Teng Mu1, Jilun Li1,
Jia Zhao1, Rong Yin 5,6,7, Wei Li8✉, Mantang Qiu 2,3✉, Erbao Zhang 9✉ and Xiangnan Li1✉

Metabolic reprogramming has been observed in cancer metastasis, whereas metabolic changes required for malignant cells during
lymph node metastasis of esophageal squamous cell carcinoma (ESCC) are still poorly understood. Here, we performed single-cell
RNA sequencing (scRNA-seq) of paired ESCC tumor tissues and lymph nodes to uncover the reprogramming of tumor
microenvironment (TME) and metabolic pathways. By integrating analyses of scRNA-seq data with metabolomics of ESCC tumor
tissues and plasma samples, we found nicotinate and nicotinamide metabolism pathway was dysregulated in ESCC patients with
lymph node metastasis (LN+), exhibiting as significantly increased 1-methylnicotinamide (MNA) in both tumors and plasma. Further
data indicated high expression of N-methyltransferase (NNMT), which converts active methyl groups from the universal methyl
donor, S-adenosylmethionine (SAM), to stable MNA, contributed to the increased MNA in LN+ ESCC. NNMT promotes
epithelial–mesenchymal transition (EMT) and metastasis of ESCC in vitro and in vivo by inhibiting E-cadherin expression.
Mechanically, high NNMT expression consumed too much active methyl group and decreased H3K4me3 modification at E-cadherin
promoter and inhibited m6A modification of E-cadherin mRNA, therefore inhibiting E-cadherin expression at both transcriptional
and post-transcriptional level. Finally, a detection method of lymph node metastasis was build based on the dysregulated
metabolites, which showed good performance among ESCC patients. For lymph node metastasis of ESCC, this work supports NNMT
is a master regulator of the cross-talk between cellular metabolism and epigenetic modifications, which may be a therapeutic
target.
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INTRODUCTION
Esophageal squamous cell carcinoma (ESCC), the dominant
subtype of esophageal cancer, is a common and deadly cancer
worldwide, especially in East Asia1,2. Regional lymph node
metastasis is the key indication of tumor cell dissemination, which
is a strong predictor for poor survival of patients with ESCC3. A
better understanding of tumor microenvironment and metabo-
lism reprograming underlying ESCC lymph node metastasis is
urgently needed to develop promising diagnostic and therapeutic
strategies.
Metabolic reprogramming has been considered a hallmark of

cancer for nearly a decade4. Recent works have also revealed the
vital role of metabolic reprogramming of malignant cells during
cancer metastasis5,6. Tasdogan et al. found that higher levels of
MCT1 potentiated melanoma metastasis through increased
activity of oxidative pentose phosphate pathway5. These results
indicate that metabolic properties and preferences of malignant
cells have been altered during cancer metastasis. Specifically,
lymph node metastasis requires the transient activation of cellular
programs enabling dissemination and seeding of malignant cells
in regional lymph node7. In addition, recent data support the
concept that metabolic reprogramming in malignant cells is

driven by many biochemical changes, including activation of
oncogenic and inactivation of tumor suppressive metabolic
enzymes8,9, which suggests signaling and transcriptional path-
ways can be regulated by metabolism8. Large-scale profiling
studies have uncovered numerous metabolic enzymes with
altered expression in cancers10,11. However, how metabolic
reprogramming of malignant cells affects lymph node metastasis
is poorly understood in ESCC.
Metabolomics is a promising approach for the identification of

metabolites of cells, tissues, biofluids, and other samples, which
may provide insights into early diagnosis and therapeutic
approaches of cancer12,13. Single-cell RNA sequencing (scRNA-
seq) profiles gene expression network at the single-cell level,
enabling high-resolution characterization of cellular heterogene-
ity, development, and differentiation states in diverse tumors14–16.
In our previous study17, we discovered lipid metabolism
dysregulation in tumor microenvironment (TME) of lung cancer
and developed a highly sensitive method for lung cancer
detection by integrating scRNA-seq and metabolomics.
In current study, scRNA-seq of paired tumor tissues and lymph

nodes of ESCC was performed and aberrant cellular metabolism was
observed in various cell types. Then, metabolomics analyses of ESCC
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tumor tissues and plasma revealed various dysregulated metabolites
and metabolic pathways during lymph node metastasis of ESCC.
Integrating analyses of scRNA-seq and metabolomic data showed
that the highly expressed nicotinamide N-methyltransferase (NNMT)
is the key enzyme contributing to the metabolic changes, which
decreases H3K4me3 and m6A modification of E-cadherin, thereby
promoting epithelial–mesenchymal transition (EMT) and metastasis
ability of ESCC cells. Furthermore, based on metabolites of NNMT-
related pathway, we developed a sensitive method to detect lymph
node metastasis of ESCC patients.

RESULTS
Tumor microenvironment of ESCC with lymph node
metastasis
To investigate the reprogramming of TME at the single-cell level,
five ESCC primary tumors and five matched lymph nodes with
(n= 2) or without (n= 3) metastasis were analyzed by scRNA-seq
(Fig. 1a–d and Supplementary Fig. 1a–d). The clinical character-
istics of these enrolled participants were shown in Supplementary
Table 1. After quality control and removal of the batch effect
between batches (Supplementary Fig. 1c, see “Methods”), our
dataset included 66,864 total cells, covering various malignant and
non-malignant cell types. We identified 9 major cell types based
on marker genes expression (Fig. 1d, Supplementary Fig. 1d and
Supplementary Table 2): T cells (marked with CD3D and CD2),
natural killer (NK) cells (marked with KLRD1), myeloid cells (marked
with LYZ and AIF1), mast cells (marked with TPSAB1), B cells
(marked with CD79B and MS4A1), plasma cells (marked with
JCHAIN and MZB1), endothelial cells (marked with VWF and
RAMP2), fibroblasts (marked with DCN and ACTA2), epithelial cells
(marked with EPCAM and KRT19). The proportion of each cell
types varies greatly among different samples (Fig. 1e). The relative
abundance of myeloid cells, T cells and plasma cells tended to be
higher in LN+ group than in non-lymph node metastasis (LN−)
group (Supplementary Fig. 1b). In addition, epithelial cells can be
found in lymph node with metastasis (mLN), while the relative
proportion of that in lymph node without metastasis (nLN) was
little (Supplementary Fig. 1b).

Metabolic reprogramming of immune cells in tumor
microenvironment
We re-clustered lymphocytes and identified different subtypes of
T, NK, B, and plasma cells (Fig. 2a–e) based on typical marker
genes (Fig. 2c). Specifically, 23,424 (75.28%) lymphocytes were
obtained from lymph nodes (Fig. 2b and Supplementary Fig. 2a).
Although lymphocytes usually encompassed both LN+ and LN−

tissue-derived transcriptomes, we noted quantitative shifts in the
cellular composition of the tumor immune microenvironment
(TIME) (Fig. 2d). To investigate gene networks in CD8 T cells and
CD4 T cells, we used the public naïve, Treg, and cytotoxic
signatures18 (Supplementary Table 3) and applied these signatures
to CD8 and CD4 subtypes and computed transcriptional scores
(Fig. 2f and Supplementary Fig. 2b). In CD8 T cells, CD8_effec-
tor_C1 and CD8_effector_C2 both expressed CCL5, CCL4 and
effector molecular such as NKG7, GZMA and GZMB, while
CD8_effector_C2 expressed a higher level of GZMK than
CD8_effector_C1 (Fig. 2g), which indicated that distinct states of
CD8 T cells in TIME19. Dr. Hornburg and colleagues have reported
that CD8+ GZMK T cells represent pre-dysfunctional effector
memory cells in ovarian cancer19. For CD4 T cells, Treg formed two
distinct clusters, including Treg_C1 and Treg_C2, consistent with
the Treg signatures as described previous (Fig. 2e, f). We observed
that Treg_C1, marked by expression of FOXP3 and CTLA4, was
enriched in LN+ ESCC and mLN (Fig. 2e), indicating the more
suppressive TIME in LN+ ESCC. Intriguingly, Treg_C2, marked by
high level expression of FABP5, was almost solely detected from

the LN+ ESCC tissues (96.93%) (Fig. 2e). Lipid chaperones, such as
fatty acid binding proteins (FABPs), are critical in cellular
metabolism20. In addition, FABP5, one of the most highly
expressed FABPs in T cells21, is essential for mitochondrial
oxidative phosphorylation and lipid metabolism in Treg. Recent
study revealed that Tregs may augment FABP5 in response to low-
lipid environments22, which supports that lipid metabolism has
been altered in TIME for LN+ ESCC. Further comprehensive
dissection of metabolic profiles suggested that Treg_C2 had
distinct metabolic patterns compared to CD8 T and NK cells, as
expected. Specifically, some metabolic pathways were highly
expressed in Treg_C2, including glutathione metabolism; histidine
metabolism; and galactose metabolism. Collectively, these data
indicate that metabolic reprogramming is widely occurred in TIME
of LN+ ESCC, especially lipid metabolism and glutathione
metabolism.
In addition, B cells have been revealed to enormously impact

molding cancer immune response and are closely related to
prognosis of patients23. A total of 7347 B cells were analyzed, and
three subtypes were identified: follicular B cells, germinal center B
cells and plasma B cells (Fig. 2a). The relative abundance of plasma
B cells increased stepwise from nLN, mLN to LN− ESCC and LN+

ESCC (Fig. 2d). Gene set variation analysis (GSVA) revealed that
epithelial–mesenchymal transition (EMT) and angiogenesis were
upregulated in plasma B cells (Supplementary Fig. 2c), which
suggests plasma B cells may participate in LN metastasis of ESCC.
Since myeloid cells have been shown to be fundamental in

regulating both innate and adaptive immune responses and
facilitating tumor invasion and metastasis24, we detected five
subtypes of myeloid cells, including macrophages, monocyte_C1,
monocyte_C2, DC cells and mast cells (Fig. 2a). Intriguingly,
monocyte_C2 was almost solely observed from LN+ ESCC,
compared to other tissues (Fig. 2d). In addition, monocyte_C2
also showed high scores of immune response related signature25,
together with monocyte_C1 and DC cells26 (Fig. 2h), which
indicates that they represent proinflammatory functional state
among all of the myeloid subtypes. Analysis of metabolic pathway
gene signature highlighted monocyte_C2 had distinct metabolic
pattern compared to other subtypes (Supplementary Fig. 2d).
Specifically, some metabolic pathways were exclusively upregu-
lated in monocyte_C2, such as nicotinate and nicotinamide
metabolism; arginine and proline metabolism; and histidine
metabolism, which further confirm that metabolic reprogramming
in LN+ ESCC.

Myofibroblasts are highly abundant in LN+ ESCC
Then, stromal cells of ESCC TME and lymph nodes were examined.
We detected two subtypes of ECs, including tumor ECs and
lymphatic ECs (Supplementary Fig. 3a, b). GSVA revealed that p53
pathway was enriched in ECs from LN+ group compared with LN−

group (Supplementary Fig. 3c).
Among 4151 fibroblasts, we identified 5 subtypes of fibroblasts

based on marker genes, including normal fibroblasts (Fibro_C1),
immune-modulatory fibroblasts (Fibro_C2), pericytes (Fibro_C3),
myofibroblasts (Fibro_C4), cancer-associated fibroblasts (CAFs)
(Fibro_C5) (Fig. 3a–c and Supplementary Fig. 3d–h). CAFs play
important roles in creating extracellular matrix structure and
metabolic reprogramming of TME27. In addition to collagens
broadly expressed in all subtypes, CAFs uniquely expressed
collagens X and XI (Supplementary Fig. 3g), suggesting functional
specialization of tumor-supported collagens. CAFs was also
characterized by high activity of TGFβ and hypoxia-induced
pathways (Supplementary Fig. 3h), which are known features of
CAFs28. Our scRNA-Seq data showed that myofibroblasts was
more abundant in LN+ group than LN− group (Fig. 3d), which was
also observed in other cancers that myofibroblasts could promote
extensive tissue angiogenesis29 and tumor progression27,30.
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Besides, JAK/STAT signaling was also upregulated in myofibro-
blasts (Supplementary Fig. 3h), as it has been reported that
activation of JAK/STAT cascade in cancer-associated myofibro-
blasts play an important role in promoting the invasion and
metastasis of cancer28,31. A direct comparison of fibroblasts from
LN+ group and LN− group revealed that many metabolic
pathways were significantly up-regulated in fibroblasts of LN+

group, including oxidative phosphorylation; and bile acid meta-
bolism; and fatty acid metabolism; and HEME metabolism (Fig. 3e).
Further comprehensive dissection of metabolic profiles suggested
that CAFs showed a opposite metabolic pattern to Fibro_C2 cells
(Fig. 3f), which may explain their distinguish contribution to ESCC
progression and further support metabolomic reprogramming in
LN+ group.

Metabolic reprograming of malignant cells in LN+ ESCC
By analyzing the transcriptome patterns of epithelial cells in 7
samples that had > 100 epithelial cells (Fig. 1e and Supplementary
Table 4), we distinguished malignant cells from normal stromal
and immune cells by inferring largescale copy number variations
(CNVs)32 from expression profiles as reported (Fig. 4a, b and
Supplementary Fig. 4a). We found that malignant cells formed
clusters according to sample origin, suggesting a high degree of
inter-tumor heterogeneity (Fig. 4b). Next, we quantified oncogenic
pathways expression between LN+ and LN− groups, and results
showed high activities of TNFα, TGFβ, and NF-kB signaling in LN+

group and high activities of VEGF and PI3K signaling in LN− group
(Fig. 4c). This indicated high intra-group similarity in LN+ group
and significant distinction between LN+ group and LN− ESCC. A
direct comparison of malignant cells from LN+ ESCC and LN−

ESCC showed that many differentially expressed genes (DEGs)
were involved in metabolism related processes (Fig. 4d and
Supplementary Fig. 4b). Furthermore, we compared LN+ ESCC and
paired LN, and result showed that the DEGs were also enriched in
several metabolic process, such as ATP metabolic process and
quinone metabolic process (Supplementary Fig. 4c, d). Then, we
characterized global metabolic changes in malignant cells by
comparing with other cell types within LN+ group and LN− ESCC,
respectively. Results suggested that malignant cells in LN+ group
and LN− ESCC showed distinct metabolic patterns (Fig. 4e, f and
Supplementary Fig. 4e). Specifically, linoleic metabolism, and
histidine metabolism were upregulated in LN+ malignant cells,
whereas glutathione metabolism was enriched in LN− malignant
cells (Fig. 4e). Together, these analyses demonstrate that
metabolism was widely dysregulated in malignant cells of lymph
node metastatic ESCC.

Increased nicotinate and nicotinamide metabolism in
LN+ ESCC
Untargeted metabolomics was performed to directly investigate
reprogramming of LN+ ESCC at metabolites level. Tumor tissues
of 8 LN+ and 13 LN− ESCC (Fig. 5a and Supplementary Fig. 5a)
were analyzed, and results suggested 1-MNA and its down-
stream product, 1-methyl-4-pyridone-5-carboxamide (4-PYR),
were both increased in tumor tissues of LN+ ESCC. Accordingly,
pathway analysis revealed that nicotinate and nicotinamide
metabolism was highly upregulated in LN+ ESCC (Fig. 5b).
Consistent with scRNA-seq data, histidine metabolism was also
enriched in LN+ ESCC tissues (Fig. 5b). In a large-scale scRNA-seq
dataset33 including 21,788 cells (69.16%) originated from 28 LN+

ESCC patients and 9,718 cells (30.84%) from 16 LN− ESCC
patients (Supplementary Fig. 5c–e), differentially expressed
genes of malignant cells from LN+ ESCC were also significantly
enriched in nicotinate and nicotinamide metabolism and path-
ways, further convincing the untargeted metabolomics results of
ESCC tissues.

Then, we used untargeted metabolomics to detect plasma of
LN+ and LN− ESCC patients. Intriguingly, significant upregulation
of 1-MNA was found in plasma of LN+ ESCC compared with that of
LN− ESCC (Fig. 5c and Supplementary Fig. 5b). In addition,
pathway analysis revealed that nicotinate and nicotinamide
metabolism was highly upregulated in LN+ ESCC, consistent with
metabolomics data from tumor tissue samples (Fig. 5d). Thus, both
metabolomics data of tissues and plasma demonstrated that
nicotinate and nicotinamide metabolism was upregulated in LN+

ESCC.
Since lymph node metastasis is a critical factor for clinical

decision34, we then test whether metabolites of nicotinate and
nicotinamide metabolism pathway could detect LN metastasis of
ESCC. Nicotinamide, MNA, and 1-methyl-2-pyridone-5-carboxa-
mide (2-PYR) were finally selected to construct a targeted
metabolomic detection method and the detecting performance
was tested in a cohort of 130 ESCC patients (43 LN+ ESCC and 87
LN− ESCC, Supplementary Table 9). As shown in Fig. 5e, based on
the 3 metabolites, LN+ ESCC could be distinguished from LN−

ESCC. Then, the 130 ESCC patients were split into a training set
(79-patient) and a test set (51-patient). In the training set, a partial
least squares (PLS) model with the 3 metabolites-based biomar-
kers was trained, which achieved a high accuracy in LN+ ESCC
prediction in the test set (area under receiver operating
characteristic curve (AUC)= 0.8391), which contained 17 LN+

ESCC patients and 34 LN− ESCC patients (Fig. 5f). Clinical
information of ESCC patients (age, sex, smoking history, alcohol
intake history, tumors history, and pathologic tumor stage (T
stage)) had AUC of 0.7111 in the test set. Specifically, T stage
showed statistical significance among the 6 clinical features in
differentiating LN+ ESCC and LN− ESCC groups (Supplementary
Table 9) and univariate prediction AUC= 0.7279. Next, we
combined the metabolic model based on 3 selected metabolites
and T stage to construct an integrated model. As expected, the
integrated model achieved improved performance (AUC= 0.872,
Fig. 5f) in the test set, with sensitivity 0.7647 and specificity 0.8824
(Supplementary Table 10).

NNMT promotes ESCC cell metastasis in vitro and in vivo
Since both metabolomics data from tumor tissues and plasma
confirmed nicotinate and nicotinamide metabolism was upregu-
lated in LN+ ESCC, we then tried to discover the underlying
mechanism. We first retrieved key enzymes involved in nicotinate
and nicotinamide metabolism pathway from database. Then, we
reviewed the relevant literature on these enzymes and identified
NAMPT35, NAPRT36,37, NNMT11,38, and NT5C39 as key enzymes for
further investigation. Among them, high expression of NNMT was
mainly found in malignant cells of LN+ ESCC and barely no
expression was observed in LN− ESCC (Fig. 6a). NNMT is a
metabolic enzyme transferring methyl group from S-adenosyl-L-
methionine (SAM) to nicotinamide (NA) and generating
S-adenosyl homocysteine (SAH) and 1-MNA, which is consistent
with scRNA-seq and metabolomics findings. Additionally, this
finding was also validated in external scRNA-sea data (Supple-
mentary Fig. 5d). Thus, we proposed high expression NNMT
contribute to nicotinate and nicotinamide metabolism reprogram-
ing in LN+ ESCC.
To investigate the biological role of NNMT in LN+ ESCC,

validated small interfering RNA (siRNA) sequences specifically
targeting NNMT were used40. As shown in Supplementary Fig. 6a,
the expression of NNMT was obviously inhibited. Transwell and
wound-healing assays showed that downregulation of NNMT
expression could significantly inhibit cell migration ability in Eca-
109 cells (Fig. 6b, c). Furthermore, we found that overexpression of
NNMT could partly reverse NNMT knockdown-mediated migration
suppression (Fig. 6b, c, right panel). The overexpression efficiency
of NNMT was shown in Supplementary Fig. 6b. To further verify
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the metastasis-promoting effects of NNMT in vivo, Eca-109 cells
stably transfected with sh-NNMT and control vector were injected
into the tail vein of mice to establish a metastasis model.
Compared with the control group, the number of metastatic
nodules at the lung surface was reduced after NNMT knockdown
(Fig. 6d). In addition, as shown in Supplementary Fig. 6c–f,
knockdown of NNMT also significantly inhibited proliferation of
ESCC cells. And overexpression of NNMT could partly reverse si-
NNMT-mediated proliferation suppression. Moreover, knockdown
of NNMT could also inhibit proliferation of ESCC in vivo
(Supplementary Fig. 6g).

NNMT promotes EMT in ESCC by inhibiting expression of
E-cadherin expression at transcriptional and post-
transcriptional level
To ascertain the mechanism of NNMT and identify the key
downstream gene of NNMT in ESCC, we performed RNA-
sequencing after NNMT knockdown (Supplementary Table 12).
GO analysis found that the most upregulated biological processes
were extracellular matrix organization, cell adhesion, angiogen-
esis, metabolic process, post-translational protein modification
et al. (Fig. 6e). Moreover, gene set enrichment analysis (GSEA)
revealed that gene sets related to the epithelial mesenchymal
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transition (EMT) were significantly enriched (Fig. 6f). Importantly,
the key gene of the EMT pathway, E-cadherin, was upregulated
after NNMT knockdown (Supplementary Table 12), which was
validated by qRT-PCR (Fig. 6g). Furthermore, both western blot
and immunofluorescent staining assays confirm that knockdown

of NNMT upregulated E-cadherin expression and inhibited
N-cadherin and β-catenin (Fig. 6h, i). Thus, we speculated that
NNMT may promote metastasis of ESCC by inducing EMT.
Then we assessed SAM and SAH by ELISA in Eca-109 cell and

found NNMT knockdown indeed increased the SAM/SAH ratio (Fig.
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7a). Using SAM as methyl donor, NNMT catalyzes N-methylation of
nicotinamide to generate 1-methylnicotinamide (MNA) and SAH38.
NNMT converts active methyl donor (SAM) to stable methylated
metabolite (MNA), thus linking cellular metabolism and epigenetic
modifications. Previous researchers have found that NNMT could
transcriptionally regulate gene expression by affecting H3K4me3 in
gene promoter regions11. Then we performed chromatin immu-
noprecipitation (ChIP) assays to examine whether NNMT was
associated with H3K4me3 occupy at E-cadherin promoter. The
results showed that the E-cadherin promoter was enriched with
endogenous H3K4me3, and knockdown of NNMT expression
increased H3K4me3 modification (Fig. 7b).
In addition, as a post-transcriptional modification, m6A RNA

methylation is the most prevalent chemical modification at the
epigenetic level of RNA, which also consumes methyl donor41 and
belongs to SAM (as the methyl donor)-dependent process42.
Therefore, we hypothesized that NNMT may participate in m6A
modification and modulate E-cadherin expression at post-
transcriptional level by tuning intracellular methyl groups. Firstly,
we analyzed the m6A modification sites in the E-cadherin mRNA
sequences by SRAMP43. As shown in Supplementary Fig. 7a, many
predicted m6A sites existed in E-cadherin mRNA with very high
confidence, indicating m6A modification may participate in the
expression of E-cadherin. M6A dot blot assay conformed the
increased overall m6A level after NNMT knockdown, indicating
that NNMT could affect the overall m6A modification level in Eca-
109 cells (Fig. 7c). Combining the above results, we speculated
that NNMT might suppress E-cadherin through m6A modification,
thus promoting EMT of ESCC. To further verify the mechanism
between NNMT and E-cadherin, we performed methylated RNA
immunoprecipitation-qPCR (MeRIP-qPCR) assay and found a
consistently increase m6A level in the CDS region of E-cadherin
after NNMT knockdown (Fig. 7d). Thus, we proved that NNMT
inhibits expression of E-cadherin not only by histone modification
dependent manner, but also m6A modification dependent
manner.
M6A modification requires the participation of RNA methyl-

transferases. M6A methyltransferase, Methyltransferase-like 3
(METTL3), METTL14, Wilms tumor 1-associated protein (WTAP)
and KIAA1429 (also known as VIRMA), termed “writers”, catalyze
the formation of m6A RNA44. Since NNMT is activated in ESCC, it is
suggested that it may consume more methyl groups, resulting in
less methyl groups for m6A modification process, and m6A
modification is at a disadvantaged level in cells. This implies that
m6A modification mediated by “writers” in dialogue with NNMT is
attenuated. We analyzed these four “writers” and found that only
METTL14 was downregulated in ESCC (Supplementary Fig. 7b, c).
Therefore, we speculate that NNMT may post-transcriptionally
regulate E-cadherin in a m6A-modified manner by communicating
with METTL14. Then we found that knockdown of NNMT indeed
upregulated METTL14 expression at the RNA and protein levels

(Fig. 7e). Dot blot assay showed that METTL14 was essential for
m6A modification since the overall m6A level dramatically
declined upon METTL14 silence in ESCC (Fig. 7f and Supplemen-
tary Fig. 7d). M6A level in the CDS region of E-cadherin was
downregulated after METTL14 knockdown (Fig. 7g) and knock-
down of METTL14 could indeed inhibit the expression of
E-cadherin (Fig. 7h). Therefore, these data suggest that METTL14
can post-transcriptionally regulate E-cadherin expression in an
m6A modification-dependent manner.
To further clarify the functional role of METTL14 in the EMT

process, immunofluorescent staining assays found knockdown of
METTL14 inhibited the expression of E-cadherin and increased
N-cadherin and β-catenin expression (Fig. 7i). Since m6A
modification requires the cooperative participation of writer and
reader, next, we investigated how m6A affected expression of
E-cadherin. IGF2BP1 has been reported as a m6A “reader” proteins
to selectively recognize m6A modifications and enhance m6A-
containing mRNA stability45. This led to hypothesize that m6A-
containing in mRNA of E-cadherin might be recognized and
bound by IGF2BP1. To test whether IGF2BP1 could recognize m6A
modification of E-cadherin, we used siRNA to knockdown IGF2BP1
(Supplementary Fig. 7e). To further verify the influence of NNMT,
IGF2BP1 and METTL14 on the RNA stability of E-cadherin, we
treated Eca-109 cells with the transcription inhibitor actinomycin
D after knockdown of NNMT, IGF2BP1 and METTL14. Indeed, we
found that knockdown of NNMT increased the half-life of
E-cadherin mRNA, whereas knockdown of IGF2BP1 promoted
mRNA degradation of E-cadherin (Fig. 7j). Conversely, the half-life
of E-cadherin transcripts was significantly decreased after silen-
cing METTL14 (Fig. 7k). These results indicated that the m6A
modification of E-cadherin mRNA could be recognized and bound
by IGF2BP1. Moreover, RIP assay further confirmed that the
IGF2BP1 protein could directly bind to E-cadherin mRNA. The
binding abundance of IGF2BP1 on E-cadherin mRNA increased
significantly after silencing NNMT but inhibited by METTL14
knockdown (Fig. 7I). Taken together, these results showed that
abnormal histone modification and m6A modification mediated
inhibition of E-cadherin expression to promote metastasis of ESCC
through NNMT-mediated regulation of EMT (Fig. 7m).

DISCUSSION
Increasing studies have revealed that metabolism of different
cancer types is of high heterogeneity46,47. Specifically, metabolic
pattern of tumor cells has been found as the major contributor to
metabolic heterogeneity in TME47. Here, we dissected metabolic
reprogramming of ESCC TME during lymph node metastasis at
single-cell resolution. In this study, we uncovered the oncogenic
role of NNMT in ESCC lymph node metastasis by promoting
nicotinate and nicotinamide metabolism and exerting broad
influence to epigenetic landscape of cancer cells. We observed

Fig. 7 NNMT promotes EMT in ESCC by inhibiting E-cadherin expression transcriptionally and post-transcriptionally. a The SAM/SAH ratio
significantly increased after silencing NNMT in Eca-109 cells. b ChIP-qPCR of H3K4me3 of the promoter region of the E-cadherin locus after
siRNA treatment targeting si-NNMT in Eca-109 cells. Antibody enrichment was quantified relative to the amount of input DNA. An antibody
directed against IgG was used as a negative control. c The m6A dot blot assay was used to investigate the global m6A abundance after
knockdown of NNMT compared with the control group in Eca-109 cells. d MeRIP-qPCR was performed to quantify the relative m6A
modification level of E-cadherin upon NNMT knockdown in Eca-109 cells. e qRT-PCR assays and western blot assays detected the mRNA and
protein levels of METTL14 after knockdown of NNMT expression in Eca-109 cells. f The m6A dot blot assay was used to investigate the global
m6A abundance after silencing METTL14 compared with the control group in Eca-109 cells. g MeRIP-qPCR was performed to quantify the
relative m6A modification level of E-cadherin after knockdown of METTL14 in Eca-109 cells. h qRT-PCR and western blot assays detected the
mRNA and protein levels of E-cadherin after siRNA treatment of METTL14 in Eca-109 cells. i Immunofluorescence staining of E-cadherin, N-
cadherin, and β-catenin (green) in the Eca-109 cells expressing after knockdown of METTL14. j Lifetime of E-cadherin mRNA levels in Eca-109
cells with NNMT and IGF2BP1 knockdown. k Lifetime of E-cadherin mRNA levels after silencing METTL14 in Eca-109 cells. l A RIP experiment
for IGF2BP1 was performed in Eca-109 cells, and the coprecipitated RNA was subjected to qRT-PCR for E-cadherin after transfection of si-NC, si-
NNMT and si-METTL14. The fold enrichment of E-cadherin in RIP is relative to its matching IgG control RIP. *P < 0.05, **P < 0.01. m Schematic
map showing that NNMT promotes EMT of ESCC via decreasing H3K4me3 in E-cadherin promoter region at transcriptional level and inhibiting
m6A modification of E-cadherin in an m6A-dependent manner at post-transcriptional level.

Q Huang et al.

11

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2024)    24 



that Tregs had greater metabolic activities of glutathione
metabolism48 than CD8 T and NK cells, especially in the LN+

group. This reinforces the emerging theme that immunosuppres-
sive cells undergo remarkable reprogramming and have higher
levels of metabolic activities47,49. Furthermore, we constructed a
integrate model based on 3 selected metabolites and clinical
information, and this method can precisely detect lymph node
metastasis among ESCC patients.
scRNA-seq help us to understand TME composition and

metabolic patterns of each type of cells at single-cell resolution,
which is a powerful tool to discover metabolism reprogramming
during cancer progression. scRNA-seq can find alterations of
metabolism pathways in each cell at transcriptional level.
Metabolomics identify and quantify low molecular weight
metabolites in a biosystem, which are endpoint products of each
pathway. Thus, integrating scRNA-seq and metabolomics can help
better understand metabolic reprograming of TME, and metabo-
lomics is also validation of scRNA-seq findings to some degree. In
addition to nicotinate and nicotinamide metabolism, both our
scRNA-seq and metabolomics data suggest that histidine meta-
bolism is significantly enriched in LN+ ESCC. This finding suggest
histidine metabolism might play critical roles in ESCC and the
underling molecular mechanism need further investigation.
Another advance of our study is successful development of a
precise method for lymph node metastasis detection based on
targeted metabolomics. Since lymph node metastasis is a key
factor for clinical decision, this metabolomics detecting method
will promote precise treatment of ESCC.
Our data revealed that NNMT could regulate not only the

histone methylation modification of E-cadherin at the transcrip-
tion level, but also m6A RNA methylation at the post-
transcriptional level, thus promoting EMT of ESCC. M6A RNA
methylation is the most prevalent chemical modification at the
epigenetic level of RNA, which plays as important regulatory role
in tumorigenesis and metabolic remodeling41,50. It follows that
NNMT can directly communicate between histone methylation
and RNA methylation, thus shaping vital roles in epigenetic
modification. These findings indicate NNMT is key enzyme
bridging cellular metabolism and epigenetic modifications, and
might be a promising biomarker and therapeutic target of ESCC.
Our data also confirmed the fact that metabolism reprogramming
observed in cancer not only serve to fulfill the proliferative
demand of tumor cells but also play a significant role in driving
cancer development.
The results of our pathway enrichment analysis revealed

significant disturbances in many interconnected pathways,
including but not limited to nicotinate and nicotinamide
metabolism; arginine and proline metabolism; and histidine
metabolism (Fig. 5b, d). These findings fit well with the previous
greater literature. For instance, we observed arginine and proline
metabolism was enriched in the LN+ group. This reinforce the
increased arginase expression and activity in many tumors, such
as head and neck51, kidney52, breast53, hepatocellular54, and
prostate55.
Limitations of this study should be acknowledged. Due to the

limited patient number fitting the inclusion criteria, only five
patients were recruited in our scRNA analysis. To compensate this,
we have also applied large-scale externalscRNA dataset as an
important supplementary data to validate our findings. Addition-
ally, we built a targeted detection method using nicotinamide,
MNA, and 2-PYR, since we failed to develop targeted detection
method of 4-PYR or nicotinate. It is reasonable to believe that a
targeted method with more metabolites of nicotinamide meta-
bolism pathway may have better diagnostic performance for ESCC
LN metastasis.
In summary, we provided evidence for metabolic reprogram-

ming of ESCC with lymph node metastasis by scRNA-seq and
metabolomics, and identified NNMT as the key regulator that links

metabolic reprograming and epigenetic remodeling. These
findings not only deepen our understanding into the metabolic
heterogeneity of ESCC, but also guided the development of a
useful method for ESCC precise treatment. Our findings provide
unique insights into the biology of cancer metastasis and raise the
possibility to target metabolism pathways in cancer metastasis.

METHODS
Human biospecimen collection
Tumor tissues, lymph nodes, and blood samples of ESCC patients
who underwent surgery at the Department of Thoracic Surgery of
Jiangsu Cancer Hospital and the First Affiliated Hospital of
Zhengzhou University were enrolled for scRNA-seq and metabo-
lomics analyses. None of the patients had been treated with
chemotherapy, radiation, or any other anti-tumor medicines prior
to tumor resection. Detailed patient characteristics are shown in
Supplementary Tables 1, 8 and 9. Sex or gender was not
considered in the study design. This study was approved by the
Ethics Committee Board of Peking University People’s Hospital
(2020PHB191-01), and it was performed in compliance with the
Declaration of Helsinki Principles. The informed consent was
obtained from all patients.

Sample collection and dissociation for scRNA-seq
For scRNA-seq, five primary tumors and five matched lymph
nodes with (n= 2) or without (n= 3) metastasis were analyzed.
Primary tumor tissue and lymph node samples were transported
in ice-cold H1640 (Gibco, Life Technologies) immediately after
surgical resection. All samples were rinsed with phosphate-
buffered saline (PBS; Thermo Fisher Scientific), minced into
~1mm cubic piece, and ground with a UTTD (ULTRA-TURRAX®
Tube Drive) disperser (IKA, Germany). The samples were digested
by 0.25% trypsin (Gibco, Life Technologies), terminated by
H1640 supplemented with 10% fetal bovine serum (Gibco, Life
Technologies), and then transferred to 10 ml of digestion medium
containing collagenase IV (100 U/ml; Gibco, Life Technologies) and
dispase (0.6 U/ml; Gibco, Life Technologies). The digested samples
were filtered through a 70 µm nylon mesh. After centrifuging, the
pelleted cells were suspended with ice-cold red blood cell lysis
buffer (Solarbio) and filtered with a 40 µm nylon mesh. At last, the
pelleted cells were suspended with 1 ml of Dulbecco’s PBS
(Solarbio), and the concentrations of live cells and clumped cells
were determined using an automated cell counter (Countstar).

Droplet-based single-cell sequencing
Using the Single Cell 3′ Library and Gel Bead Kit V2 (10X
Genomics) and Chromium Single Cell A Chip Kit (10X Genomics),
the cell suspension was loaded onto the Chromium single-cell
controller (10X Genomics) to generate single-cell gel beads in the
emulsion (GEMs) according to the manufacturer’s protocol. In
brief, single cells were suspended in PBS containing 0.04% bovine
serum albumin. About 10,000 cells were added to each channel,
and the target number of cells to be recovered was estimated to
be about 6000 cells. The captured cells were lysed, and the
released RNA was barcoded via reverse transcription in individual
GEMs. Reverse transcription was performed at 53 °C for 45 min,
followed by 85 °C for 5 min, after which the temperature was held
at 4 °C. Complementary DNA was generated and amplified, after
which its quality was assessed using an Agilent 4200. According to
the manufacturer’s instructions, scRNA-seq libraries were con-
structed using the Single Cell 3′ Library Gel Bead Kit V2. Finally, the
libraries were sequenced using an Illumina NovaSeq 6000 with a
paired-end 150–base pair (PE150) reading strategy (performed by
CapitalBio Technology, Beijing).
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scRNA-seq data analysis
Raw gene expression matrices were generated for each sample
using the Cell Ranger (version 3.0.2) with reference transcriptome
GRCh38. After removal of empty droplets using the Scruble56

package (version 0.2.3), the output-filtered gene expression
matrices were analyzed by R software (version 4.0.5) with the
Seurat57 package (version 4.1.0). Single-cell gene expression data
of all samples were merged, and transcriptomes were filtered for
cells with 200–6000 genes detected, 500–50,000 UMIs counted,
fraction of mitochondrial reads < 10%, and fraction of hemoglobin
reads < 5%. After removal of low-quality cells, UMI counts were
variance-stabilized using scTransform58 with 3000 variable fea-
tures, while regressing out number of UMIs and fraction of
mitochondrial reads. To remove batch effects and perform
integrated analysis, we used the harmony algorithm59 to integrate
10 datasets. The details of the integration methods are described
at https://github.com/immunogenomics/harmony.

Dimension reduction and identification of major cell clusters
To reduce the dimension of the integrated object, the resulting
variably expressed genes were summarized by the RunPCA()
function with default parameters. A subset of significant PCs was
identified according to the results of the ElbowPlot(), DimHeat-
map() and JackStrawPlot() functions. Next, we clustered cells using
the FindNeighbors() and FindClusters() functions and performed
nonlinear dimensional reduction with the RunTSNE() function with
default settings. Last, we used the FindAllMarkers function in
Seurat to find markers for each of the identified clusters and
annotated clusters on the basis of expression of canonical markers
of particular cell types. For epithelial cell clusters, the InferCNV
package5 was used to detect the CNVs in EPCAM+ cells and to
recognize ESCC cancer cells with default parameters. Stromal cells
and immune cells were used as the control group, and their CNV
estimates were used to define a baseline.

Subclustering of the major cell types
To identify subclusters within major cell types, we reanalyzed cells
belonging to each of these major cell types separately. Based on
the integrated assay, the ScaleData() and RunPCA() functions were
performed. The pipelines of significant PC selection, cell clustering
and TSNE visualization were the same as those described above.
Finally, we identified each cell sub-cluster based on the expression
of canonical markers.

Differential expression genes (DEGs) identification
Differential expression analysis comparing cells from metastasis or
non-metastasis groups was performed using the FindMarkers
function with the following parameters: fraction of expressing cells
inside the cluster ≥ 0.25, log fold change between cells inside and
outside the cluster ≥ 0.25. |log2(fold-change)| > 0.5 and adj.p.val
< 0.01 were used as the cut-off criteria. Enrichment analysis for the
functions of the DEGs was performed using the Metascape
webtool (www.metascape.org).

Gene set variation analysis (GSVA)
Pathway analyses were performed using Hallmark gene sets from
v7.5.1 of the MSigDB repository (https://www.gsea-msigdb.org/
gsea/msigdb). We also assessed metabolic pathway activities
using metabolic pathways from a previously described curated
dataset46. The gsva() function in GSVA R package (version 1.38.2)
was implemented to estimate the pathway enrichment scores of
individual cells. The differential activities of pathways between
clusters or conditions were calculated using Limma R package
(version 3.46.0). Gene sets with adj.p.val < 0.05 were considered
significant.

Functional analysis
To evaluate the activities of functional expression programs in
immune cells, we calculated the gene signature expression scores
using the AddModuleScore() function in Seurat. Signature gene
lists for naïve, cytotoxicity and Treg have been previously
described in ref. 60 and were provided in Supplementary Table
3. Oncogenic signaling pathway activity scores were calculated
using the progeny R package61. Enrichment analysis for the
functions of the DEGs was performed using the Metascape
webtool (www.metascape.org).

Plasma collection
For the plasma metabolomics cohort, 4 mL of peripheral blood
was collected from all participants before surgery with tubes
containing EDTA. All participants had fasted at least 8 h (h) before
blood collection. Whole blood was centrifuged at 1600 g for
10min and the obtained supernatant was centrifuged at 16,000 g
for 10min. Next, plasma aliquots were transferred into cryovials
and stored at −80 °C.

Sample preparation for metabolomics
For untargeted metabolomic, metabolites were extracted from
plasma samples62 and tissue samples63 as previously described.
Briefly, 25 mg of tissue samples were mixed with 500 μL of
acetonitrile/methanol/water (2: 2: 1, V/V/V). After 30 s vortex, the
tissue samples were homogenized at 35 Hz for 4 min and
sonicated for 5 min in ice-water bath. For plasma samples,
100 μL of plasma mixed with 400 μL of acetonitrile/methanol
(1:1, V/V). Then, tissue and plasma samples were incubated for 1 h
at −40 °C to precipitate proteins, and centrifuged at 12,000 rpm
for 15 min at 4 °C. The resulting supernatant was transferred to a
fresh glass vial for analysis. For targeted metabolomics, plasma
samples were thawed on the ice, followed by vortexed for 30 s.
The mixture was centrifuged at 12,000 rpm for 1 h at 4 °C. The
clear supernatant was transferred to an auto-sampler vial for
subsequent analysis.

LC-MS/MS metabolite profiling
For untargeted metabolomics, an ultra-high-performance liquid
chromatography (UHPLC) system (Vanquish, Thermo Fisher
Scientific) coupled with Q-Exactive MS (Thermo Scientific) was
used for metabolites separation and detection. The mobile phase
consisted of 25 mmol/L ammonium acetate and 25 ammonia
hydroxide in water (pH = 9.75) (A) and acetonitrile (B). The
analysis was carried with elution gradient as follows: 0 ~ 0.5 min,
95% B; 0.5 ~ 7.0 min, 95% ~ 65% B; 7.0 ~ 8.0 min, 65% ~ 40% B;
8.0 ~ 9.0 min, 40% B; 9.0 ~ 9.1 min, 40% ~ 95% B; 9.1 ~ 12.0 min,
95% B. The column temperature was maintained at 30 °C and the
auto-sampler temperature was 4 °C. The injection volume was
3 μL. Next analysis was performed using the Q-Exactive MS
(Thermo Scientific) equipped with an ESI ion source in
information-dependent acquisition (IDA) mode (performed by
Shanghai Biotree Biomedical Technology CO., LTD). The ESI source
conditions were set as following: sheath gas flow rate as 50 Arb,
aux gas flow rate as 10 Arb, capillary temperature 320 °C, full MS
resolution as 60,000, MS/MS resolution as 7500, collision energy as
10/30/60 in NCE mode, spray Voltage as 3.5 kV (positive) or
−3.2 kV (negative), respectively. The acquired raw data were
converted to the mzXML format using ProteoWizard software
(http://proteowizard.sourceforge.net). R package XCMS was used
for peak detection, extraction, alignment, and integration64. Then
an in-house MS2 database (BiotreeDB) was applied in metabolite
annotation set cutoff annotation at 0.364. For targeted metabo-
lomics, the UHPLC separation was carried out using an ACQUITY
UPLC-I/CLASS (Waters), equipped with an ACQUITY UPLC HSS T3
column (100 × 2.1 mm, 1.8 μm, Waters). The mobile phase A was
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10mmol/L ammonium formate and 0.02% formic acid in water
and the mobile phase B was methanol. Waters Xevo TQ-S triple
quadrupole mass spectrometer (Waters) was applied for assay
development. Typical ion source parameters were:
capillary voltages = 2.5 kV, cone voltages = 30 V, desolvation
temperature = 550 °C, desolvation gas flow = 1100 (L/Hr), cone
gas flow=150 (L/Hr), nebuliser gas flow =7.0 (Bar). The column
temperature was set at 40 °C and the auto-sampler temperature
was set at 10 °C. The injection volume was 10 μL. The quantifica-
tion assay was performed on a Waters Xevo TQ-S triple
quadrupole mass spectrometer (Waters) in multiple reaction
monitoring (MRM) mode. One to four transitions were selected
for each target metabolites, and collision energy were optimized
for each transition to achieve maximum sensitivity. In total, 10
transitions (1-methylnicotinamide, 4 transitions; 1-methyl-2-pyr-
idone-5-carboxamide, 4 transitions; Nicotinamide, 2 transitions)
representing 3 target metabolites were acquired in a LC-MS run in
positive-ion mode. Typical ion source parameters were: capillary
voltages, 2.5 kV; cone voltages, 30 V; desolvation temperature,
550 °C; desolvation gas flow, 1100 (L/Hr); cone gas flow, 150 (L/Hr);
and nebuliser gas flow, 7.0 (Bar). Chromatograms of each
metabolite were extracted and quantified using the Agilent
MassHunter Qualitative Analysis software (Agilent Technologies).
Then acquired MRM data was processed by MultiQuant software
(AB Sciex), areas of the XICs of targeted lipids were calculated and
normalized with internal standards.

Machine learning model in evaluating diagnostic power
Machine learning models with the abundance of the 3 targeted
metabolites and clinical features as input were constructed with
the caret package (https://cran.r-project.org/web/packages/caret/).
Then, the diagnostic capacity of the targeted metabolites in the
panel was evaluated with AUC and accuracy through the R
packages pROC (https://cran.r-project.org/web/packages/pROC/
index.html) in discriminating LN+ ESCC from LN− ESCC. The
model was trained by 60% of samples through fivefold cross-
validation, and the rest samples were used as a testing dataset to
assess the diagnostic capability.

Cell culture
The Eca-109 and KYSE-30 cell lines were purchased from the Cell
library of Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences (Shanghai, China). Eca-109 and KYSE-30 were
cultured in DMEM medium (Gibco, Carlsbad, CA, USA) supple-
mented with 10% FBS, 100 U/mL penicillin, and 100 U/mL
streptomycin. The cells were cultured in an incubator (Thermo
Scientific, Carlsbad, CA, USA) at a temperature of 37 °C and CO2

concentration of 5%.

Transfection
The siRNAs were transfected into Eca-109 cell using Lipofecta-
mine2000 (Invitrogen, San Francisco, CA, USA) according to the
manufacturer’s instructions. Scrambled negative control siRNA (si‐
NC) were purchased from Invitrogen (San Francisco, CA, USA). The
sequences for siRNAs are listed in Supplementary Table 11.
Typically, the cells were evenly added to 6-well culture plates at a
certain concentration and transfected with siRNA on the next day.

RNA extraction, reverse transcription, and the quantitative
real-time PCR
TRIzol reagent was used to lyse Eca-109 cell and extract RNA. For
qRT‐PCR, 1 μg of RNA from each sample was reverse transcribed to
complementary DNA (cDNA) by using a reverse transcription kit
(Takara, Beijing, China). qRT-PCR analyses were performed with TB
Green (Takara, Beijing, China) according to the manufacturer’s
instructions. The results were normalized with β-actin.

Western blot assay
The cells were lysed using Radio-Immunoprecipitation Assay
(RIPA) buffer (Beyotime Biotechnology, Shanghai, China) supple-
mented with protease inhibitors cocktail (Roche Applied Science,
Indianapolis, IN, USA, dilution ratio, 1:100) and phenylmethane-
sulfonyl fluoride (PMSF) (Roche Applied Science, Indianapolis, IN,
USA, dilution ratio, 1:1000). The protein extractions were separated
by 10% SDS-PAGE transferred to 0.45 μm polyvinylidene difluoride
(PVDF) membranes (Sigma Aldrich, St. Louis, MO, USA) and
incubated overnight with specific primary antibody. The mem-
brane was washed with wash buffer and probed with a secondary
antibody (Beyotime Biotechnology, Shanghai, China). The auto-
radiograms were quantified by a developing instrument (Bio-Rad,
Universal Hood II, CA, USA). The information of primary antibody is
as follows: NNMT antibody (1:1000, ab119758, abcam, UK);
E-cadherin antibody (1:1000, ab40772, abcam, UK); N-cadherin
antibody (1:1000, ab76011, abcam, UK); β-catenin antibody
(1:1000, ab32572, abcam, UK); METTL14 antibody (1:1000,
ab309096, abcam, UK); IGF2BP1 antibody (1:1000, #8482, Cell
Signaling Technology, USA). Results were normalized to the
expression of β-actin. All blots originate from the same experi-
ment and have undergone parallel processing. All uncropped
blots were included in Supplementary Fig. 8.

Cell migration assays
For the migration assays, after transfection, the cells in serum-free
media were placed into the upper chamber of an insert (8-μm
pore size; Millipore, Billerica, MA, USA). Medium containing 10%
FBS was added to the lower chamber. After incubation for 24 h,
the cells remaining on the upper membrane were removed with
cotton wool. Cells that had migrated through the membrane were
stained with methanol and 0.1% crystal violet, imaged, and
counted using an IX71 inverted microscope (Olympus, Tokyo,
Japan).

Wound healing assays
Eca-109 cells were inoculated in six‐well culture medium until the
confluence reached 90%. Before transfection, a sterile pipette tip
was used to scratch a wound line across the surface of each dish.
Then, the suspension cells were removed with phosphate
belanced solution (PBS), and a new culture medium was added
in a humidified 5% CO2 incubator at 37 °C. Images were taken with
a microscope (Olympus, Tokyo, Japan) at 24 h intervals. Image Pro
Plus 6.0 software (Media Cybernetics, Bethesda, MD, USA) was
used to measure and calculate the distance that the cells had
migrated.

Tumor formation assay in mice model
Five-week-old male athymic BALB/c mice were purchased from
GemPharmatech (Nanjing, China) and maintained under specific
pathogen-free conditions. For the in vivo cell proliferation assay,
Eca-109 cells were stably transfected and subcutaneously injected
into either side of the posterior flanks of the mouse. The tumor
volume was measured every few days (length × width2 × 0.5). At
the end of the experiment, the mice were euthanized, and the
tumors were removed, weighed, and then fixed for hematoxylin
and eosin (H&E) and Ki-67 immunostaining analysis. To observe
tumor metastasis in the lungs, treated Eca-109 cells were injected
into the mice’s tail vein. After few days, the mice were euthanized,
and the lungs were removed. Images of the lungs were taken for
recording and used for H&E immunostaining analysis, and the
nodules on the lung were counted. This study was conducted in
strict accordance with the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The study
protocol was approved by the Committee on the Ethics of Animal
Experiments of Nanjing Medical University.
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Transcriptome sequencing
Total RNA was isolated from NNMT knockdown and control Eca-
109 cells. The concentration of each sample was measured using a
NanoDrop 2000 (Thermo Scientific, Carlsbad, CA, USA). The quality
was evaluated by an Agilent 2200 (Agilent, Palo Alto, CA, USA).
TruSeq Stranded mRNA Library Prep Kit (Illumina, Inc.) was used to
establish the sequencing library of each RNA sample. The
sequencing data was presented in Supplementary Table 12.

Gene set enrichment analysis (GSEA)
The differentially expressed genes (DEGs) responsive to NNMT
knockdown were used in GSEA analyses against the Molecular
Signatures Database (MSigDB) Hallmark gene sets and KEGG gene
sets (http://software.broadinstitute.org/gsea/msigdb). GSEA was
performed using GSEA software 4.0.3 by the Broad Institute
(http://software.broadinstitute.org).

Immunofluorescence microscopy
Cells grown on coverslip (24mm× 24mm) were fixed with 4%
paraformaldehyde for 15min, washed with 150mM glycine in PBS,
and permeabilized with 0.3% Triton X-100 in PBS for 10min at
room temperature. After blocking with 5% BSA, the cell smears
were incubated with the indicated primary antibodies overnight at
4 °C, washed, and Alexa Flour® 488/647-labeled secondary antibody
(life technologies) in PBS was added to the cell smears. Images
were taken by a laser scanning confocal microscope (Nikon, Japan).

ChIP assays
ChIP assays were performed using EZ-CHIPKIT according to the
manufacturer’s instructions (Millipore, Billerica, MA, USA). The
H3K4me3 antibody was obtained from Abcam (1:1000, ab8580,
abcam, UK). Quantification of immunoprecipitated DNA was
performed using qPCR with TB Green Mix. ChIP data were
calculated as a percentage relative to the input DNA.

Enzyme-Linked Immunosorbent Assay (ELISA)
To quantify cell SAM and SAH levels, direct ELISA was developed
by immobilizing antigens to a solid plate, followed by the addition
of SAM or SAH and HRP-labeled anti-SAM or anti-SAH antibodies.
Antigens from a sample or standards competed with the
corresponding fixed amount of immobilized antigens for binding
to specific HRP-labeled antibodies. The final HRP substrate
absorption values at 450 nM were inversely proportional to the
amount of detected antigen.

RNA m6A dot blot assays
Total RNA was first loaded onto a nitrocellulose membrane
(Amersham, GE Healthcare, USA) installed in a BioDot apparatus
(Bio-Rad, Hercules, CA, USA) with ice-cold 20×Saline-Sodium
Citrate (SSC) buffer (Sigma Aldrich, St. Louis, MO, USA). First, the
membrane was stained with 0.02% methylene blue (MB)
(Beyotime Biotechnology, Shanghai, China) in 0.3 mol/L sodium
acetate (pH 5.2) (Sigma Aldrich, St. Louis, MO, USA) to ensure the
consistency of the baseline between the different groups. Then,
the membrane was cross-linked using ultraviolet (UV), blocked,
incubated with m6A antibody (1:2000, #202003, Synaptic Systems,
Germany) overnight at 4 °C and subsequently incubated with
Horseradish Peroxidase (HRP)-conjugated goat anti-mouse immu-
noglobin G (IgG) (Beyotime Biotechnology, Shanghai, China) for
1 h. Finally, the membrane was visualized by an imaging system
(Bio-Rad, Universal Hood II, CA, USA).

Methylated RNA immunoprecipitation (MeRIP) assay and
qRT-PCR
Total RNA was isolated from stable NNMT knockdown Eca-109
cells and controls. Chemically fragmented RNA ( ~ 100 nt) was
incubated with a m6A antibody for immunoprecipitation accord-
ing to the standard protocol of the Magna MeRIP™m6A Kit (Merck
Millipore, Billerica, MA, USA). Briefly, total RNA was preheated at
94 °C for 10min, Ethylene Diamine Tetraacetic Acid (EDTA) (Sigma
Aldrich, St. Louis, MO, USA) was immediately added, 3 mol/L
sodium acetate (Sigma Aldrich, St. Louis, MO, USA), glycogen
(Sigma Aldrich, St. Louis, MO, USA) and 100% ethanol (Sigma
Aldrich, St. Louis, MO, USA) were added, and the samples were
incubated at −80 °C overnight. The next day, magnetic beads
were prepared, and the MeRIP reaction mixture was prepared and
incubated with m6A antibody at 4 °C for 2 h. The last m6A RNA
was eluted with 10 mg of m6A 5’-monophosphate sodium salt
(Merck Millipore, Billerica, MA, USA) at 4 °C for 1 h. Enrichment of
m6A was analyzed using qRT-PCR.

RNA stability assays
After siRNA transfection of Eca1-09 cells for 24 h, the cells were
treated with 15 μg/mL actinomycin D (MedChemExpress, Newark,
NJ, USA), then collected at 0, 4, and 8 h after treatment. Total RNA
was extracted and detected by qRT-PCR.

RNA immunoprecipitation (RIP) assays
The RIP experiment was performed using the Magna RIP™ RNA
binding protein immunoprecipitation kit (CAT.17-701, Millipore,
Billerica, MA, USA), and all operations were performed following
the manufacturer’s instructions. The antibody against IGF2BP1 for
the RIP assay was purchased from Cell Signaling Technology (7ug
per sample, #8482, Cell Signaling Technology, USA).

Statistical analysis
SPSS R26.0.0, Prism Graphpad v6.02, and R v4.0.2 software was used
for statistical analyses. For data from metabolomic assays, PCA
analysis was conducted with R using the prcomp function; Pathway
enrichment, was performed using the MetaboAnalyst statistical
analysis tool web service (https://www.metaboanalyst.ca). R pack-
age (pheatmap v1.0.12) and MetaboAnalyst statistical analysis tool
web service was used for hierarchy cluster analysis. Statistical tools,
methods and thresholds for each analysis of single-cell RNA-seq are
explicitly described in the Results section or detailed in Figure
Legends and the Methods sections.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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