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Enhancing the quality of panel-based tumor mutation burden
assessment: a comprehensive study of real-world and in-silico
outcomes
Yuanfeng Zhang 1,2,3,5, Duo Wang1,2,3,5, Zihong Zhao1,3,4,5, Rongxue Peng1,2,3,5, Yanxi Han1,2,3, Jinming Li1,2,3✉ and Rui Zhang 1,2,3✉

Targeted panel-based tumor mutation burden (TMB) assays are widely employed to guide immunotherapy for patients with solid
tumors. However, the accuracy and consistency of this method can be compromised due to the variability in technical details across
different laboratories, particularly in terms of panel size, somatic mutation detection and TMB calculation rules. Currently,
systematic evaluations of the impact of these technical factors on existing assays and best practice recommendations remain
lacking. We assessed the performance of 50 participating panel-based TMB assays involving 38 unique methods using cell line
samples. In silico experiments utilizing TCGA MC3 datasets were performed to further dissect the impact of technical factors. Here
we show that the panel sizes beyond 1.04 Mb and 389 genes are necessary for the basic discrete accuracy, as determined by over
40,000 synthetic panels. The somatic mutation detection should maintain a reciprocal gap of recall and precision less than 0.179 for
reliable psTMB calculation results. The inclusion of synonymous, nonsense and hotspot mutations could enhance the accuracy of
panel-based TMB assay. A 5% variant allele frequency cut-off is suitable for TMB assays using tumor samples with at least 20%
tumor purity. In conclusion, this multicenter study elucidates the major technical factors as sources of variability in panel-based TMB
assays and proposed comprehensive recommendations for the enhancement of accuracy and consistency. These findings will assist
clinical laboratories in optimizing the methodological details through bioinformatic experiments to enhance the reliability of panel-
based methods.
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INTRODUCTION
Immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1
have considerably transformed the treatment landscape of solid
tumors1,2. Tumor mutation burden (TMB), a biomarker that
quantifies the number of somatic mutations in a cancer genome,
is progressively utilized in clinical next-generation sequencing
(NGS) centers for predicting patients’ response to immunotherapy
and their prognosis3,4. Specially, the large targeted panel-based
TMB assessment method is highly favored not only for its cost and
time advantages compared to the gold standard—whole exome
sequencing (WES), but also for its strong consistency with WES
results5,6. An international survey conducted by the International
Quality Network for Pathology (IQN Path) revealed that the
targeted panel-based assay has in fact become the predominant
method for TMB measurement in research and/or clinical
applications7.
However, despite the promising potential of panel-based TMB

analysis, the process of this method is technologically complex
and composed of three sequential yet distinct parts (Fig. 1)8–10.
The first stage involves somatic mutation detection, which
includes multiple steps from DNA extraction to variant calling
and filtering. The two subsequent stages entail the statistical
estimation of TMB level and diagnostic prediction of response to
ICIs. In the statistical estimation stage, the count of selected
somatic mutations is used to calculate the psTMB value, utilizing
multiple computation rules including mutation classifications,
filtering rules and variant allele frequency (VAF) cut-off. The psTMB

value can further be converted into a wesTMB value through a
simple regression model, thereby representing the status of the
whole genome. In the diagnostic stage, samples are classified as
TMB-high/low/medium (TMB-H/L/M) using the wesTMB values.
Technical details from the process may contribute to the
variability of TMB assessment, including the methodologies of
somatic mutation detection, psTMB calculation rules, panel size
and TMB-H cut-off. Given the absence of corresponding consensus
and guidelines, the accuracy and consistency of laboratory-
developed panel-based assays cannot be guaranteed. In essence,
there is an urgent need to clarify the impact of major factors on
TMB assessment and propose recommendations to solidify the
future of the panel-based TMB assessment in clinical settings.
A few standardization and harmonization studies have been

conducted to evaluate the performance of several commercial
panel assays and initially measure the influence of panel size and
calculation rules on panel-based TMB assessment10–29. For
instance, the Friends of Cancer Research (FOCR) proposed
fundamental recommendations for the standardization20. Subse-
quently, in its second phase, the impact of certain factors on the
accuracy of panel-based TMB analysis was assessed, such as panel
size, the inclusion of synonymous mutations and population
minor allele frequency (pMAF) threshold26. Another collaborative
study by FOCR and Quality in Pathology (QuIP) evaluated the
impact of classification method, performance metrics and sample
DNA quality on the accuracy and consistency of several panel-
based assays22. Generally, there is a broad consensus that the
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panel assay should cover at least about 1 Mb of the exonic region.
However, the impact of somatic mutation detection process and
VAF cut-off, also a part of psTMB calculation rules, have yet been
explored. Furthermore, there is currently no consensus regarding
other methodological details. Evidence for this lack can be found
in the IQN Path pilot program7,30. This pilot program highlighted
the discrepancies of methodologies and performance among
different methods, especially the inclusion of synonymous
mutations, among various commercial and laboratory-developed
panel assays, suggesting a need for further investigation.
Hence, to assess the impact of aforementioned technical factors

on TMB detection accuracy, we conducted a large-scale multi-
center study based on a series of CRISPR-edited 293T subclones.
These subclones and original 293T cell line were used to simulate
tumor and paired normal samples (Fig. 2a). The mutation truth set
was established using multiple ultra-deep WES assays (Fig. 2b).
The methodologies and detection results of 50 participating
laboratories on these genomic DNA (gDNA) samples were
evaluated (Fig. 2b). Due to the limitations in sample size and
confounding factors, we further measured the importance of
technical factors through in silico experiment (Fig. 2c), based on
the Multi-Center Mutation Calling in Multiple Cancers (MC3)
dataset (Fig. 2a). Furthermore, we focused on individual technical
factors to understand their effects. Specifically, for panel size, we
assembled over 40,000 synthetic panels mirroring the design
patterns of real panels to depict the efficiency curves (Fig. 2c). For
VAF cut-off, the performance of different cut-off values (1–10%)
under varying tumor purities were explored. Based on our
findings, we detailed the impacts of various technical factors on
the TMB detection accuracy, and proposed recommendations for
quality enhancement and comparability assurance.

RESULTS
Methodologies and TMB results of panel assays
Out of the 38 panel methods evaluated from 50 submitted results,
28.9% (11/38) have been widely used in clinical studies. Six of
these methods were employed more than once, with p10
OncoScreen Plus (Burning Rock Dx) and p7 Onco1021plus
(GenePlus Technology) being the most frequently utilized
methods. All the TMB assays were laboratory-developed tests
expressly for scientific research purpose and not for clinical

decision. The details of enrolled panel methods can be found in
Supplementary Table 2.
The wet-bench experiments of the submitted panel assays

showed significant similarities (Table 1). The majority of panels
(33/38, 86.8%) covered exon regions of more than 1 Mb and 400
to over 1500 genes. The prevalent VAF cut-offs for somatic
mutation calling and TMB calculation were both 5%. Nonsense,
missense, and small insertions and deletions (indel) (both frame-
shift and in-frame) were the basic variants that involved in the
psTMB calculation by all panel assays. Synonymous mutations
were utilized only by a subset of panels (13/38, 34.2%).
The slope of the psTMB-wesTMB linear model of panel-based

method, which can reflect the differences among panels, was
influenced by factors such as panel design and calculation rules.
Most panels (27/38, 71.1%) having slopes less than 1.0.
Furthermore, over half (16/27, 59.3%) of these panels exhibited
slope values less than 0.9, suggesting a propensity for most panel
methods to overestimate TMB values at the psTMB level.
The majority of panels (36/38, 94.7%) employed binary

classification method and half (19/38, 50.0%) used a binary cut-
off close to 10 mut/Mb. The TMB results were classified at psTMB
stage and estimated wesTMB (eTMB) stage by 33 panels (23/38,
60.5%) and 13 panels (13/38, 34.2%), respectively. This indicated
divergent interpretations of panel-based TMB assessment.
Most panels correctly classified original samples (A1, B1, C1, D1,

E1) and diluted samples with 40% tumor purity (A2, A3, and B2),
but they did not perform well on samples with lower tumor purity
(A5, B4, B5, and B6). Moreover, participating panels tended to
markedly overestimate the TMB levels, leading to a dispersed
distribution of psTMB compared to eTMB across panels (Fig. 3a).
The root mean squared logarithmic error (RMSLE) ranged from
0.05 to 0.64, with a median of 0.21, indicating considerable
variation in continuous accuracy among panels (Fig. 3b). The
generally inflated TMB values and inconsistent RMSLE values
suggested the need for further investigation into the accuracy of
panels. Performance details and methodologies of all panels can
be found in Supplementary Tables 1 and 2.
There were six unique methods used by more than one

laboratory, including p07, p10, p23, p32, p35, and p37. The intra-
method concordance was high among the panels sharing p07 and
p37 (Fig. 4a). The analysis of variance (ANOVA) results showed that
the concordance varied among the methods, and the interaction
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between laboratory and method was critical for the TMB accuracy
(Fig. 4b). There was no significant performance difference
observed between the results from the 12 panel methods that
have been used in publish clinical studies and other panel
methods (t-value= 0.254, p value= 0.801, effect size= 0.013).

Relative importance of features
The SHapley Additive exPlanations (SHAP) values indicated that
among the measured features, the mutation detection accuracy
(reciprocal gap between recall and precision) (rgbrp), panel size
(composed of exonic size and gene count), the inclusion of
synonymous mutations, and hotspot mutation filtering were
approximately the most important features (technical factors) for
the performance of panel-based TMB estimation (Fig. 4c, d).
However, the detailed influences of these factors need further
exploration. The SHAP values on the R2 can be found in
Supplementary Fig. 1.

Assessment of panel size
Given that psTMB calculation typically encompasses only the
exonic regions, the term “panel size” within this article is
exclusively used to denote the sizes of the exonic regions covered
by the panels. The panel sizes of participating panels were
concentrated (Table 1), and the correlation between panel size
and TMB accuracy was not observed in the real-world results
(Fig. 3b).
The results from over 40,000 synthetic panels showed a

significant impact of panel size on both the continuous and
discrete accuracy of panel-based TMB estimation (Fig. 5a).

Specifically, if the panel size was less than 6.02 Mb and/or 2126
genes, it failed <95% of the theoretical optimal continuous
accuracy. The thresholds for keeping 95% discrete accuracy were
1.04 Mb and 389 genes. In terms of cost-effectiveness, a decrease
in the additional benefit of continuous accuracy per Mb and per
gene was observed above 7.63 Mb and 1518 genes. The global
inflection points for discrete accuracy corresponded to 3.85 Mb
and 457 genes.
Our findings suggested that RMSLE was more sensitive than

discrete accuracy, and the acceptable continuous accuracy
required larger panel size than discrete accuracy. When focusing
solely on discrete accuracy, our results were consistent with
previous studies in that only about 1 Mb of exonic regions is
necessary for 95% optimal accuracy. However, as, previous studies
indicated that the current 10 mut/Mb threshold might not suit all
patient groups31,32, laboratories should also ensure the continuous
accuracy for the wide clinical application prospects of panel-based
TMB methods.
In this analysis, certain real panel-based methods exhibited

inferior performance when compared to the synthetic panels. This
could be attributed to the many complex issues to be considered
and balanced during the development of targeted large panel
products, such as GC content and specificity of probes.

Assessment of mutation detection accuracy
The majority of panel results demonstrated recall (43/50, 86.0%),
precision (49/50, 98.0%), and F1 score (45/50, 90.0%) values over
0.8 in somatic mutation detection (Fig. 5b). The balance of
mutation detection performance was measured by the rgbrp, with
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somatic mutation, continuous and discrete wesTMB results of the gDNA samples were established using four WES assays and compared with
the results of 50 panels to assess their performance of somatic mutation detection and TMB estimation. c Simulated experiment was used to
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most (45/50, 90.0%) panel results exhibiting it below 0.2,
indicating balanced performance (Fig. 5c). However, these panel
results exhibited diverse continuous TMB accuracy with varying
RMSLE values, suggesting the influence of other major technical
factors beyond (Supplementary Table 1).
Germline sequencing of tumor-normal assays is critical to filter

the mutations unrelated to the neoantigen potential. There were
in total of only 5 false positive records from 6% (3/50) submitted
results on the negative control sample E1, suggesting generally
reliable germline sequencing.
The in silico results (Fig. 5d) showed that for every panel, the

methodology with the modest yet balanced precision and recall
values outperformed the methodology with high yet imbalanced
combinations. For example, the RMSLE of panels with precision of
0.7 and recall of 0.8 was close to the ideally best RMSLE whilst
being smaller than the RMSLE from panels with precision of 0.8
and recall of 1.0. The results of discrete accuracy were similar.
These results indicated that an imbalanced somatic detection,
such as striving for “zero false positive”, could create a disparity
between false positives and false negative counts, thus affecting
the TMB accuracy.

Assessment of computation rules
Beyond the fundamental missense and small indels, synonymous
mutations were least commonly included (13/38, 34.2%), while
nonsense (38/38, 100%), nonstop (35/38, 92.7%) and splicing site

mutations (29/38, 76.3%) were included in most panels. For
filtering rules, single nucleotide polymorphisms (SNPs) were
commonly filtered (29/38, 76.3%), while known mutations were
generally not (7/38, 18.4%). While the assays incorporating
synonymous mutations performed better than those not (t-
value= 2.199, p value= 0.033, Cohen’s d= 0.611), the other
computation rules did not show significant impact on the
performance (Supplementary Table 3).
The separate simulation results were consistent with the SHAP

values (Fig. 6a). The order of importance was as follows:
synonymous mutations > hotspot filtering > nonsense mutations >
splicing site mutations. Most panels performed better when
incorporating synonymous (37/38, 97.37%) and nonsense muta-
tions (26/38, 68.42%) without filtering hotspot mutations (34/38,
89.47%). Splicing site mutations mattered for only a small subset
(3/38, 7.89%) and can be optional. There was no significance of
translation start site, silent and nonstop mutations observed.

Assessment of VAF cut-off
A low VAF cut-off helps improve TMB reliability, especially on low-
purity samples, but also present detection challenges, potentially
affecting TMB assessment. While most (26/38, 68.0%) panel
methods used a 5% VAF cut-off for psTMB calculation, some
(11/38, 28.9%) used lower cut-offs, and their continuous TMB
accuracy was polarized. Two panels (p25, p27) using a 2% cut-off
exhibited continuous TMB accuracy, but six (p03, p08, p33, p34,
p37a and p37b) of the seven panels with the worst performance
used VAF cut-offs below 5%. Therefore, it was plausible that the
aggressive VAF cut-off settings of those six methods indirectly
influenced their TMB assessment.
In silico experiment revealed that the VAF cut-off did influence

the TMB assessment on samples with low purity. However, the
performance of 10% and 5% was comparable to that of lower cut-
offs on samples with tumor purity ≥40% and 20%, respectively
(Fig. 6b), and were insufficient only for sample with lower tumor
purity. For tissue-based panel assays, which usually require a
tumor purity of at least 20%, a 5% VAF cut-off is sufficient in
capturing substantial somatic mutation data for TMB assessment.
Lower cut-offs, while not enhancing TMB accuracy significantly,
may adversely impact the somatic mutation results.

DISCUSSION
Panel-based TMB assessment has long been lacking anchors and
standardization, with the methodologies being quite
diverse7–10,33. For example, the inclusion of synonymous muta-
tions has been a controversial topic7,10,12–14,19,23,26. In addition, it
has been suggested that the ideal TMB-H cut-off may vary among
certain patient populations31,32,34,35. Except for the indication of
pembrolizumab for adults and children, there is no accepted
classification and cut-off among panel assays, not even a
consensus on the stage at which to classify. The aim of this study
was to elucidate the factors affecting the TMB accuracy and
address issues of quality enhancement and consistency by
analyzing their essence. Specifically, serving as the most
comprehensive standardization study of panel-based TMB analysis
to date, this study evaluated the performance of 50 panel results
from 38 unique panel methods. Furthermore, it objectively
determined the impact of other major technical factors on TMB
assessment via unbiased in silico experiment.
Our survey and the IQN Path’s pilot program agree that the

panel assay has become the mainstream TMB approach, with
many laboratories developing own methods7,30, and certain
differences exist in the current methodologies. However, in this
study, the relatively high intra-method consistency was observed
for only 2 of 6 such methods. The limited data cannot directly
determine the relative superiority of these panel products but only

Table 1. Description of 38 participating NGS panel methods.

Methodology Method
count

Methodology Method
count

Exon size (Mb) Involved mutations

0–1.0 5 Nonsense 38

1.0-2.0 26 Missense 38

≥2.0 7 Indel 38

Gene count Nonstop 35

400–500 1 Splicing site 29

500–600 13 Synonymous 13

600–700 14 Other 4

700–1000 6 Applied filtering
rules

1000–1600 4 SNP 29

Somatic VAF cut-off
(%)

Driver 19

1 12 Hotspot 11

2 7 Known 7

3 1 Other 7

5 18 TMB-H cut-off
(mut/Mb)

TMB VAF cut-off (%) 5–10 15

1 1 10 11

2 4 10–11 8

5 26 11–21 4

10 1 Classification
method

Other 6 Binary (TMB-L, H) 36

Classification stage Ternary
(TMB-L, M, H)

2

psTMB 23

eTMB (wesTMB) 13

Unstated 2
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Fig. 3 TMB values and classification results submitted by 50 participating panels. a The distribution of psTMB and estimated wesTMB
values on five undiluted samples, including A1, B1, C1, D1 and E1 (negative control). Dotted lines show the reference TMB values. The chart
below shows the characteristic of truth set. b Continuous and discrete TMB results of panels. The continuous TMB results were calculated
using the samples with at least 40% simulated tumor purity. The bottom REF row shows the classification results confirmed by WES assays,
with a binary 10mut/Mb threshold.
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suggest their stability, and it is worth noting that directly
discerning the impact of technical factors from real-world data
was challenging. First, the technical factors of panel methods were
largely similar. Second, the sample size may obscure the
performance differences due to various factors. To measure the
impact of factors objectively, we employed MC3 dataset with
sufficient tumor samples and mutations, allowing for comprehen-
sive and reliable exploration of the impacts of technical factors.
Despite the unavailability of FDA-proved F1CDx and MSK-

IMPACT for us at that time, this study still incorporated several
widely recognized panel products which have been extensively
used in clinical trials, with or without validation reports
(Supplementary Table 2), showing their predictive value for
immunotherapy and prognosis of solid tumors36–38, and ensuring
the validity and generalizability of our results. In silico experiment
of all possible technical parameter combinations was conducted
to measure the importance of them. Also, thousands of synthetic
panels were assembled based on the real-world panel designs,
instead of random sampling, allowing us to provide practical and
applicable advice. Furthermore, our study focused on the
mutation count and highlighted the intimate relationship
between the balance of somatic detection strategy and psTMB

calculation. In addition, RMSLE was used as the metric for TMB
continuous accuracy since it is more applicable for skewed TMB
distributions among patient populations than root mean square
error (RMSE) and others. These improvements allow us to outline
principles for factors influencing the panel-based TMB assessment
and methodology development.
The results of in silico experiment indicated that a panel size

above 1.04 Mb (389 genes) is necessary for basic discrete accuracy
and a panel size of 6.02 Mb (2126 genes) is worth consideration for
reliable continuous accuracy regardless of the TMB-H cut-off. It
should be noted that he recommended values were based on the
assumption that all exons were included. In practice, a more
robust approach might be to moderately increase the panel size
beyond them, and compare the performance of existing targeted
region and synthetic panels covering all exons through further
bioinformatic experiments.
Since the mainstream panel-based TMB method depends on

the mutation count rather than any specific genomic site, it is
essential to balance of false positive and false negative errors,
which has been discussed in our previous study39. In this study, it
was emphasized that the balance between precision and recall
was more critical than excessively pursuing a higher value for
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either metric. For example, given the same recall of 0.7, a precision
of 0.9 resulted in worse accuracy of TMB assessment than a
precision of 0.6.
This large-scale study assured the importance of synonymous,

nonsense mutations and hotspot mutations on the TMB accuracy.
Specifically, the impact of synonymous mutations was consistent
in external quality assessment (EQA) analysis and in silico
experiment. For most panels, it’s commonly suggested to
incorporate synonymous and nonsense mutations, without
filtering hotspot mutations. We also found that the inclusion of
other mutations will not significantly affect the TMB accuracy.
The VAF cut-off affected the TMB assessment in two distinct

ways. First, it directly affected the TMB assessment only on low
tumor purity samples. When the tumor purity dropped to
30–40%, the performance with a 10% VAF started to decline.
However, the 5% VAF cut-off could still accommodate the
samples with 20% tumor purity, meeting the basic pre-analysis
quality control requirement for the most panel-based assays.
Second, lower VAF cut-offs significantly increase the difficulty of
somatic discovery39,40, making the 5% cut-off a reasonable and
feasible choice.

According to the definition of TMB, only the number of
mutations across the entire genome (wesTMB) is directly
associated with the response to ICIs and prognosis. In contrast,
the psTMB representing only a small portion of the cancer
genome may not be able to replace the wesTMB. However, in this
study, 23 panels (23/38, 60.5%) classified the TMB results at psTMB
stage. Furthermore, clinical outcomes of local samples (8/38,
21.1%), wesTMB (21/38, 55.3%) and FDA-approved panel (4/38,
10.5%) were utilized as the reference standards for establishing
the classification cut-off (Supplementary Table 2). There were 11
panel methods used other standards to determine the cut-off,
such as the 75% quartile wesTMB value of the local clinical
samples. As previously mentioned, while the TMB-H cut-offs may
vary among various patient groups, it does not suggest that
laboratories should develop own gold reference standards with-
out the wesTMB. Instead, it requires a greater emphasis on the
continuous accuracy which is independent of the TMB-H cut-off, in
order to ensure robust clinical reporting. We also recommend
laboratories uniformly adopt their TMB-H cut-offs and classify the
TMB results at the estimated wesTMB stage. This practice would
ensure essential comparability and consistency among panel-
based TMB results.

a real panels
fi�ng curve
95% CI
inflec�on point
95% accuracy

b

c d

Fig. 5 Detailed influence of panel size and mutation detection accuracy. a Impact of panel size and gene count on RMSLE and discrete
accuracy of panel-based TMB assessment. The fitting curves represent the synthetic panels. The red dots represent the real panels. Confidence
intervals of 95% are indicated by the light blue shadow. Critical panel size and gene count values (inflection points) and 95% theoretically best
accuracy are shown as vertical lines. b Accuracy of panels on cell line-derived gDNA samples. c Distribution of RMSLE and the reciprocal gap
between recall and precision on gDNA samples. d Impact of precision and recall value pairs on RMSLE and discrete accuracy of panel-based
TMB assessment.
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A limitation of our study is the absence of commonly used
clinical formalin-fixed and paraffin-embedded (FFPE) samples.
Certain characteristics of FFPE samples such as tumor hetero-
geneity and fixation artifacts can affect the accuracy of mutation
and TMB detection13,16, but our study concentrated on the
primary technical factors and did not address this issue. We intend
to incorporate clinical cases and explore sample features in
subsequent study for a more thorough and realistic evaluation of
panel-based TMB assays. Additionally, it should be noted that this
study focused on the mainstream panel-based TMB methods for
pan-cancer scenarios or non-small cell lung cancer. And the
conclusions may not apply to certain tumor types with
unsatisfactory TMB effectiveness31,32, such as renal cell carcinoma
and mesothelioma. For these tumor types, further separate study
is need to explore the alternative strategies, such as the
neoantigen burden based on structural variants and chromosome
arrangements41,42.
There are some recommendations that can help laboratories

improve the quality of panel-based TMB assays (Table 2). Although
current panel sizes are sufficient for TMB classification, they fall
short for reliable TMB values, questioning their application on
different patient groups with potential varying TMB-H cut-offs. It is
also suggested for laboratories to include the synonymous and
nonstop mutations, without filtering the hotspot mutations. For
tissue samples, the 5% VAF cut-off is ideal for psTMB calculation.

TMB results should be classified using estimated wesTMB for
comparability.

METHODS
Sample design
The four original cell line gDNA samples (A1, B1, C1, D1) used in
this study originated from the 293T cell line and were edited to
generate and accumulate random gene mutations43. The gDNA
from the original 293T without induced mutations was used to
simulated the paired normal sample. E1, the replicate of paired
normal sample, was used as negative control tumor sample to
measure the quality of germline sequencing and the reproduci-
bility of panel assays. The gDNA from The gDNA materials of A1
and B1 were mixed with that of 293T in different proportions to
simulate various tumor purities (Fig. 2a). A2, A3, A4, and A5 were
derived from A1 with tumor purities of 20, 17.5, 15, and 12.5%.
Similarly, B2. B3, B4, B5 and B6 originated from B1 with tumor
purities of 40%, 20%, 17.5%, 15% and 12.5%, respectively. A3_2
and B6_2 served as the replicates of A3_1 and B6_1, respectively.
The samples distributed to laboratories were human gDNA
dissolved in colorless and transparent buffer, dispensed as 30 ul
aliquots into 200 ul thin-wall polypropylene PCR tubes with a
concentration of 30 ng/ul, and stored at −20 °C.

a

b

VAF cut-off

Fig. 6 Detailed influence of computation rules and VAF cut-off. a Importance of variant classifications and filtering rules. The “≥1” column
describes the number of panels which had at least one parameter combination with top performance including this rule. The “100%” column
describes the number of panels for which all the parameter combinations with top performance included this rule. The “0%” column describes
the number of panels for which all the parameter combinations with top performance all excluded this rule. The “Matters? (%)” column
describes the percentage of panels that significantly affected by this rule. b Panel performance with five VAF cut-offs under four different
tumor purity conditions.
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Participating laboratories
Fifty-four laboratories participated in this multicenter study,
submitting a total of 50 panel-based TMB results, which
incorporated 38 unique panel methods (Fig. 2a). The methodo-
logical details were all collected, including targeted regions, wet-
bench equipment and reagents, bioinformatic pipelines of
somatic mutation detection, psTMB calculation rules and TMB
classification methods, as well as their somatic mutation and TMB
results on cell line gDNA samples.

Whole exome sequencing and truth set
The truth set of somatic mutations and the reference values of
wesTMB (rTMB) were established through four WES assays (Fig.
2b). Genetron (Beijing) carried out two tumor-normal paired
assays on Illumina NovaSeq 6000 with PE300 mode, and MGI-Tech
(Tianjin) carried out the other two tumor-normal paired assays on
MGI DNBSEQ-T7 with PE100 mode. All assays were performed
according to the manufacturer’s protocol.

Genetron WES assays. KAPA HiFi HotStart ReadyMix (2×), IDT
ADAPTERS WITH ILLUMINA UDI CODES and Bechman Agencourt
AMPure XP Kit were used for the cDNA library construction.
SureSelect All Exon V5 kit and self-developed hybrid capture kit
were used to capture the targeted cDNA segments. Agilent
TapeStation DNA ScreenTape-D1000 and Qubit 4.0 were used for
quality control. Then 200 ng of the cDNA library was submitted to
sequencing on Illumina NovaSeq 6000 (mode= paired-end, reads
length= 300, average depth= 600x, total targeted region
size= 50Mb). Trimmomatic v0.36 was used to refine the raw
sequencing data (SLIDINGWINDOW= 4:15, LEADING= 3, TRAIL-
ING= 3, MINLEN= 36). Bwa v0.7.10-r789 and samtools v1.3 were
used to align the raw data to hg19 genome. Picard v2.2.1 and
GATK v3.5 with default settings were used to move the duplicated
reads and recalibrate the base quality score. GATK Mutect v3.1-0-
g72492bb and Strelka v2.9.2 were used to call the small somatic
variants with tumor and normal samples. Then all variants were
annotated using VEP v92 and filtered using self-developed scripts.

MGI-Tech WES assays. KAPA HIFI HOTSTART READYMIX and
xGen® Hybridization and Wash Kit were used for the cDNA library
construction, then the 96rxn xGen Exome Research Panel v1.0 was
used for hybrid capture. BIOPTIC Qsep100 standard cartridge and
Qubit 4.0 were used for quality control. 200 ng of the cDNA library
was submitted to sequencing on MGI DNBSEQ-T7 (mode= paired-
end, reads length= 100, average depth= 1000, total targeted
region size= 51Mb). UMI was applied to assure the performance
of somatic mutation detection at low VAF level. After sequencing,
SOAPnuke v2.0 was used for basic quality control and self-
developed script was used to handle with the UMI results.9 Bwa
mem v0.7.17-r1188 and samtools v 0.1.19-44428 cd were used to
align the raw data to hg19 genome. Picard 2.18.1-1-g0d439ec-
SNAPSHOT and GATK 4.0.8.1 with default settings were used to
move the duplicated reads and recalibrate the base quality score.
Then the SOMATK kit (developed by MGI) was used to call,
annotate and filter the small somatic variants with tumor and
normal samples.

Determination of credibility. We measured the quality and
credibility of Genetron batch 1 (G1) and batch 2 (G2) and MGI-
Tech batch 1 (M1) and batch 2 (M2) from following aspects: (1)
sequencing quality (Q30, Q20, average sequencing depth, etc.), (2)
reproducibility on repeated samples of same batch, (3) reprodu-
cibility on repeated samples of two batches, (4) the relationship of
somatic mutation content and VAF among samples with different
simulated tumor purity, (5) false positives on negative control
sample. From these, we made sure that the somatic variants with
at least 3 of the 4 WES assays could be considered as true positive,
and variants with VAF not less than 9% is trustworthy.

Establishment of the truth set. Based on the credibility informa-
tion, we used the somatic mutation results of the 4 WES assays to
generate the truth set for 4 undiluted samples (A1, B1, C1, D1).
Then average VAF value for each somatic mutation in truth set
was calculated. By comparing the truth set and results of diluted
samples, the truth set of the remaining samples were established.
The reference wesTMB value was calculated as the average of

Table 2. Evidence-based recommendations for quality enhancement of panel-based TMB assessment.

Methodology checklist Recommendations

1. Panel size

• Discrete accuracy: a panel size above 1.04Mb (389 genes) is necessary and enough for 95% discrete
accuracy.
• Continuous accuracy: it’s suggested to obtaining considerable continuous accuracy gains by increasing the
panel size up to 6.02Mb (95% continuous accuracy) or 2126 genes (cost of cost-effectiveness).

2. Somatic mutation detection

(1) Analytical sensitivity • Without other analytical needs, the 5% VAF cut-off for non-hotspot mutations is recommended for tissue
sample assay to keep reliable somatic mutation results.

(2) Overall performance • The recall and precision should be maintained at least above 0.8, or the difference between the reciprocal
gap of recall and precision should be less than 0.179, which corresponds to the recall of 0.7 and precision of
0.8.

3. psTMB calculation rules

(1) Inclusion or exclusion of
mutations

• The synonymous, nonsense mutations and the hotspot filtering significantly affect the TMB accuracy. It’s
recommended to involve the synonymous and nonsense mutation for psTMB calculation, without filtering
hotspot mutations.

(2) VAF cut-off • For tissue samples with at least 20% tumor purity, the 5% VAF cut-off is sufficient for psTMB calculation.

4. Classification method

(1) Reference standard • The indications of immunotherapy drugs approved by FDA and guidelines are the primary references.

(2) Classification stage • The TMB results should be classified using estimated wesTMB values instead of psTMB values.

5. Metrics

(1) Continuous accuracy • The root mean squared logarithmic error (RMSLE) or alike metrics which could balance the influence of
extreme values are suitable for the skewed TMB distribution.
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wesTMB values of G1, M1 and M2, as the TMB result of G2 was
not good.

TMB calculation. The parameters for wesTMB calculation fol-
lowed the recommendation from the phase I of the FOCR TMB
Harmonization Project20. Specifically, Missense_Mutation, In_Fra-
me_Del, Nonsense_Mutation, In_Frame_Ins, Frame_Shift_Del and
Frame_Shift_Ins variants with VAF ≥ 5%, t_depth > 25 and
t_count > 3 were all included. Then samples were classified as
TMB-L or TMB-H with a binary wesTMB cutoff at 10 mut/Mb.

EQA data analysis
The submitted somatic mutation and TMB results from labora-
tories were evaluated using the truth set from reliable WES assays.
Recall, precision and f1 score were employed to assess the somatic
mutation result. RMSLE was utilized to measure the continuous
accuracy of TMB results since it could minimize the potential bias
from extreme high and low TMB values, as shown in Eq. (1). We
evaluated the discrete accuracy of TMB results treating TMB-M
and TMB-L as non-TMB-H. Accuracy was based on successful
differentiation of TMB-H from non-TMB-H, as Eq. (2):

RMSLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ln eTMBi þ 1ð Þ � ln rTMBi þ 1ð Þð Þ2
s

(1)

where eTMB refers to the estimated wesTMB value that was
calculated using psTMB and psTMB-wesTMB regression model of
submitted panel, while rTMB represents the reference wesTMB
value.

discrete accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(2)

where true positive (TP) refers to samples that were consistently
classified as TMB-H by WES and panel assays. True negative (TN),
false positive (FP) and false negative (FN) can be determined
similarly.
The impact of interaction between laboratory and panel

methods on estimated wesTMB results was measured using the
ordinary least squares model, type III ANOVA and Eta squared (η2).
Details and codes are now available on Github.

Dataset
We utilized the MC3 dataset containing numerous somatic
mutations across various tumor types, which has been extensively
used for method development and standardization of TMB
assessment20,44. Somatic mutations were sourced from the
mc3.v.0.2.8.PUBLIC.maf file on the Genomic Data Commons
website (https://gdc.cancer.gov/about-data/publications/mc3-
2017). Low-quality variants and samples were filtered out
according to FILTER, t_depth, and other columns. The remaining
variants were annotated with tumor purity and population
databases. The wesTMB values of remaining samples in the
dataset were then calculated and classified (Fig. 2a). The whole
dataset was split into training, validation and testing sets in an
8:1:1 ratio for the in silico experiments.

In silico experiment
The bed files containing the targeted regions of 38 unique panel
methods served as the basic input. We constructed a technical
parameter grid based on the real-world methodologies, including
the recall and precision of somatic mutation detection, inclusion
of mutations, filtering rules and the VAF cut-off for psTMB
calculation. The filtering rules were also defined according to
submitted methodologies.
A bed file and a set of parameters formed a synthetic panel-

based TMB method. As the MC3 dataset was randomly split ten
times in an 8:1:1 ratio, this simulated method was first applied to

all the samples in the training dataset to calculate the psTMB
results and generate ten simple psTMB-wesTMB linear models.
Then it was applied to the validation dataset to select the optimal
one, according to the R2, continuous and discrete accuracy. Finally,
the performance of the complete synthetic panel method on the
testing dataset was reported. The filtering rules expect hotspot
filtering were all discarded since all the results with them were
relatively bad. The details and codes of simulated test are available
on Github.

Assessment of feature importance
Three XGBoost-based regressor models were constructed after
necessary feature engineering and collinearity check, using the
results from simulated experiments. The XGBRegressors incorpo-
rated the following features: exonic size, gene count per Mb, rgbrp
of somatic mutation detection, the inclusions of synonymous
mutations, nonsense, nonstop, splicing site, and translation start
site mutations, the filtering of hotspot mutations, along with the
VAF cut-off for psTMB calculation. Based on computation rules of
submitted panels, hotspot mutations were defined as mutations
found in cancer hotspot or CIViC database, or with more than 20
records in COSMIC database. The other filtering rules were
discarded after the pretest since the performance of results
applying them were relatively worse compared to the those
without them, which might be due to the lack of germline
information in the MC3 dataset or inappropriate definition. The
targeted values of the three XGBRegressors were the R2, RMSLE,
and discrete accuracy, respectively. Root mean square error
(RMSE) was utilized as the loss function. The SHapley Additive
exPlanations (SHAP) approach was applied to explain the feature
importance. The utilization of rgbrp to represent the accuracy of
mutation detection will be further discussed in a later section
titled “Individual factor evaluation and practice recommendations
—Mutation detection accuracy”. Details and codes of feature
engineering, collinearity check, hyperparameter optimization,
model fitting and model explanation are all now available on
the Github.

Individual factor evaluation and practice recommendations
Certain discrete features exhibited interrelationships, such as the
inclusion of mutations, while others like rgbrp and VAF cut-off
were continuous with limited value ranges. As a result,
XGBRegressors and SHAP values could only provide a general
sense of feature importance without practical guidance. Hence,
not only did we discuss the EQA results, but also conducted
detailed analysis of the impacts of individual or combined features
(technical parameters) on the TMB accuracy.

Panel size. In accordance with the common pattern of real
panels, we compiled the genes covered by all participating panels
and added them to the basic panel, starting from those covered
by all panels and progressing to those tested by only one panel.
Via this approach, we constructed over 40,000 simulated panels
varying in exonic sizes and gene counts, which were then
subjected to in silico experiments to demonstrate the relationship
between panel size and the TMB accuracy. We used the MC3
dataset to identify the ideal methodological parameters and the
corresponding performance for each unique panel (Fig. 2c). Since
the targeted panels are not only designed to estimate TMB, but
also to assist in cancer molecular typing and other targeted
therapies by detecting driver mutations and actionable mutations,
such as tyrosine kinase inhibitor and Poly (ADP-ribose) polymerase
inhibitor, the targeted regions of participating panels were
compared after filtering out the hotspot and driver gene, which
were summarized from OncoKB, NCG and COSMIC database and
listed in Supplementary Table 4. It should be mentioned that
rather than creating more realistic panels by excluding specific

Y Zhang et al.

10

npj Precision Oncology (2024)    18 Published in partnership with The Hormel Institute, University of Minnesota

https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017


exons, we included all the exons of the genes. That was because in
real-world scenarios, there are other concerns when making
tradeoffs regarding the targeted region.

Mutation detection accuracy. As a subset of the in silico
experiment, the TMB accuracy of real panels with different
assigned recall and precision values, from 0.5 to 1.0, were
calculated.
In mainstream panel-based TMB methods, the somatic muta-

tion detection accuracy inevitably influences the psTMB estima-
tion, as TMB can be defined as Eq. (3):

psTMB ¼ apparentmutation count
size of targeted region

(3)

Considering recall and precision as the prevalent metrics for
mutation detection and the number of true mutations in the
genome region covered by the panel, the mutation count
reported by the panel could be calculated as Eq. (4):

appearmutation count ¼ truemutationsþ FP� FN

¼ truemutations ´ 1þ 1
precision � 1

recall

� �

¼ truemutations ´ 1þ rgbrpð Þ
(4)

where FP refers to the reported mutation calls which are not in the
truth set, and FN refers to the mutations that are present in the
truth set but not reported by the laboratory.
This univariate representation of somatic mutation detection

accuracy helps to eliminate the collinearity problem between
recall and precision in the XGBRegressors, and clearly demonstrate
the relationship between mutation detection accuracy and TMB
accuracy. Specifically, the smaller the absolute value of rgbrp, the
closer the number of mutations for psTMB calculation is to the
number of true mutations, suggesting that perhaps the balance of
detection strategy is crucial. Moreover, exchanging the same recall
and precision values will yields different rgbrp values. Considering
RMSLE punishing under-prediction more and the curse of
dimensionality, cases only where recall ≥ precision were included.

Inclusion and filter of mutations. As a subset of the in silico
experiment, the simulated parameter combinations with superior
performance (e.g., higher R2, continuous and discrete accuracy
than the other 95% parameter combinations) were extracted to
robustly evaluate the importance of these rules. For each panel,
the importance of one rule for one panel was determined by
counting the times it appeared in the extracted parameter
combinations. The overall importance of one rule was measured
by the number of panels for which all the parameter combinations
with top performance unanimously included or excluded it. The
scripts with results are available on Github.

VAF cut-off. Samples in MC3 dataset with available tumor purity
information were extracted for an additional in silico experiment
to explore the TMB accuracy with different VAF cut-off values
under conditions of 10–40% simulated tumor purity.
Ethical approval was waived because we used only publicly

available data and commercial cell line materials in this study.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The raw FASTQ files of WES assays of gDNA samples in this study have been
deposited in the Genome Sequence Archive for human database with the BioProject
code PRJCA01774645,46. An online request is required for data download.

CODE AVAILABILITY
We used Python47 and R48 as the working languages; statsmodels49 for EQA data
analysis; Polars50 for MC3 dataset processing; bedtools51 and pybedtools52 for in silico
experiments; category_encoders53, scikit-learn54, XGBoost55 and SHAP56 for modeling
and feature explanation; pandas57 and NumPy58 for data manipulation; matplotlib59,
seaborn60, Jupyter Notebooks61, ggplot262 and patchwork63 for data visualization. The
custom scripts are all available along with the corresponding conda environments at
https://github.com/YuanfengZhang/PANEL_TMB_STANDARDIZATION.

Received: 30 August 2023; Accepted: 4 January 2024;

REFERENCES
1. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Review of

indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines
with the level of evidence. Cancers 12, 738 (2020).

2. Kaushik, I., Ramachandran, S., Zabel, C., Gaikwad, S. & Srivastava, S. K. The evo-
lutionary legacy of immune checkpoint inhibitors. Semin. Cancer Biol. 86, 491–498
(2022).

3. Hellmann, M. D. et al. Tumor mutational burden and efficacy of nivolumab
monotherapy and in combination with ipilimumab in small-cell lung cancer.
Cancer Cell 33, 853–861.e4 (2018).

4. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy
biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

5. Cheng, D. T. et al. Memorial sloan kettering-integrated mutation profiling of
actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-
generation sequencing clinical assay for solid tumor molecular oncology. J. Mol.
Diagn. 17, 251–264 (2015).

6. Milbury, C. A. et al. Clinical and analytical validation of FoundationOne®CDx, a
comprehensive genomic profiling assay for solid tumors. PLoS ONE 17, e0264138
(2022).

7. Fenizia, F. et al. Tumor mutation burden testing: a survey of the International
Quality Network for Pathology (IQN Path). Virchows Arch. 479, 1067–1072
(2021).

8. Sholl, L. M. et al. The promises and challenges of tumor mutation burden as an
immunotherapy biomarker: a perspective from the International Association for
the Study of Lung Cancer Pathology Committee. J. Thorac. Oncol. 15, 1409–1424
(2020).

9. Fancello, L., Gandini, S., Pelicci, P. G. & Mazzarella, L. Tumor mutational burden
quantification from targeted gene panels: major advancements and challenges. J.
Immunother. Cancer 7, 183 (2019).

10. Sung, M.-T., Wang, Y.-H. & Li, C.-F. Open the technical black box of tumor
mutational burden (TMB): factors affecting harmonization and standardization of
panel-based TMB. Int. J. Mol. Sci. 23, 5097 (2022).

11. Garofalo, A. et al. The impact of tumor profiling approaches and genomic data
strategies for cancer precision medicine. Genome Med. 8, 79 (2016).

12. Buchhalter, I. et al. Size matters: dissecting key parameters for panel-based tumor
mutational burden analysis. Int. J. Cancer 144, 848–858 (2019).

13. Endris, V. et al. Measurement of tumor mutational burden (TMB) in routine
molecular diagnostics: in silico and real-life analysis of three larger gene panels.
Int. J. Cancer 144, 2303–2312 (2019).

14. Stenzinger, A. et al. Tumor mutational burden standardization initiatives:
recommendations for consistent tumor mutational burden assessment in clinical
samples to guide immunotherapy treatment decisions. Genes Chromosomes
Cancer 58, 578–588 (2019).

15. Budczies, J. et al. Optimizing panel-based tumor mutational burden (TMB)
measurement. Ann. Oncol. 30, 1496–1506 (2019).

16. Kazdal, D. et al. Spatial and temporal heterogeneity of panel-based tumor
mutational burden in pulmonary adenocarcinoma: separating biology from
technical. Artifacts J. Thorac. Oncol. 14, 1935–1947 (2019).

17. Quy, P. N. et al. Association between preanalytical factors and tumor mutational
burden estimated by next‐generation sequencing‐based multiplex gene panel
assay. Oncologist 24, e1401–e1408 (2019).

18. Parikh, K. et al. Tumor mutational burden from tumor-only sequencing compared
with germline subtraction from paired tumor and normal specimens. JAMA Netw.
Open 3, e200202 (2020).

19. Bevins, N., Sun, S., Gaieb, Z., Thorson, J. A. & Murray, S. S. Comparison of com-
monly used solid tumor targeted gene sequencing panels for estimating tumor
mutation burden shows analytical and prognostic concordance within the cancer
genome atlas cohort. J. Immunother. Cancer 8, e000613 (2020).

20. Merino, D. M. et al. Establishing guidelines to harmonize tumor mutational bur-
den (TMB): in silico assessment of variation in TMB quantification across

Y Zhang et al.

11

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2024)    18 

https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA017746
https://github.com/YuanfengZhang/PANEL_TMB_STANDARDIZATION


diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmoni-
zation Project. J. Immunother. Cancer 8, e000147 (2020).

21. Budczies, J. et al. Quantifying potential confounders of panel-based tumor
mutational burden (TMB) measurement. Lung Cancer 142, 114–119 (2020).

22. Stenzinger, A. et al. Harmonization and standardization of panel-based tumor
mutational burden measurement: real-world results and recommendations of the
quality in pathology study. J. Thorac. Oncol. 15, 1177–1189 (2020).

23. Heydt, C. et al. Analysis of tumor mutational burden: correlation of five large gene
panels with whole exome sequencing. Sci. Rep. 10, 11387 (2020).

24. Heeke, S. et al. Comparison of three sequencing panels used for the assessment
of tumor mutational burden in NSCLC reveals low comparability. J. Thorac. Oncol.
15, 1535–1540 (2020).

25. Zhang, C. & Wang, H. The source of the tumor tissue should be taken into
consideration when distinguishing tumor mutational burden scores. Lung Cancer
154, 214–215 (2021).

26. Vega, D. M. et al. Aligning tumor mutational burden (TMB) quantification across
diagnostic platforms: phase II of the Friends of Cancer Research TMB Harmoni-
zation Project. Ann. Oncol. 32, 1626–1636 (2021).

27. Pang, J. et al. Benchmarking bioinformatics approaches for tumour mutational
burden evaluation from a large cancer panel against whole-exome sequencing. J.
Clin. Pathol. https://doi.org/10.1136/jcp-2022-208385 (2022).

28. Ramarao-Milne, P. et al. Comparison of actionable events detected in cancer
genomes by whole-genome sequencing, in silico whole-exome and mutation
panels. ESMO Open 7, 100540 (2022).

29. Sun, D. et al. Systematic assessment and optimizing algorithm of tumor muta-
tional burden calculation and their implications in clinical decision-making. Front.
Oncol. 12, 972972 (2022).

30. Esposito Abate, R. et al. External quality assessment (EQA) for tumor mutational
burden: results of an international IQN path feasibility pilot scheme. Virchows
Arch. 482, 347–355 (2023).

31. Valero, C. et al. Response rates to anti-PD-1 immunotherapy in microsatellite-
stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 7,
739–743 (2021).

32. Zheng, M. Tumor mutation burden for predicting immune checkpoint blockade
response: the more, the better. J. Immunother. Cancer 10, e003087 (2022).

33. Sha, D. et al. Tumor mutational burden as a predictive biomarker in solid tumors.
Cancer Discov. 10, 1808–1825 (2020).

34. Mankor, J. M. et al. Impact of panel design and cut-off on tumour mutational
burden assessment in metastatic solid tumour samples. Br. J. Cancer 122,
953–956 (2020).

35. Li, R. et al. Choosing tumor mutational burden wisely for immunotherapy: a hard
road to explore. Biochim. Biophys. Acta Rev. Cancer 1874, 188420 (2020).

36. Liu, N. et al. Progression of malignant pleural effusion during the early stage
of gefitinib treatment in advanced EGFR-mutant lung adenocarcinoma
involving complex driver gene mutations. Signal Transduct. Target. Ther. 5, 63
(2020).

37. Xu, Q. et al. Efficacy and safety of sintilimab plus anlotinib for PD-L1-positive
recurrent or metastatic cervical cancer: a multicenter, single-arm, prospective
phase II trial. J. Clin. Oncol. 40, 1795–1805 (2022).

38. Lu, C. et al. Association of genetic and immuno-characteristics with clinical out-
comes in patients with RET-rearranged non-small cell lung cancer: a retrospective
multicenter study. J. Hematol. Oncol. 13, 37 (2020).

39. Wang, D., Zhang, Y., Li, R., Li, J. & Zhang, R. Consistency and reproducibility of
large panel next-generation sequencing: multi-laboratory assessment of somatic
mutation detection on reference materials with mismatch repair and proof-
reading deficiency. J. Adv. Res. 44, 161–172 (2023).

40. Xu, H., DiCarlo, J., Satya, R. V., Peng, Q. & Wang, Y. Comparison of somatic
mutation calling methods in amplicon and whole exome sequence data. BMC
Genomics 15, 244 (2014).

41. Mansfield, A. S., Peikert, T. & Vasmatzis, G. Chromosomal rearrangements and their
neoantigenic potential in mesothelioma. Transl. Lung Cancer Res. 9, S92–S99 (2020).

42. Shi, Y., Jing, B. & Xi, R. Comprehensive analysis of neoantigens derived from
structural variation across whole genomes from 2528 tumors. Genome Biol. 24,
169 (2023).

43. Peng, R., Lin, G., Li, L. & Li, J. Development of a novel reference material for tumor
mutational burden measurement based on CRISPR/Cas9 technology. Front.
Oncol. 12, 845636 (2022).

44. Ellrott, K. et al. Scalable open science approach for mutation calling of tumor
exomes using multiple genomic pipelines. Cell Syst. 6, 271–281.e7 (2018).

45. Chen, T. et al. The genome sequence archive family: toward explosive data
growth and diverse data types. Genomics Proteom. Bioinforma. 19, 578–583
(2021).

46. CNCB-NGDC Members and Partners. Database resources of the National Geno-
mics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids
Res. 51, D18–D28 (2023).

47. Van Rossum, G. & Drake Jr, F. L. Python (Centrum voor Wiskunde en Informatica
Amsterdam, 1995).

48. R Core Team. R: A Language and Environment for Statistical Computing. https://
www.R-project.org/ (2021).

49. Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with
python. in 9th Python in Science Conference (Scipy 2010, 2010).

50. Vink, R. et al. pola-rs/polars: Python Polars 0.19.14. (Zenodo, 2023) https://doi.org/
10.5281/zenodo.10150696.

51. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841–842 (2010).

52. Dale, R. K., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a flexible Python library for
manipulating genomic datasets and annotations. Bioinformatcs 27, 3423–3424
(2011).

53. McGinnis, W. D., Siu, C., S, A. & Huang, H. Category encoders: a scikit-learn-contrib
package of transformers for encoding categorical data. J. Open Source Softw. 3,
501 (2018).

54. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

55. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining 785–794 https://doi.org/10.1145/2939672.2939785 (2016).

56. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions.
in Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.)
4765–4774 (Curran Associates, Inc., 2017).

57. The pandas development team. pandas-dev/pandas: Pandas. v1.5.3 (Zenodo,
2023) https://doi.org/10.5281/zenodo.10107975.

58. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
59. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95

(2007).
60. Waskom, M. L. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021

(2021).
61. Kluyver, T. et al. Jupyter Notebooks—A Publishing Format for Reproducible Com-

putational Workflows (eds Loizides, F. & Scmidt, B.) 87–90 (IOS Press, 2016).
62. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
63. Pedersen, T. L. patchwork: The Composer of Plots. https://patchwork.data-

imaginist.com (2023).

ACKNOWLEDGEMENTS
We thank Genetron Health Co. Ltd. (Beijing, China) and BGI-tech Co. Ltd. (Tianjin,
China) for WES assays, and all the laboratories participated in this research. Professor
Dechao Bu and Professor Yi Zhao are from Pervasive Computing Research Center,
Institute of Computing Technology, Chinese Academy of Sciences. We would like to
express the deepest gratitude to them for their guidance on data analysis. This study
was supported by the National Key Research and Development Program of China
2022YFC2406802 and 2023YFC3402503.

AUTHOR CONTRIBUTIONS
Conceptualization: Y.Z., D.W., and R.Z.; Methodology: Y.Z. and D.W.; Resources: R.P.
and Y.H.; Experiments: D.W., Z.Z., and R.P.; Data collection and analysis: Y.Z., D.W., and
Z.Z.; Visualization: Y.Z., D.W., and Y.H.; Writing and review of the manuscript: Y.Z.,
D.W., J.L., and R.Z.; Supervision and project administration: J.L. and R.Z.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41698-024-00504-1.

Correspondence and requests for materials should be addressed to Jinming Li or Rui
Zhang.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Y Zhang et al.

12

npj Precision Oncology (2024)    18 Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1136/jcp-2022-208385
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.5281/zenodo.10150696
https://doi.org/10.5281/zenodo.10150696
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5281/zenodo.10107975
https://patchwork.data-imaginist.com
https://patchwork.data-imaginist.com
https://doi.org/10.1038/s41698-024-00504-1
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Y Zhang et al.

13

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2024)    18 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Enhancing the quality of panel-based tumor mutation burden assessment: a comprehensive study of real-world and in-silico outcomes
	Introduction
	Results
	Methodologies and TMB results of panel�assays
	Relative importance of features
	Assessment of panel�size
	Assessment of mutation detection accuracy
	Assessment of computation�rules
	Assessment of VAF cut-off

	Discussion
	Methods
	Sample�design
	Participating laboratories
	Whole exome sequencing and truth�set
	Genetron WES�assays
	MGI-Tech WES�assays
	Determination of credibility
	Establishment of the truth�set
	TMB calculation

	EQA data analysis
	Dataset
	In silico experiment
	Assessment of feature importance
	Individual factor evaluation and practice recommendations
	Panel�size
	Mutation detection accuracy
	Inclusion and filter of mutations
	VAF cut-off

	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




