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Deep representation learning of tissue metabolome and
computed tomography annotates NSCLC classification and
prognosis
Marc Boubnovski Martell1, Kristofer Linton-Reid1, Sumeet Hindocha2, Mitchell Chen 1, Paula Moreno3,4, Marina Álvarez‐Benito3,5,
Ángel Salvatierra3,5, Richard Lee 2,6, Joram M. Posma 1, Marco A. Calzado3,7✉ and Eric O. Aboagye 1✉

The rich chemical information from tissue metabolomics provides a powerful means to elaborate tissue physiology or tumor
characteristics at cellular and tumor microenvironment levels. However, the process of obtaining such information requires invasive
biopsies, is costly, and can delay clinical patient management. Conversely, computed tomography (CT) is a clinical standard of care
but does not intuitively harbor histological or prognostic information. Furthermore, the ability to embed metabolome information
into CT to subsequently use the learned representation for classification or prognosis has yet to be described. This study develops a
deep learning-based framework -- tissue-metabolomic-radiomic-CT (TMR-CT) by combining 48 paired CT images and tumor/normal
tissue metabolite intensities to generate ten image embeddings to infer metabolite-derived representation from CT alone. In
clinical NSCLC settings, we ascertain whether TMR-CT results in an enhanced feature generation model solving histology
classification/prognosis tasks in an unseen international CT dataset of 742 patients. TMR-CT non-invasively determines histological
classes - adenocarcinoma/squamous cell carcinoma with an F1-score= 0.78 and further asserts patients’ prognosis with a c-
index= 0.72, surpassing the performance of radiomics models and deep learning on single modality CT feature extraction.
Additionally, our work shows the potential to generate informative biology-inspired CT-led features to explore connections
between hard-to-obtain tissue metabolic profiles and routine lesion-derived image data.
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INTRODUCTION
Numerous studies have developed imaging analysis pipelines to
analyze and diagnose lung cancers. Tools such as radiomics have
been helpful in extracting features from CT scans of lung cancer
patients, followed by machine learning models to perform
classification or prognosis tasks1–3. These features quantify the
tumor’s spatial complexity, such as shape, size and intensity
features and are becoming part of a routine investigation in the
literature3. More recently, some studies have attempted to replace
radiomic features with deep learning (DL) features extracted from
convolutional neural networks (CNN) directly on lesions4–7. Of
various CNN architectures, autoencoders are some of the most
widely adopted and aim to find features that allow a model to
reconstruct the original image in a different context4,7,8. In the
context of diagnosing from CT scans, DL methods tend to
outperform traditional radiomics feature extraction and selection
methods9,10.
However, in practice, these features have limited clinical

performance, e.g. classification C-index= 0.65, and the used
framework precludes intuitive biological or clinical interpretabil-
ity11. Current studies generate radiomic features and subsequently
check if they associate with genes, metabolites, proteins and other
biological factors, using for example, gene-set enrichment
analysis12–14. In contrast, our present study develops a framework

for generating features from images that have already learned
specific biological representations of tissue metabolites.
A new and evolving field of computational biology combines

two or more diverse modalities to improve the performance of
each15–17. Gundersen and colleagues demonstrated the feasibility
of developing multimodal pairings of pathology and genomic
profiles to extract deep features from pathology images con-
nected to the genomic profiles of the patient to obtain more
explainability18. Once developed, the corollary of this learned
representation approach, implies that one of the two modalities is
sufficient to represent the other in the absence of both modalities
being present18. Inspired by this approach, we investigate
whether it is possible to generate deep features from hard-to-
obtain tumor and normal tissue metabolome data, on the one
hand, and the more routine CT scan image data on the other.
In characterizing tumors, the choice of metabolomics profiles as

a benchmark is predicated on our recent work that expounds the
use of tumor and adjacent tissue metabolome information in
asserting the classification of histology subtypes, achieving an F1-
score of 0.96, significantly outperforming most published models
from imaging data in the field of lung cancer subtype classification
or prognosis19,20. While the chemical information from tissue
metabolomics is rich, the approach is not routinely used in patient
management due to its invasiveness and analytical complexity21.
Thus, we have developed a pipeline using an autoencoder to
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investigate, for the first time, whether the deep features of CT
image reconstructions linked to chemical information from the
metabolomics of patients will provide sensitive clinical informa-
tion. These deep features extracted from the deep probabilistic
canonical correlation analysis (DPCCA) model were named tissue
metabolomic radiomic computed tomography (TMR-CT). The
model aims to establish a connection between both data
modalities.
The model comprises a two-stage neural network and PCCA.

The neural network part first finds separate embeddings for each
data modality (CT scan, metabolites). These embeddings are
subsequently combined to maximize correlation and minimize
reconstruction loss for both modalities18. The benefit of this
structure is two-fold. First, the deep features captured for each
data view maximize the shared variation. Second, the generative
structure of the model allows cross-data modality imputation. This
is particularly important given the difficulty in obtaining the paired
datasets from both modalities19. We explore the aforementioned
benefit in this manuscript by utilizing the embeddings derived
from CT scans for histology subtype classification and prognosis of
non-small cell lung cancer (NSCLC) patient data. Our approach
achieves an enhanced feature generation model in both tasks
while also providing valuable biological insights. We accomplish
this by employing TMR-CT, which encompasses reconstructed
representations of tissue metabolite types and intensities. This
work demonstrates the potential for the method to enhance the
practitioner’s – radiologist’s, respiratory physician’s, or oncologist’s
– ability to determine histology subtype classification, as well as
prognosis, using algorithms derived from the current work, as
illustrated in Fig. 1.

RESULTS
Datasets
The datasets in our study can be split into three parts, as seen in
Fig. 1 (data source): developing deep features, testing feature
stability, histology classification and prognosis.
The dataset from 48 patients with both tissue and CT scans used

to develop TMR-CT was obtained from the University Hospital
Reina Sofia (UHRS), Spain. The research study was conducted in
accordance with the Helsinki Declaration and was approved by
the Cordoba Clinical Research Ethics Committee, all patients
provided a signed written informed consent for participation in
the study. Paired CT and tissue, obtained from both the tumor and
non-tumor adjacent tissues, were collected from patients with
NSCLC. Tissue samples were stored by the Andalusian Health
Services Biobank, and the metabolomic profiling was performed
under contract by Metabolon19. The patients did not receive any
radiation or chemotherapy treatments before surgical resection,
and the clinicopathological information was obtained prospec-
tively and shown in Table 1. All tissue data were processed as
previously reported19. CT scans were segmented by a board-
certified clinical radiologist (MC).
Metabolite analyses were performed as previously described19.

Samples were extracted by an aqueous methanol extraction
process and analyzed with ultra‐performance liquid chromato-
graphy/tandem mass spectrometry (UPLC/MS/MS; positive mode),
UPLC/MS/MS (negative mode), and GC/MS by Metabolon. Tissue
metabolites were identified by comparison with library entries of
purified standards or recurrent unknown entities. Based on the
literature and KEGG/HMDB databases, metabolites were anno-
tated to one of eight ‘super pathways’ corresponding to their
general metabolic processes (amino acid, lipid, carbohydrate,
nucleotide, peptide, energy, cofactors and vitamins, and xenobio-
tics), and to one of 73 ‘sub pathways’ representing more specific
metabolic pathways or biochemical subclasses; in the aggregate,
851 metabolites were identified through this approach for both

lung adenocarcinoma (AC) and squamous cell carcinoma (SCC)
subtypes, and normal lung tissues19.
To test the stability of the TMR-CT features, we used the open-

sourced RIDER dataset consisting of 32 patients with NSCLC who
underwent two sequential chest CT scans within 15 mins,
employing the same imaging protocols22. In this study, three
radiologists measured the two greatest diameters of each lesion
on both scans obtaining highly reproducible measurements, all
with concordance correlation coefficients (CCC) greater than 0.96.
Thus, this dataset has been shown to be useful in determining the
reproducibility of deep learning features for NSCLC23.
To test how useful TMR-CT is for histology classification and

prognosis prediction, we used four different datasets summarized
in Table 2. To train our models, we used the open-source TCIA
(The Cancer Imaging Archive), from which we selected 203
patients diagnosed with either AC or SCC24. The TCIA was split into
120 for training and validation and 83 for external validation.
Then, to evaluate how well the developed model generalize to
new NSCLC datasets, we used three geographically distinct
datasets from the OCTAPUS-AI study (ClinicalTrials.gov identifier:
NCT04721444) as external test sets (GSTT, Imperial and RMH);
OCTAPUS-AI represents a study from multiple UK cancer centers
(Guy’s and St Thomas’ NHS Foundation Trust, Imperial College
Healthcare NHS Trust and the Royal Marsden NHS Foundation
Trust respectively) collected for the explicit purpose of developing
robust predictive lung cancer algorithms25. As the data were
deidentified, patient consent was not required as per the
respective Health Research Authority and Research Ethics
Committee approvals.

Overview of metabolic profiles for NSCLC
With many more metabolomic features than patients, we first
filtered the metabolomics by only including those profiled in all 48
patients for both tumor and non-tumor adjacent tissue from the
UHRS hospital; this reduced the number of metabolites to 174. The
super pathway of these features is summarized in Fig. 2a, and we
observed a high degree of positive and negative correlation
between several of the features from the tumor tissue samples, as
shown in Fig. 2b.
Despite the large number of metabolomic features compared to

our sample size, we did not need to perform feature reduction, as
principal component analysis (PCA) is known to be robust to
correlated features26. Furthermore, we reasoned that when
incorporating the metabolomics feature into the DPCCA model,
we would perform data augmentation as specified in “Pre-
processing data for training and testing DPCCA” to mitigate
overfitting.
We were unable to use permutation importance to identify the

most important metabolomic features due to feature collinearity
phenomenon; permuting any single feature would have little
effect on the random forest (RF) performance. As an alternative,
we performed hierarchical clustering on the Pearson rank-order
correlation and chose a single feature from every cluster, as
suggested by Rosato and co-workers in a systems biology-
enhanced analytical framework for metabolomics data27. This
approach allowed us to reduce the number of features to six
metabolomics (1,5-anhydroglutocitol (1,5-AG), 1-arachidonoylgly-
cerophosphoethanol-amine*, 1-stearoylcerol (1-monostearin), 3-
hydroxybutyrate(BHBA), 3-phosphogylcerate and alanine) while
still maintaining the same performance (F1-score of 1) in
discriminating AC from SCC tissue.

Ordinarily metabolites discriminate histology subtypes but
are unconnected to radiomic features
We investigated the data structure of the metabolomic profiles
obtained from 48 tumor and non-tumor tissue samples in relation
to the radiomic features from CT scans. For each CT scan, we
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extracted 438 radiomic features using the TextLab 2.0 software
related to shape, size, intensity, and wavelet decomposition1. After
pairing metabolomic and radiomic features for the 48 samples, we
compared the predictive power and connection between both
modalities. To determine the predictive power of both modalities,
we examined 2-dimensional PCA with all variables. We found that
the metabolomics provided more informative predictions of tissue

subtypes compared to CT radiomics Fig. 3a–c. Determining the
most important metabolomic features, proved challenging as
described in “Overview of Metabolic Profiles for NSCLC” and we
used hierarchical clustering based on the Pearson rank-order
correlation.
Due to the large number of radiomic features, it is common

practice to perform a feature reduction step prior to model

Fig. 1 Study workflow. a Dataset collection for generating deep features, evaluating feature stability, histology subtype classification and
prognosis. b The DPCCA model is used to find a shared latent space between the CT scans and metabolomics. An enlarged version of this
model is shown, with the purple box highlighting the section responsible for generating TMR-CT features. In this model, Xa, Xb is the original
paired image and metabolomics; from these, we create ya,yb image and metabolomics embeddings, respectively. The PCCA model then
combines them into za,zab,zb latent variables. The latent variables za,zb capture view-specific variation while zab captures the covariance. From
the latent variables, we use a generative process of the model-sampling from the low dimension PCCA to reconstruct image and

metabolomics embeddings ŷa; ŷb . Each embedding ŷa; ŷb is then decoded to produce the X̂
a
; X̂

b
using view-specific decoders. During

implementation, when we only have the CT image, we extract the learned representation ya, which we have defined as the TMR-CT features.
c Convolutional neural networks within the purple box were used to generate TMR-CT features on external datasets and to test the stability of
the features using the RIDER dataset. d TMR-CT features are utilized for histology subtype classification, with random forest (RF)-based
approaches displayed, as they exhibited superior performance in both tasks.
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building. While there is no established set way, various task-
dependent strategies have been proposed28. For comparison, we
only retained features with an intra-class-correlation coefficient
(ICC) greater than 0.75, resulting in 438 features29.
To investigate the connection between the two sets of features

within the tumor metabolomics and imaging datasets, we
conducted a Pearson correlation analysis between the radiomics
and the top ten metabolomics features. A heatmap of the data is
shown in Fig. 3d. With a maximum absolute correlation coefficient
of 0.45 and a mean correlation of 0.02, the results suggested a
weak correlation between the two data modalities and techni-
ques. Consequently, traditional canonical correlation analysis
might be inappropriate.

The DPCCA model can be trained on CT scans and
metabolomics to define TMR-CT
DPCCA was trained to expound the shared latent space between
metabolomics and CT scan data. To evaluate the performance of
DPCCA, we assessed the following. Firstly, we investigated if our
model could reconstruct both modalities from the shared latent
space. Thus, we examined the reconstructed CT slices and the
metabolomic covariance matrix on the held-out test dataset. As
seen in Fig. 4, DPCCA successfully reconstructed both views. As
enshrined in a similar inference framework by Gundersen and co-
workers for gene expression and latent pathology space18, we
wanted to verify that our end-to-end model, composed of a neural
network and DPCCA, makes use of both components. To test this,
we computed the expected complete negative log-likelihood on
the held-out dataset. A limitation of our work relates to the
restricted training sample size, which could lead to overfitting
when using DPCCA for training. As shown in Supplementary Fig. 1,
the loss function of the validation set decreased during training
for two modalities similar to those observed in a previously
published study that reported DPCCA. As a baseline, we compared
its performance to how well the image component of the DPCCA
image autoencoder can reconstruct the image modality. As
expected, and noted in an earlier study, the single modality is
faster to train and has smaller reconstruction loss than the DPCCA
which aims to reconstruct both views18.
Tumor size, CT scan thickness, and manufacturer can impact the

outcomes. Principal component analysis (explained variance)
outputs of TMR-CT, to assess congruence of data from TNM8
stage and CT scan thickness are illustrated in Supplementary Figs.
2 and 3, and show that these variables have no impact on the
TMR-CT. We also examined the correlation between tumor size
and the TMR-CT features and found that the maximum absolute
correlation was weak (0.32, p= 0.03).

Table 2. Patient demographics and treatment variables in the three external datasets used for histology classification and prognosis (for age and
radiotherapy dosage, we show the median value together with the IQR in brackets).

Train and
Validation

External test

TCIA (n= 203) GSTT (n= 128) ICHT (n= 101) RMH (n= 310) p-value

Characteristic AC SCC AC SCC AC SCC AC SCC <0.001

Patients 152 51 67 61 49 52 189 121

Age (IQR) 68 (±15) 71 (±14) 70 (±15) 73 (±11) 71 (±14) 72 (±11) 74 (±17) 76 (±12)

Gender Male 32 112 36 39 27 33 83 82 <0.001

Female 19 40 31 22 22 19 106 39

CT type Contrast 29 23 29 31 55 42

non-contrast 38 37 20 21 134 79

Dosage Biologically effective dosage, Gy 77 (±39) 77 (±35) 70 (±9) 70 (±9) 77 (±39) 72 (±23)

End result Survival days 583 492 864 760 895 867.7 834 694 0.35

Recorded deaths 45 139 32 40 26 42 104 79 0.22

Treatment Conventional RT only 10 19 22 29 31 31

SBRT 29 17 0 0 90 31

Sequential chemoRT 10 11 9 9 37 37

Concurrent chemoRT 18 14 18 14 31 18

TNM8 Overall Stage 1 32 23 10 8 89 36

2 10 9 13 12 22 22

3 25 29 26 32 78 63

Slice thickness 2 0 0 0 0 172 114

2.5 67 61 0 0 17 7

3 0 0 49 52 0 0

Table 1. Patient demographics in the dataset from University Hospital
Reina Sofia, Spain, with joint CT and metabolomics used for
developing TMR-CT.

(n= 48)

Characteristics AC† SCC† p-value

Patients 22 26

Age 61.7 (±16.9) 70.3 (±7.3) 0.27

Gender Male 16 26 0.006

Female 6 0

TNM8 Overall stage 1 18 17 0.53

2 3 7

3 1 2

†AC adenocarcinoma of the lung, SCC squamous cell carcinoma of the lung.
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Fig. 3 investigating overlap of metabolomics and radiomics data structures. a Two-dimensional PCA of metabolomic features from UHRS
dataset. b Two-dimensional PCA of radiomic features from UHRS dataset. c Two-dimensional PCA of radiomic features from a larger TCIA
dataset. d Pearson correlation heatmap between CT radiomic features and six metabolomic features important for classification of histology
subtypes from UHRS dataset.

Fig. 2 Representation of congruent metabolomic information across all patients. a Distribution of metabolites super pathway, which were
present in all patient’s data used in the current study. b Pearson correlation heat map between tumor metabolomics for all patients.
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To gain a good understanding of metabolomic features that are
the focus of the study, we plotted the maximum absolute
correlation between the metabolomic features and the ten TMR-
CTs in Fig. 5a. The two metabolites with the lowest correlation are
2-hydroxyglutarate and urea, with a maximum correlation of 0.14
and 0.16, respectively. The two metabolites with the highest
correlation are sedoheptulose-7-phosphate and uridine, with a
correlation of 0.72 and 0.64, respectively.
It is important to note that the focus of the DPCCA model was

to find a shared latent space and then reconstruct the learned
representation; thus, the ‘metabolomic features’ that the model
focuses on are not necessarily those with the greatest classifica-
tion or prognosis power, but rather those that the model can use
in representing the CT-images. To interpret the influence of
metabolomics on the shared embeddings, we plotted an
unsupervised hierarchical clustering of the TMR-CT correlations
in Fig. 5b, which shows the presence of three clusters with

relevant metabolite super pathway information on the test dataset
of the UHRS.
We see how the three clusters correlate very differently to the

metabolomic features, showing that they complement them-
selves and model different parts of the metabolomic features.
This shows that the DPCCA has achieved the goal of generating
different features that capture the entire metabolomic profile by
through correlation, though the exact biological pathways used
in the correlation is not intuitive. A small subset of metabolites at
the bottom of the map has a low correlation with all three
clusters, suggesting that the DPCCA model could not correctly
identify them in the CT image. The performance of each cluster
on classification and prognosis appears unique; clusters C1 and
C2, while showing opposite correlation values to most metabo-
lites demonstrated similar performance in both histology
classification and prognosis, which C3 performed less well in
both tasks.

Fig. 4 Reconstructing the metabolite-inspired CT scan. To test the quality of our latent space model developed by DPCCA, we examined CT
and metabolomics reconstruction. The images above were obtained from the test data for different patients (Top row). The original
metabolomics expression covariance matrix and random CT slices from test data and (Bottom row) the reconstruction of the CT image of
unseen test dataset when both the original image and metabolites are provided as inputs to the model.

Fig. 5 A description of metabolites emphasized by TMR-CT. a Correlation of performance of the TMR-CT model developed by DPCCA, the
bar plot shows the highest absolute correlation between metabolites and the TMR-CT features; we expand the top ten least correlated
metabolites and the top ten most correlated metabolites in the yellow boxes. b Unsupervised hierarchical clustering of the TMR-CT features
with the metabolomic profile from nodule UHRS identified three distinct subgroups. The blue rectangle contains a summary of the
performance of the distinct cluster for classification and prognosis. The pentose phosphate metabolite sedoheptulose-7-phosphate, an
important source for ribonucleotides and reduced nicotinamide adenine dinucleotide phosphate (NADPH), adenosine, reported in our
previous lung metabolomics publication to be high in tumor tissue are emphasized in both the highly correlated metabolite set (a) and
cluster 2 (b). Other metabolites such as asparagine, an important regulator of cancer cell amino acid homeostasis, anabolic metabolism and
proliferation are emphasized only by the clustering approach19,45,46.
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Reliability and reproducibility of TMR-CT
To assess the stability of our encoder algorithm, we tested it in a
test-retest context using the publicly available dataset, RIDER,
consisting of 32 patients with lung cancer. Each patient under-
went two chest CT thorax scans (within 15min apart) using the
same imaging protocol22. We evaluated the stability of the
encoder by examining the TMR-CT features between the test and
retest scans. Our results demonstrated a high level of stability with
an ICC of 0.86 for TMR-CT showing that our model had been well-
regularized.
To account for inter-reader stability, we adopted an approach of

relocating the input seed points to the center of the tumor. This
aimed to simulate various radiologists annotating the tumor,
which would cause variability between them. In this case, we
showed a high correlation with a Spearman’s rank-order correla-
tion of 0.85 between the TMR-CT, showing strong inter-reader
stability.

Exploiting TMR-CT features from DPCCA for classification and
prognosis of CT scans without metabolomic profiles
We aimed to determine if our latent variables captured meaningful,
held-out biological information such as histology subtype and
overall survival (OS). To have an overview of the information
captured in the shared and view specific embedding space from
the DPCCA model we plotted the PCA of the TMR_CT features in
Fig. 6. Similarly, we plotted the PCA for the CT_emb features in
Supplementary Fig. 4 and observed how the image embeddings
are less informative compared to Fig. 6. However, to get a better
understanding of how these features can be useful in downstream
tasks, we trained separate models and feature selection were
tuned on TCIA data as seen in Fig. 7, to select the best model for
each task. In the case of the radiomics features we also selected the
best feature selection technique. With many radiomic features
(438), the feature selection technique is particularly important to
optimize the model and make it directly comparable to the TMR-CT

Fig. 6 Information content of view-specific and shared embedding space. a TMR-CT (image embeddings space ya) (b) metabolomic
embeddings yb and (c) image and metabolomic shared latent space zab.
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and CT_emb features which both have 10 features respectively.
After performing feature reduction using the techniques showed in
Fig. 7 the number of remaining features ranged from four to
thirteen depending on the feature reduction method. More
specifically the best radiomic models for histology classification
and prognosis used six and eight features, respectively, thus being
the same order of magnitude as TMR-CT features. The features
used in the best feature selection model combination are the
following: six features for histology classification (FD_max_LLH_25-
HUgl, GLRLM_RP_LHL_25HUgl, GLCM_Entrop_HLH_25HUgl,
GLCM_AutoCorrel_LLL_25HUgl, GLCM_invVar_LLL_25HUgl and
FOS_RMS_LLL). The best prognosis model uses eight (SNS_max3d,
FD_max_LLL_25HUgl, FD_max_LLH_25HUgl, GLCM_invVar_25-
HUgl, FOS_RMS_LLL, GLCM_invVar_LLL_25HUgl, GLCM_IDN_LLH_
25HUgl and NGTDM_Coarse_LLL_25HUgl). Where SNS= size and
shape features, FD= fractal dimensions, GLCM=Grey-level co-
occurrence matrix, GLSZM= Grey-level size zone matrix, FOS=
first order statistics, GLRLM=Grey-Level Run Length Matrix,

NGTDM=Neighborhood grey- tone difference matrix, GLCM=
Grey-level co-occurrence matrix).
From Fig. 7, it is evident how RF using TMR-CT features

significantly outperforms the CT_emb and traditional radiomics
features extracted using TextLab 2.0 for histology classification
and prognosis without performing any feature selection. This
finding is important as it shows that the quality of the TMR-CT
features is sufficiently high. Thus, no feature selection is required.
This can be further seen in Tables 3 and 4 where we chose the
best performing feature selection and model, respectively, from
Fig. 7 to report the results on the four external datasets and the
ROC curves are plotted in Supplementary Fig. 5.
The three external test sets of Kaplan Meier curves are shown in

Fig. 8 and demonstrate good separation between high and low-
risk groups with log-rank tests confirming a statistically significant
difference a 5% level in the GSTT and 1% for the ICHT and RMH.
To understand the importance of different features in our best

prognosis model noted in Table 4, we reported the hazard ratio

Fig. 7 Performance of different models developed for classification or prognosis. a F1-score for classification of AC and SCC using TMR-CT
for different classification models. b F1-score for classification of AC and SCC using CT_emb for different classification models. c F1-score for
classification of AC and SCC using radiomic features, with the x-axis being the predictive models and the y-axis corresponding to feature
selection techniques. d C-index for a prognosis for different models using TMR-CT. e C-index for a prognosis for different models using
CT_emb. f C-index using radiomic features, with the x-axis being the prognosis models and the y-axis corresponding to feature selection
techniques.

Table 3. F1-score of RF for classification of AC and SCC reported using the best feature selection and machine learning model ± standard error.

TCIA ext val RMH (n= 320) GSTT (n= 128) ICHT (n= 101)

Features F1-score P-value F1-score P-value F1-score P-value F1-score P-value

Radiomics 0.63 ± 0.02 0.15 0.58 ± 0.04 0.32 0.59 ± 0.03 0.19 0.57 ± 0.02 0.20

CT_emb 0.60 ± 0.04 0.18 0.54 ± 0.05 0.33 0.53 ± 0.06 0.17 0.56 ± 0.05 0.30

TMR-CT 0.84 ± 0.03 0.09 0.78 ± 0.02 0.21 0.77 ± 0.03 0.16 0.79 ± 0.03 0.23

TCIA, RMH, GSTT and ICHT are The Cancer Imaging Archive, Royal Marsden Hospital (UK), Guy’s and St Thomas’ Hospital (UK) and Imperial College Healthcare
Trust (UK), respectively.
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that our model calculated together with the P-value for the log-
rank test for each feature modality in Table 5. We observe in a
multivariable model that TMR-CT exhibited the highest hazard
values in both the validation and external test datasets showing
the high importance of TMR-CT for prognosis. This finding is
notably more significant than clinical features, including age,
gender, N-stage and gross tumor volume (GTV).

DISCUSSION
In this study, we have shown that a deep learning framework -
DPCCA - can model a connection between CT scans of lung
nodules and their tissue metabolomics profiles against the
premise that certain metabolites and/or their intensities, repre-
senting tumor growth and/or tumor microenvironment factors
maximally co-vary together, linearly or non-linearly, with CT image
features. Furthermore, we have shown the usefulness of such
models, embodied within TMR-CT, for histology subtype classifica-
tion and prognosis of NSCLC patients non-invasively, thus
asserting clinical relevance. Notably, the DPCCA-generated
learned representations could be used for downstream classifica-
tion or prognosis tasks even when we only have CT scans

available. Such metabolomic profile-correlated features are more
interpretable biologically. This methodology would be useful in
guiding treatment decisions, particularly in the context of patients
that are unfit for biopsy.
The generated metabolite pairs are not inherently intuitive. For

example, the most important metabolites (in our DPCCA model)
differ from our previously published top metabolites from
metabolomics-only analysis, in the study by Moreno et al.
(2018). One of the main reasons for this is that, in the
metabolomics-only study, the top metabolites are chosen as
those most discriminative between tumor and non-tumor cases
for AC and SCC separately, obtaining 20 different metabolites19. In
the current study, however, the top ten metabolites chosen are
those most correlated with our TMR-CT, whose purpose is to
reconstruct the two data modalities as a composite phenotype of
both the CT features of the lesion and the metabolomics profile.
Regardless, the most correlated metabolites appear to regulate
cell growth and membrane activity through glycolysis, pentose-
phosphate, DNA synthesis and fatty acid metabolism.
A fundamental point of consideration in this research is

whether optimization of CT features, detached from metabolomics
(using a radiomics pipeline; current state of the art in clinical

Table 4. C-index of Random Survival Forest for prognosis of NSCLC reported using the best feature selection and machine learning
model ± standard error.

TCIA ext val RMH (n= 320) GSTT (n= 128) ICHT (n= 101)

Features C-index P-value C-index P-value C-index P-value C-index P-value

Radiomics 0.62 ± 0.04 0.05 0.58 ± 0.05 0.04 0.61 ± 0.04 0.01 0.59 ± 0.06 0.001

CT_emb 0.57 ± 0.06 0.42 0.53 ± 0.07 0.89 0.52 ± 0.06 0.96 0.54 ± 0.06 0.54

TMR-CT 0.74 ± 0.03 0.30 0.72 ± 0.04 0.73 0.71 ± 0.05 0.84 0.71 ± 0.04 0.34

Radiomics + clinical 0.64 ± 0.05 0.20 0.59 ± 0.06 0.06 0.62 ± 0.06 0.92 0.58 ± 0.07 0.03

CT_emb + clinical 0.59 ± 0.05 0.45 0.55 ± 0.06 0.76 0.54 ± 0.07 0.92 0.55 ± 0.07 0.63

TMR-CT + clinical 0.78 ± 0.06 0.05 0.73 ± 0.06 0.3 0.71 ± 0.04 0.03 0.71 ± 0.05 0.12

TCIA, RMH, GSTT and ICHT are The Cancer Imaging Archive, Royal Marsden Hospital (UK), Guy’s and St Thomas’ Hospital (UK) and Imperial College Healthcare
Trust (UK), respectively.
The prognosis was determined using the models alone or in a multivariable model with clinical features.

Fig. 8 Estimating percent survival over time - Kaplan Meier plots - for dicotomised low and high-risk groups. Dichotomized predicted
probabilities using k-means clustering of the RSF with TMR-CT on the external validation dataset: (a) ICHT, (b) GSTT and (c) RMH (P-values are
from log-rank tests. Plots demonstrate good separation between high and low risk groups with log-rank tests confirming the statistical
significance of 5% in the GSTT and 1% in ICHT and RMH.
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setting) compares favourably with TMR-CT (generated by the
DPPCA pipeline). Thus, we compared feature optimization
employing a matrix of combinatorial feature reduction and
machine learning model for prediction, detached from metabo-
lomics information, with the DPPCA pipeline informed by tissue
metabolomics. When comparing the two machine learning
pipelines - TMR-CT versus radiomics optimised feature combina-
tions - we observed that TMR-CT performed significantly better in
two clinically distinct tasks: histology classification and prognosis.
This suggests that TMR-CT optimized vector contains more
relevant features than radiomics vectors, even though there are
significantly fewer features in the former. This difference was
observed regardless of whether TMR-CT was used alone or
combined with patient information, meaning that TMR-CT exhibits
overall superior performance compared to radiomic features for
NSCLC histology classification and prognosis determination.
To our knowledge, over 16 different models have attempted to

integrate multiomics using deep learning to gain a better
understanding of the complex biological process of cancer17.
However, most of these models aim to fuse multiomics of the
same modality, making it a significantly easier process relying on
the availability of both data modalities during the test time.
Various studies have successfully integrated CT features with other
biomarkers for lung cancer diagnosis and prognosis; however, a
direct comparison is challenging due to differences in the
datasets30,31. The said methods only work when both modalities
are present32. Thus, the benefit of using DPCCA over other models
is that it can be applied during test time even without information
about the tissue metabolomic profiles (with only the CT available).
We show that TMR-CT derived from DPCCA was superior to
conventional radiomics for histology classification and prognosis
in patients who only had the CT scan available.
Our current study exhibits a number of limitations. First, a

potential limitation of the study is the sample size used for
training. Of note, however, the DPCCA is particularly attractive for
medical applications with a small sample size but a large feature
space, as it explicitly models uncertainty18. In that study, DPCCA
utilized two inputs: gene expression (18,659 features) and 2D
tissue histology images of size (128 × 128) with three colour
channels, so a total of 49,152 features. In our study, we used the
174 metabolomic features that were consistently present in all
patients and CT images of size 32 × 32 × 32 with one colour
channel and a total of 32,768 features. Although our dataset was
slightly smaller with fewer features, this was compensated
through data augmentations techniques, ultimately enabling our
model to perform efficiently. Secondly, regardless of the aim of
the approach is to permit future use of the more routine method
(in this case CT), it is clear that we only validated the performance
of the TMR-CT on external CT datasets but not metabolomics. In
theory, one could inversely predict the values of metabolomics
counterpart from CT data. This generative aspect of the model
could be investigated when independent test tissue metabolo-
mics data become available Future analysis on this independent
cohort with paired CT and metabolomics data would be required

to validate the stability of the correlations identified in our study.
Lastly, a wider range of histology could have been used. In our
study, we only examined patients with AC and SCC, but our
technique could easily be extended to incorporate other lung
cancer histology with minimal adaptation when those data
become available.
In the future, two primary directions could be explored by

researchers. The first is to validate the TMR-CT features on an
external dataset of paired CT scans and metabolomics features.
The second is to increase the number of patients in the paired CT
and metabolomics dataset to contain a larger number of patients
that are more representative of the wider population by including
small cell lung cancer patients. Unfortunately, such datasets don’t
currently exist, so we could not incorporate these ideas into our
study. Nonetheless, by showcasing the efficacy of a niche
algorithm in a specific context, we establish a foundation for
future studies that aim to extend its performance and validation to
diverse settings. By conducting a prospective study that combines
TMR-CT, radiomics, and body fluid metabolomic analysis, it may be
possible to improve prognostic capabilities when tissue metabo-
lomics is unavailable. This is particularly relevant for patients who
are deemed unsuitable for surgery or face obstacles in accessing
tumor material for histology classification and prognostication
prior to making a decision about surgery.
Our study investigates the feasibility of using deep learning to

combine patients’ paired CT and steady-state metabolomics
information to find a shared representation that can allow the
reconstruction of both modalities. One benefit of using our two-
step deep learning model is the ability to independently extract
deep features from a single modality without needing another
modality. This is of specific importance in the clinical setting,
where it is often the case that a single data modality is more
readily accessible than the other. Enhancing the features obtained
from lesions on CT images, we are improving the usefulness of CT
scans, which are more readily available when evaluating NSCLC
patients for early diagnosis and tumor prognostication33.
In summary, we were able to show that there is a connection

between the metabolomic and CT features of NSCLCs. Further-
more, it is possible to exploit the learned representation within CT
images of patients with NSCLC that co-vary with tissue
metabolomic profiles and demonstrate their usefulness clinically
for histology subtype classification and prognosis on external
datasets when only a CT scan is present.

METHODS
Pre-processing of CT images
All image pre-processing was done using TorchIO, a package
allowing for effective pre-processing of CT images34. To ensure
comparability, the CT scans from all datasets were resampled to
isotropic voxels of 1 × 1 × 1mm. This was performed using linear
and nearest neighbor interpolation for the image and segmenta-
tion, respectively35.

Table 5. Hazard Ratio (HR) and P-values for Permutation-Variable Importance Random Forest – Random Survival Forest (PVIRF-RSF) Model combining
Clinical and TMR-CT ± standard error.

TCIA ext val GSTT ICHT RMH

Features HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

TMR-CT 38.0 (30.3–45.7) >0.00001 17.1 (8.7–25.5) 0.04 15.9 (10.2–23.7) >0.01 24.4 (17.3–31.5) >0.001

Age 1.24 (0.83–1.65) 0.3 2.14 (1.63–2.65) 0.73 1.04 (0.66–1.41) 0.84 1.15 (0.92–1.38) 0.34

Gender 1.53 (1.12–1.94) 0.2 3.20 (2.91–3.49) 0.06 1.05 (0.58–1.53) 0.92 3.02 (2.21–3.83) 0.03

N-Stage - - 1.16 (0.89–1.43) 0.12 2.33 (1.76–2.90) 0.03 4.30 (2.93–5.67) 0.12

GTV - - 1.04 (0.52–1.56) 0.65 1.00 (0.46–1.64) 0.5 1.15 (0.71–1.59) 1.14
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Pre-processing data for training and testing DPCCA
We had 48 paired samples from the UHRS, each with two data
views: CT scans and the metabolomic profiles of tumor/normal
tissue. We performed a stratified split of the dataset into 32 paired
samples for training, validation and 16 paired samples for testing
whilst keeping the balance of AC/SCC consistent across the splits.
To ensure that the model was clinically relevant and matched

the target population as much as possible we further considered
the significance of the representative test data to ensure that our
predictions hold clinical relevance. While assessing clinically-
relevant predictions, we considered that the test data should
match the target population rather than be a random subset of
the same data pool as the train data36. To achieve this, we
employed a multi-step stratification process that extended
beyond the histological subtype: Split the dataset by histology,
TNM8 Stage (due to clinical significance of staging), then gender
(to account for potential variation in disease presentation between
gender), and then age.
The stratification order was chosen based on its importance. We

rationalized that ensuring the model could represent all stages
and the frequency of occurrences (fewer females) was important,
as such implemented this order in the test set. The following pre-
processing steps were implemented on the training and testing
data split separately.
Given the 3D segmentations, we calculated the center of mass

(COM) and bounding box of the tumor. A 3D isotropic patch of
50 × 50 × 50, around the COM of tumor volume, was extracted,
resulting in 48 3D tumor patches. We then created 3D patches of
32 × 32 × 32 randomly and ensuring that at least 65% of tumor
was captured by the bounding box. The 3D patches were
normalized to a range of 0–1 and lower upper boing of −1024
and 302135.
For the metabolomics features, we only included those that

were profiled in all patients for both tumor and non-tumor
adjacent tissue, such that we had a total of 174 metabolites. The
reason for this was to increase the reproducibility of the chosen
features. Subsequently, we normalized the values of the
metabolomic features to have a mean of 0 and a standard
deviation of 1.
Data augmentation makes it possible to increase the data

available for training without actually collecting new samples by
applying a range of techniques. In this study, an augmentation
factor of 186,624 was applied to the patches resulting in a training
dataset of approximately nine million 3D patches. These
augmentations were chosen based on other similar studies and
consisted of ±18 pixels in three axes, random rotations at 90°
intervals along the longitudinal axes, and random flipping along
three axes35. The augmentations were applied in real-time during
training, and simultaneously, we applied Gaussian noise with a
standard deviation of 0.1 to the image patches and metabolomic
features35. No augmentation was applied during validation or
testing.

Building DPCCA model
The DPCCA model is a deep generative model that fits the
probabilistic canonical correlation analysis (PCCA) into two
autoencoders, one for the CT image and the other for
metabolomic. Figure 1 shows a detailed image of this model
and where it fits the PCCA to the embeddings of two
autoencoders. The code for this model was adapted from
https://github.com/gwgundersen/dpcca. Specifically, we opti-
mized the image autoencoder to enable studies with 3D images
instead of 2D and used the 3D-DCGAN developed specifically for
medical images37,38. The model was trained end-to-end using the
mean squared error (MSE) for regression model fitting of paired CT
image and metabolomics data; and also, for the reconstruction of

the loss function for the modalities separately. The following
section details the DPCCA method and its adaptation to our task.
Given a paired sample (xa, xb), the linear and convolution

encoder embedded the CT images and metabolomics, respec-
tively. These embedded vectors ya and yb are then fitted by the
PCCA and incorporate an l1 penalty on the PCCA metabolomic
weights, thus, encouraging sparsity in the metabolomic profiles
and resulting in shared and view-specific latent variables z= [zab

za zb]T.
Mathematically the PCCA can be expressed by Eq. 1 as follows:

zab � N Ok ;IKð Þ
za; zb � N Ok ;IKð Þ

ya � N Λazab þ Baza;Ψa
� �

yb � N Λbzab þ Bbzb;Ψb
� �

(1)

Where Bj 2 Rpj ´ k , Λj 2 Rpj ´ k and Ψj 2 Rpj ´ pj . This can be
reformulated as a factor analysis problem18, thus, suggesting that
inference in the PCCA can be performed using expectation-
maximization (EM), where the parameters are updated using the
following tilling as seen in Eq. 2:

Λ� ¼ P
i yiEzjyi zjyi½ �T
� �

Ezjyi zz
Tjyi½ �� ��1

Ψ� ¼ P
i
1
n diag yiy

T
i � Λ�Ezjyi zjyi½ �yiT

� � (2)

Once the shared and view-specific latent variables z ¼ ½zabzazb�T
are derived, the next step is to use the reparameterization trick to
sample from the PCCA representation ŷj�NðΛj�zab þ Bj

�
zj;Ψj� Þ

and obtain embedding samples ŷj . This step ensures that the
Monte Carlo estimate of the expectation is distinct with respect to
the encoder parameters and, thus, the model can be trained in an
end-to-end fashion by defining the following loss function in Eq. 3:

L¼ 1
n

Xn

i¼1

jjx̂ai � xai jj22 þ jjx̂bi � xbi jj
2

2

� �
þ γðjjΛbjj1 þ jjΛabjj1Þ (3)

In the formulation described in this section, there are five
hyperparameters (pa,pb,kab,ka and kb) determining the dimensions
of the modality embeddings and latent space. In this case: y 2 Rp

such that p= pa+ pb, where pa represents the dimensionality of
CT embedding, and pb represents the dimensionality of the
metabolomics embedding. The latent space is z 2 Rk where=
kab+ ka+ kb, Λ 2 Rp ´ k and Ψ 2 Rp ´ p . To identify the best set of
hyperparameters we did a grid search p 2 f5; 10; 25; 50g and k
2 2; 3; 5; 10f g such that k ≤ p was always satisfied and we selected
the smallest number that resulted in a high image and
metabolomics reconstruction. This was found to be pa= pb= 10
and kab= ka= kb= 3, such that p= 20 and k= 9, through the loss
function defined in Eq. 3 and the reconstruction of both
modalities as seen in Fig. 4.

Building image autoencoder
The image autoencoder was based on the 3D-DCGAN similar to
the image autoencoder in the DPCCA to make them directly
comparable and trained using the mean squared error loss
function to reconstruct the image. The same image preprocessing
techniques described in “Pre-processing data for training and
testing DPCCA” were used for this section and we performed
image augmentation. A grid search was performed to identify the
best hyperparameter, specifically the hyperparameter determining
the size of the image embedding pa 2 f5; 10; 25; 50g. This was
found to be pa= 10, through the mean squared error loss
function.
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Analysis of dataset for testing image embeddings for
histology classification and survival
For this section, we trained our model on the TCIA cohort of
(n= 203) and then performed the test on the test section of TCIA
and three different datasets from the (n= 320) Royal Marsden
Hospital (RMH), (n= 128) Guy’s and St Thomas’ Hospital (GSTT)
and (n= 101) Imperial College Healthcare Trust (ICHT)25. We first
filtered the datasets only to have patients with AC and SCC
histology.
As a baseline for feature quality, we used TextLab 2.0 software

to extract 438 features from the lesion. The methods in Table 6
were applied to features extracted using the DPCCA, image
autoencoder and TextLab 2.0, the latter for radiomics analysis.
There exists a wide range of feature selection and machine

learning techniques. Identifying the feature selection and machine
learning algorithm is task-dependent and critical when developing
clinically applicable models. Therefore, we combined different
feature reduction techniques for the classification and survival
tasks39. To find the best combination, we performed a ten-fold
cross-validation using the training split of the TCIA data. Then, we
used the average accuracy to select the best feature reduction and
machine learning algorithms. The acronyms of each feature
section, classification and survival method are defined in Table 6.
For the histology classification task on radiomic features, we

selected 15 feature selection methods and combined them with
12 machine-learning classifiers based on previous related
research39,40. The filter selection methods consisted of univariate
and multivariate filter methods, which are classifier-independent

and embedded methods such as penalty and tree-based methods,
which incorporated the feature selection in the training process.
For the classification task, we selected a broad range of methods
as suggested by previous studies. We used a cross-combination
strategy to select the method with the best mean F1 score across
the ten-fold validation41. The feature selection and classification
task were performed using the scikit-learn package in Python42.
In the survival analysis, we used a different set of feature

selection methods and models as suggested by the literature and
included the Cox proportional hazard model as a benchmark43.
These specifics are capable of handling censored, heterogenous
and high-dimensional data. The machine learning algorithms
selected in this section can be divided into four categories:
penalized Cox regression, boosted Cox regression (GLM), boosted
based on trees and random forests. To select the best combina-
tion, we used a cross combination strategy to select the method
with the best mean C-index across the ten-fold validation. The
feature selection and classification task were performed using the
‘survival’ package in R44.
The best feature selection and machine learning model

combination were then selected to perform histology subtype
classification and survival analysis using the TCIA validation cohort
and the three external datasets, as reported in Tables 3 and 4.

Ethics
This study used retrospective human data and complied with all
relevant ethical regulation except where this was waived.
Specifically three types of retrospective data were used: (a)

Table 6. Summary of the feature selection and prediction methods used, if (*) method is used for classification, (**) used for survival, otherwise
method is used for both classification and survival.

Acronym Feature selection methods Acronym Prediction methods

VAR* Variance GNB* Gaussian naïve baye

RELF* Relief MNB* MultinomiIive bayes

MI* Mutual information BNB* Bernoulli naïve bayes

mRMR* Minimum redundancy maximum relevance ensemble KNN* K-nearest neighbourhood

ETE* Extra tree ensemble RF* Random forest

GBDT* Gradient boosting decision tree BAG* Bagging

TSQ* T-test score DT* Decision tree

CHSQ* Chi-square score GBDT* Gradient boosting decision tree

EN* Elastic net Adaboost* Adaptive boosting

LASSO* Least absolute shrinkage and selection operator XGB* Xgboost

WLCX* Wilcoxon LDA* Linear discriminant analysis

L1-SVM* L1- based linear support vector machine LGR* Logistic regression

L1-LGR* L1 -based logistic regression Linear-SVM* Linear support vector machine

JMIM** Joint mutual information maximisation RBF-SVM* Radial basis function support vector machine

RFVH** Random forest with variable hunting MLPC* Multi-layer perceptron

RFVH -IMP** Random forest with variable hunting and Gini impurity corrected
variable importance

BGLM_CoxPH** Boosting gradient linear models

RF* Random forest variable hunting with maximal depth BGLM_Cindex** Boosting gradient linear models

Spearman** Spearman correlation BGLM_Weibull** Boosting gradient linear models

Person** Pearson correlation BT_CoxPH** Boosting trees

Kendall** Kendall rank correlation BT_Weibull** Boosting trees

Random** Random (null hypothesis) Cox_Lasso** Cox lasso

Cox_Net** Cox net

Cox** Cox proportional hazard

RSF** Random survival forest

MSR_RF** Random forest using maximally selected rank
statistics

ET_RF** Random forest with extra trees
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Dataset obtained from the University Hospital Reina Sofia (UHRS),
Spain. The research study was conducted in accordance with the
Helsinki Declaration and was approved by the Cordoba Clinical
Research Ethics Committee; all patients provided a signed written
informed consent for participation in the study. In addition to CT
scans. Correlated tissue Tissue samples were stored by the
Andalusian Health Services Biobank, and the metabolomic
profiling was performed under contract by Metabolon as reported
previously19. (b) OCTAPUS-AI dataset (UK). OCTAPUS-AI represents
a study from multiple UK cancer centers including Guy’s and St
Thomas’ NHS Foundation Trust, Imperial College Healthcare NHS
Trust and the Royal Marsden NHS Foundation Trust, collected for
the explicit purpose of developing robust predictive lung cancer
algorithms as previously reported25. This study was approved by
the UK Health Research Authority (reference number: 20/HRA/
3051); ClinicalTrials.gov identifier, NCT04721444. As the data used
in the study were de-identified, patient consent was not required
for this type of study and as per the respective Health Research
Authority and Research Ethics Council approvals. (c) TCIA dataset.
The Cancer Imaging Archive (TCIA) provides the cancer research
community with an open-source repository of de-identified and
highly curated radiology and histopathology imaging data
(www.cancerimagingarchive.net). In keeping with TCIA’s grant-
funded mandate from United States National Institute of Health,
the dataset is considered de-identified information as defined by
the Health Insurance Portability and Accountability Act of 1996, as
amended (“HIPAA”). Institutional Review Board approval for TCIA
data was not required for use of the dataset.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The TCIA data is publicly available from https://wiki.cancerimagingarchive.net/
display/Public/NSCLC-Radiomics. The UHRS dataset is not publicly available but can
be request to the corresponding authors. The (GSTT, Imperial and RMH). data are not
publicly available but can be requested to the corresponding authors and/or
OCTAPUS-AI.
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