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Immunological subtyping of salivary gland cancer identifies
histological origin-specific tumor immune microenvironment
Jiyun Hong1, Eunwoo Choi1, Dahee Kim2, Mi-Kyoung Seo1, Hyundeok Kang1, BeumJin Park1 and Sangwoo Kim 1✉

Gene expression analysis enhances proper cancer subtyping, a better understanding of the molecular characteristics of cancer, and
strategies for precision medicine. However, salivary gland cancer (SGC) subtyping remains largely unexplored because of its rarity
and diverse histopathological and immunological characteristics. This study aimed to determine whether the histological origin and
immunological characteristics of SGC subtypes are intrinsic tumor immunity factors. We performed immune profiling of 94 RNA-seq
of SGC tissues and found that the SGCs that originated from the excretory duct (ED), such as the salivary duct and mucoepidermoid
carcinomas, exhibit higher immunity than those from the intercalated duct (ID), such as the adenoid cystic and myoepithelial
carcinomas, based on the computationally predicted immune score (p < 0.001), immune cell enrichment in the tumor immune
microenvironment (TIME) (p < 0.001), T-cell receptor diversity (p < 0.001), and expression of signal I (major histocompatibility
complex, MHC, p < 0.001) and signal II (co-stimulatory, p < 0.001 and co-inhibitory, p < 0.001) genes. Further analysis revealed that
tolerogenic dendritic cell-induced dysfunctional T-cell populations and T-cell exclusion in the TIME are the major immune evasive
mechanisms of the ED-and ID-derived SGCs, respectively.
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INTRODUCTION
Distinct molecular and clinical characteristics of different subtypes
of cancers, including breast1, colorectal2, and gastric3 cancers can
be determined by transcriptome analysis. However, salivary gland
cancer (SGC) is largely unexplored owing to its low prevalence and
heterogenic histopathological and genetic features. Based on the
conventional classification systems by anatomical location, cell
types, and molecular markers, there are currently at least 24
malignant SGC subtypes4. However, it is widely acknowledged
that this classification may not encompass the complete spectrum
of biological differences within these cancers, often leading to
misclassification5. Moreover, considering subtype-specific geno-
mic and transcriptomic profiling, tailored treatments optimized for
each subtype are essential6,7.
Recent clinical trials have reported low response rates of SGCs

to immune checkpoint inhibitors: confirmed objective response to
pembrolizumab was 12%8 and the overall response rate to
nivolumab was 4%9. Recently, studies on SGC molecular
stratification are emerging, including a recent investigation of
the genomic and immunological characteristics of the three major
SGC types: adenoid cystic (ACC), myoepithelial (MECA), and
salivary duct carcinomas (SDC) to suggest a precise immunother-
apeutic strategy10. Currently, subtyping is underway, depending
on the immunogenic and proteogenomic profiles within each
subtype, with potential targets being suggested11–13. Similar to
other cancers, such extensive studies enable an intrinsic sub-
grouping of SGC based on their molecular characteristics and that
of their normal cell counterpart14 and the understanding of the
molecular and morphological complexity of the salivary glands.
For example, two types of reserve cells: intercalated duct (ID) and
excretory duct (ED) cells can give rise to different tumors15.
In this study, we aimed to perform immune profiling of four

major SGC subtypes: ACC, MECA, SDC, and mucoepidermoid
carcinomas (MEC) using 94 RNA-seq samples from tumor tissues.

Based on computational predictions of immunogenicity, active
immune pathways, immune cell compositions, and the tumor
immune microenvironment (TIME), supported with a comprehen-
sive pathway-level investigation, we aimed to determine SGCs
subtype-specific immunological characteristics and their associa-
tion with the histological cell-of-origin involved in immune
suppression mechanisms for efficient targeting off immunother-
apy against SGCs.

RESULTS
Transcriptomic subgrouping of the four SGC subtypes
Transcriptomic subgrouping of the four SGC subtypes revealed
distinct patterns. Through a transcriptomic analysis of 94 RNA-seq
samples representing four major types of SGCs (18 ACC, 40 MECA,
16 SDC, and 20 MEC; Fig. 1), PCA-based transcriptomic similarity
identified two major subgroups: SDC and MEC (Group 1) and ACC
and MECA (Group 2) (Fig. 1a). Group 1 SGC subtypes largely
shared an overall transcriptomic profile, whereas Group 2 SGC
subtypes overlapped partially. Specifically, MECA showed larger
transcriptomic variance, implying higher intrinsic heterogeneity.
The two groups can be mainly differentiated by their second
principal component (PC2, y-axis of Fig. 1a), whereas the first
principal component (PC1, x-axis of Fig. 1a) was more informative
for determining heterogeneity within a group. Similarly, hierarch-
ical clustering of transcriptomic expression showed that ~92% of
Group 1 was SDC and MEC, whereas ~95% of Group 2 was ACC,
MECA (Fig. 1b). These results suggest the presence of a higher-
level grouping pattern among the SGCs.
Gene-level mapping of the principal components (PC1 and PC2)

revealed the functional factors that contributed to subgroup-
specific characteristics (Fig. 1c). Among the 50 cancer hallmark gene
sets of eight functional categories16, only seven gene signatures in
the immune category (allograft rejection, coagulation, complement,
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interferon alpha response, interferon gamma response, IL-6/JAK/
STAT3 signaling, and inflammatory response) were consistently
distinguish between the two groups when mapped to PC2 (Fig. 1c)
(mean GSVA score= 1.16). PCA-based clustering and immunologi-
cal characteristics are major factors for SGC subtyping.

Immune profiling of the four SGC subtypes
We calculated the overall immunity of the four SGC subtypes
using computational prediction (ESTIMATE17) (Fig. 1d). We found
that the normalized immune scores were highly distinctive among
the two groups (Group 1: SDC= 0.186 and MEC= 0.2 vs. Group 2:
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ACC=−1.479 and MECA=−1.011; Wilcoxon Rank Sum p-value <
0.001). Compared to those of the 33 TCGA pan-cancer datasets,
the immune scores of Group 2 subtypes were the lowest and they
were classified as immune-low cancers. In contrast, the immune
scores of Group 1 subtypes were in the 69th percentile, similar to
that of cancers with potential immunogenicity, including lung
squamous carcinoma18,19 and mesothelioma19,20 (Fig. 1d). SGC
subtypes within subgroups have similar immune scores.
A detailed analysis of the TIME features confirmed the

immunological differences between the two groups (Fig. 1e–i).
ACC and MECA had lower immune infiltration and three T-cell
activity-related (T-cell infiltration, cytolytic activity, and antigen
presentation machinery) scores than SDC and MEC (Wilcoxon Rank
Sum p-value < 0.0001); however, the scores were not different
within the subgroups (Fig. 1e–h). Only the angiogenesis score
further differentiated between ACC and MECA (Fig. 1i). Moreover,
correlation analysis showed that T-cell population and cytolytic
activity are positively correlated and distinct for each group (Fig.
1j), indicating that T-cell-mediated immunity contributes to the
immunological differences between the groups.
We further examined individual cell type TIME landscape

profiles using six different algorithms: xCell21, TIMER22, quanti-
seq23, MCP-counter24, Epic25, and CIBERSORT26 (Fig. 1k). We
observed an overall increase in the number of cells involved in
both innate and adaptive immunity against SDC and MEC,
including cytotoxic T-cells (CD8+ ), activated NK cells, B-cells,
and macrophages. In contrast, uncharacterized cells, which were
considered malignant cells, and common lymphoid/myeloid
progenitors showed the opposite or no correlation. These results
confirmed the immune-low and immune-high features of Groups
1 and 2 subtypes, respectively, regarding both innate and
adaptive immunity.

Association between histological origin and immunogenicity
of SGC subtypes
We examined the association between the histological origin and
the immunogenicity of the identified subtypes. Previous studies
have shown that SGC originated from two of the four major
substructures in the salivary gland (Fig. 2a): ACC and MECA are
intercalated duct (ID)-derived and SDC and MEC are excretory duct
(ED)-derived27–29. Cell type decomposition analysis confirmed that
the samples used in this study had similar origins (Fig. 2b). In
addition, we found that the ACC and MECA samples had a higher
proportion of stem cells and myoepithelial cells (Wilcoxon Rank Sum
p-value < 0.001), whereas the SDC and MEC samples exhibited
abundant fibroblasts, dendritic cells (DCs), and ductal/basal epithelial
cells (Wilcoxon Rank Sum p-value < 0.001). These results are
consistent with the known cellular compositions of ID (higher rate
of cellular division and stem cell properties) and ED (higher number
of professional antigen-presenting cells (APCs))30–34.
We further analyzed whether histological traits could be the

source of the different immunogenicity of the SGCs. The

computationally predicted score35 showed higher cancer stem-
ness in the ID-derived subtypes than in the ED-derived subtypes
(Fig. 2c). Moreover, we observed a positive correlation (R= 0.5,
p < 0.001) between intercalated duct cells, which are known to
exhibit stem cell properties in salivary glands and potential
stemness to differentiate into various glandular cell types,
particularly ID-derived subtypes (Fig. 2d).
Additionally, our gene network analysis associated with GO

terms related to mesenchymal stem cells revealed a decrease of
MHC molecules in ID-derived subtypes (Fig. 2e and Supplemen-
tary Fig. 4). Furthermore, we found that the higher cancer stem
cell (CSC) group, regardless of histological origin, exhibited
downregulated immune system activity (Fig. 2f). Cell type
associations also indicated that CSC fractions correlated negatively
with the majority of activating immune cells, including CD8+ T,
cytotoxic, and NK T-cells, and positively with suppressive immune
cells, including Th2 cells, myeloid-derived suppressor cells, tumor-
associated macrophages, and naïve CD8+ T-cells (Fig. 2g).
Specifically, gene expression of all types of T-cell activation
markers was largely suppressed in the higher CSC group,
composed mainly of ID-derived subtypes (~75%, Fig. 2h). This
highlights that immune system activity decreased in the group
with a higher abundance of cancer stem cells, irrespective of
histological origin. These findings suggest that the higher
proportion of stem cells in ID-derived cancer contributed to the
abundance of CSC during tumorigenesis, promoting immune
escape through myeloid progenitor-derived cells36,37.
Pathway-level analysis revealed the potential underlying

mechanisms of ID-derived cancer cell stemness (Fig. 2i). GSEA
showed the enrichment status of the Wnt (Combined FDR= 1.2e-
08), Hippo (4.3e-02), and Smoothened (2.4e-02) oncogenic
signaling pathways, along with the regulation of stem cell
differentiation (Combined FDR= 1.5e-04) in ID-derived subtypes.
Enrichment analysis of up-regulated DEGs in ID-derived subtypes
also identified cAMP (Combined FDR= 0.032), Rap1 (0.024), TGFβ
(0.153e-11), Hippo (0.68e-11), and Wnt signaling pathways (0.26e-
24) (Supplementary Fig. 3). Specifically, we suggested that the
SMAD complex (SMAD2/3/4) positively interacts with OCT4
(POU5F1), one of the essential markers of cancer stemness, as
indicated by network analysis. In addition, a lower tumor
suppressor gene (TSG) score in the ID-derived subtypes (Fig. 2j)
and its strong negative correlation with cancer stemness (Fig. 2k)
suggested that TSG alleviation may contribute to the proliferation
of CSCs as reported in a previous study38. Overall, our analysis
showed that distinct immunological traits were affected by the
histological origin of the tumors, primarily differentiating SGCs
into ID- and ED-derived subtypes.

Prediction of subtype-specific immune evasion mechanisms of
SGC
To identify subtype-specific T-cell functionality, we performed a
gene set analysis based on TIDE (Fig. 3). CD8 and Merck18 T-cell

Fig. 1 Immune landscape of salivary gland cancer (SGC) subtypes. a Principal component analysis (PCA) was performed on normalized
expression data of the top 3000 variance genes in 94 SGC samples to identify transcriptome patterns. The percentages on the axis represent
variation by components. b The unsupervised hierarchical clustering analysis, using normalized expression data of the top 3000 variance
gene, is illustrated with a dendrogram of different colors indicating the distinct patterns of the two groups. c Heatmap from the single sample
gene set enrichment analysis (ssGSEA) illustrating the differences in the subtypes of 50 cancer hallmark gene sets from the molecular
signature database based on the first two principal components. The red box indicates consistent expression patterns of the immune
categories. The normalized GSVA score represents the degree to which a gene set is up or downregulated onto PC2, which further
differentiates the two groups. d Normalized immune score of the 31 tumor types from TCGA, including the last four boxplots, which are SGC
subtypes from an independent dataset. The immune groups of TCGA cohort were classified using the 50th percentile of the immune score
and its subtypes were compared using the Wilcoxon Rank Sum Test e–i Kruskal-Wallis Test was used to compare tumor immune
microenvironment-related signatures between the subtypes. Error bars represent the standard deviation of uncertainty. j The scatter plot
illustrates the significant positive correlation between cytolytic activity, and the total T-cell fraction based on the Pearson correlation
coefficient. k Heatmap illustrates comprehensive immune cell composition profiling by combining six algorithms.
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inflamed signatures, interferon-gamma (a pro-inflammatory mole-
cule), and dysfunctional T-cell signatures (CD274 and T-cell
dysfunction scores) increased in the ED-derived subtypes (Fig.
3a). In contrast, the ID-derived subtypes showed increased
myeloid-derived suppressor cells which were associated with
T-cell exclusion (Fig. 3a). Moreover, the T-cell exclusion score was

higher in ID-derived subtypes. Additionally, mixed T-cell function-
ality was observed in MECA. Overall, these findings provide
important insights into tumor immune dysfunction and exclusion
mechanisms in different histological subtypes, with ED- and ID-
derived subtypes associated with increased dysfunctional T-cell
population and excluded T-cell population, respectively.
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Moreover, we analyzed the T-cell receptor beta-chain-CDR3
sequences to investigate the ability of T-cells to recognize
antigens in the two groups (Fig. 3b) and found that the ED-
derived subtypes had higher TCR diversity, which was positively
correlated with the T-cell infiltration score (Fig. 3c). These findings
suggest that the ED-derived subtypes exhibited increased
sensitivity to antigens and more active T-cell infiltration, indicating
that dysfunctional T-cells were not caused by low TCR diversity. In
contrast, the ID-derived subtypes exhibited low TCR diversity in
the excluded T-cell population, indicating a lack of T-cell
functionality.
To explore the underlying mechanisms of the observed

differences in T-cell functionality between the ED- and ID-
derived subtypes, we further analyzed the expression of molecules
involved in antigen presentation and recognition and the co-
inhibitory molecules that suppressed T-cells (Fig. 3d) and found
that ED-derived subtypes had a higher expression of signal 1
molecules, including MHC I, MHC II, and TCR, and signal 2 co-
stimulatory molecules, such as CD80/CD86, CD40, OX40L, ICOSL,
CD28, CD40L, OX40, and ICOS. T-cell-suppressing co-inhibitory
molecules were also elevated in ED-derived subtypes. The high
expression of co-inhibitory molecules in the ED-derived subtypes,
including GAL9, TIM3, CTLA4, CD80, PD-L1, and PD-1, was
consistent with the results shown in Fig. 3a (for example,
CD274). These findings suggest that co-inhibitory molecules may
influence dysfunctional T-cell mechanisms, and that weak signal 1
and co-stimulatory molecules alone may be insufficient to activate
the T-cell priming process in ID-derived subtypes. This could result
in the exclusion of T-cell populations with low tumor specificity.
Furthermore, we observed a correlation between immune cells,

suggesting a malfunction in antigen processing and the
presentation mechanism of professional APCs (Fig. 3e). This led
us to investigate the specific cell types that may contribute to the
observed elevation of co-inhibitory molecules and dysfunctional
T-cells in ED-derived subtypes despite the high expression of
signal 1 and co-stimulatory molecules.
We found that macrophages and DCs are professional APCs that

formed cluster based on their antigen-presenting machinery
scores and similar phenotypes, including tolerogenic and imma-
ture DCs, M1- and M2- macrophages (red boxes). Additionally, our
analysis revealed that ED-derived subtypes were associated with a
suppressive phenotype of professional APC and that the anti-
inflammatory subtypes of macrophages (M2-macrophages) and
DCs (immature and tolerogenic [tolDCs]) were strongly associated
with immunosuppressive factors, such as co-inhibitory signaling
molecules and regulatory T-cells.
Both pro-inflammatory M1-39 and anti-inflammatory M2-polar-

ized macrophages40 were elevated in the ED-derived subtypes;
however, the ratio of M2 to M1 in the ID-derived subtypes was

higher (Fig. 3f). This suggests that ID-derived subtypes were
primarily affected by the anti-inflammatory phenotype of macro-
phages compared to ED-derived subtypes. Additionally, DCs were
another type of professional APC that maintain the balance
between adaptive immunity and the tolerogenic response to
tumors during antigen processing and presentation. Our results
showed that there were higher numbers of mature and activated
DCs and immature and tolDCs in the ED-derived subtypes than in
the ID-derived subtypes (Fig. 3g).
Tregs and tolDCs are crucial in creating an environment that

induces immunosuppression. It has been reported that Tregs
inhibit the DCs co-stimulatory signaling molecules and inhibit DC-
mediated pro-inflammatory cytokines, IL-12, and TNF-a41. In
contrast, Tregs upregulate anti-inflammatory cytokines TGF-β
and IL-10, which have tolerogenic properties42,43. Anti-
inflammatory factors (TGF-β, IL-10, IL-6, VEGF, IDO, and PGE2),
which contributed to immunosuppressive environment were
highly expressed in ED-derived subtypes than in ID-derived
subtypes (Fig. 3h).
Summarily, we presented a hypothetical model that explained

the malfunctioning of professional APCs and the formation of
dysfunctional T-cell populations in ED-derived subtypes. Tumor-
derived factors inhibit the differentiation and maturation of DCs
and promote the accumulation of iDCs41,44. Continuous stimula-
tion of naïve T-cells by increased levels of iDCs and tumor-derived
factors leads to the activation of Tregs, which subsequently
promotes the differentiation of iDCs into tolDCs. This creates an
environment that increases co-inhibitory signaling molecules,
facilitated by the ability of iDCs to secrete IL-10 and many other
immunosuppressive factors. Furthermore, there is a bidirectional
relationship between tolDCs and Tregs: Tregs affect the activation
of tolDCs and activated tolDCs can increase Tregs through positive
feedback loops41 as illustrated in Fig. 3i.

Validation with independent datasets and
Immunohistochemistry (IHC) analysis
To validate the transcriptomic profiles based on the intrinsic cell
composition of histologic origins, we incorporated three available
independent datasets (42 ACC; Bell et al.45, 58 ACC; Frerich et al.46,
and 54 ACC; Ferrarotto et al.11) and attempted to reproduce our
findings (Fig. 4). The transcriptomic subgrouping revealed two
PCA-based groups. ACC, MECA, and the three public ACC datasets
(upper panel) and SDC and MEC (lower panel) were characterized
by the second principal component (Fig. 4a). Consistent with the
previous finding (Fig. 1a), the independent datasets clustered
around ACC and MECA, indicating coherence between ACC and
MECA subtypes. This suggests that the expression profiles of ACC
were similar to MECA, while differing from SDC and MEC. Likewise,
we computationally estimated overall immunity and compared to

Fig. 2 Histological origin of the salivary gland cancer (SGC) subtypes. a Diagram illustrates the four ductal units of the human salivary gland
where SGC can occur: acinar (AC), intercalated duct (ID), striated duct (SD), and excretory duct (ED). The salivary gland consists of three ductal
units: intercalated, intralobular (striated), and interlobular (excretory) ducts. b Cell type decomposition analysis compared SGC subtypes
originating from the ID and ED, with different cell types indicated by various colors. c Comparison of cancer stemness between the two
groups. d Scatter plot illustrating a moderately positive association between ID cells, considered as stem cells in the salivary glands, and the
stemness of SGC subtypes originating from the ID. e Gene network analysis including up-regulated Differentially Expressed Genes (DEGs)
associated with Gene Ontology (GO) terms related to mesenchymal stem cells in ID-derived subtypes. Brown nodes and edges represent
significant GO terms and their interactions. Genes associated with these terms are indicated by yellow color within the circles. Green edges
and arrows signify activation mechanisms, while blue edges and arrows represent binding interactions. f GO terms related to the immune
system were identified through downregulated Differentially Expressed Genes (DEGs) in the higher cancer stemness group compared to the
lower group. g Histogram illustrates the correlation (positive or negative) between the immune cells and CSCs. The red and blue colors
represent the correlation coefficient, and the gray color indicates a multiple testing corrected p-value > 0.05. h The heatmap displays a
comparison of T-cell activation marker expression in the higher CSC group compared to the lower CSC group. i GSEA result indicating
enriched terms by histologic subtypes: ID-derived subtypes showed many oncogenic signaling pathways and regulation of stem cell-related
gene sets, whereas ED-derived subtypes exhibited immunogenic cell types and regulation of antigen processing and presentation
mechanisms. j comparison of tumor suppressor function between the two groups. k A strong negative correlation between cancer stemness
and tumor suppressor gene score.
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validate the immune profile of histological subtypes (ACCs=
−0.14 and MECA=−0.25 vs. SDC= 0.83 and MECA= 1.02;
Wilcoxon Rank Sum p-value < 0.001), reproducing ED-derived
subtypes have higher immunity than ID-derived subtypes (Fig.
4b). Morris et al.‘s ACC exhibited statistically significant lower
immunity compared to ACCs in Bell et al, Frerich et al, and

Ferrarotto et al.‘s dataset (all three Wilcoxon Rank Sum p-
value < 0.01). However, the difference in immunity between
Morris’s ACC and MECA was statistically significant only in Frerich’s
dataset (Wilcoxon Rank Sum p-value < 0.01), indicating that
Morris’s ACC was significantly lower than other ACCs but did
not show a significant difference compared to MECA.
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Additionally, our high-resolution TIME analysis provided further
support for the differences in overall immunity, revealing
consistent patterns where ED-derived subtypes exhibited higher
scores in all features (Wilcoxon Rank Sum p-values < 0.01, Fig. 4c
and Supplementary Fig. 5). We performed CD3/CD45 IHC on all
MEC patients to validate TIS/IIS and compared to ACC, SDC, MECA
from Morris’s dataset, presenting consistent gradual pattern with
computational estimates (Fig. 4d and Supplementary Fig. 6).
Furthermore, we performed a deconvolution of the cell composi-
tion within the Tumor Immune Microenvironment (TIME) and

conducted unsupervised clustering based on all cell types
(Supplementary Fig. 7). Although the clustering did not align with
the histological subtypes we previously explored (Fig. 1k), the ED-
derived subtypes exhibited higher expression levels in both innate
and adaptive immune cells and had lower malignant scores
compared to the ID-derived subtypes. Not only among immune
cells but also among the abundant cell types within the salivary
gland, our comparison revealed that in the histologic intrinsic
environments, stem cells and myoepithelial cells predominate in
the ID-derived subtypes (Wilcoxon Rank Sum p-value < 0.001),
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Fig. 4 IHC and in-silico validation with independent datasets. a PCA-based clustering ACC, MECA, and three independents, along with SDC
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whereas fibroblasts, ductal/basal epithelial cells, and dendritic cells
were more abundant in the ED-derived subtypes (Wilcoxon Rank
Sum p-value < 0.001).
Moreover, the analysis of cancer stemness and tumor suppres-

sor activity had been further strengthened and clarified by the
addition of independent datasets (Fig. 4f, h). We reproduced that
cancer stemness score was higher in the ID-derived subtypes and
had lower score than ED-derived subtypes. Their correlation might
be the potential evidence regarding the effect of cancer stemness
on tumor suppressor function regardless of histologic origin
(Supplementary Fig. 8). Next, enriched GO term analysis repre-
sented alleviated T-cell immunity and antigen processing and
presentation related molecules in the ID-derived subtypes (Fig.
4g). In fact, tumor immune-related molecules highly elevated in
the ED-derived subtypes, specially T-cell dysfunction score was
upregulated in the ED-derived subtypes while MDSC and T-cell
exclusion score was downregulated in the ID-derived subtypes
(Fig. 4i). Additionally, we validated the immune signaling
molecules, immunosuppressive factors, and subtypes of APC
related to crosstalk between the histological intrinsic character-
istics and immune-escape mechanisms (Fig. 4j). All features in the
independent datasets were consistent with our previous findings,
supporting the presence of abundant CSCs with rapid cell division
and relatively low immunogenicity in ID-derived subtypes, while
ED-derived subtypes exhibited higher APCs along with immuno-
suppressive factors, forming a dysfunctional TME.

DISCUSSION
In this study, we aimed to identify histologically related SGC
subtypes based on multifaceted TIME and immunogenicity
analyses. We showed that the four major SGC subtypes can be
subdivided into ID- and ED-derived subtypes that exhibit immune-
low and -high features, respectively. The molecular and histolo-
gical characteristics of normal cells (high stemness in ID and high
number of APCs in ED) were closely associated with their
oncogenic counterparts. Finally, proliferative cancer stemness,
T-cell exclusion, and APC malfunction were predicted to be the
major causes of immune evasion in ID- and ED-derived subtypes
and could be effective targets for cancer immunotherapy.
Despite recent studies suggesting that the specific features of

the SGC subtype could be potential immunotherapeutic targets,
there are currently no optimal therapies for SGC. This highlights
the need for further research to enhance our understanding of the
molecular and genetic characteristics of SGC subtypes and
develop effective precision medicine strategies for each subtype.
Unlike previous studies that mainly focused on identifying
subtypes based on the immune microenvironment, our study
presents a more integrated and comprehensive perspective of
SGC subtypes.
According to the PCA-level mapping pathway analysis, we

observed that Group 1 and Group 2 were distinguished primarily
by PC2, which demonstrated a strong association with the
immunogenic pattern. This observation further underscores the
crucial role that immunogenicity plays in differentiating the SGC
subtypes. Conversely, PC1 did not elucidate the differences
between the groups, nor did it exhibit a clear transcriptional
expression pattern. Rather, PC1 reflected the heterogeneity
inherent within each group. So, we focused on the immune
groups driven by PC2, and embarked on an investigation into the
factors that might influence the immunogenicity within the TME
at the cell type level.
We employed six cell deconvolution algorithms together with a

signature gene set to examine a variety of factors within the TME.
Despite certain algorithms eliciting imprecisions in the quantifica-
tion at the cell type level for designated markers, including T-cell
CD4+ , common myeloid progenitor, and T-cell CD4+ Th1, we
effectively leveraged comprehensive measurements to

encompass a broad array of cell types, thereby substantiating
more robust results. While we acknowledged minor inconsisten-
cies in both cell type markers and principles across the different
algorithms, we remain highly confident that the consensus results,
which showed enrichment in almost all immune cells, were
predominantly observed in Group 2. Furthermore, we investigated
the potential capacity of T-cells to respond to immunotherapy.
Intriguingly, despite the escalation in tumor immunity-related
signatures and TCR diversity within Group 2, we concurrently
discerned an amplified incidence of specific immune suppressive
factors and inhibitory molecules linked with dysfunctional T-cells
within this group. This insinuates that these suppressive cells
could potentially modulate the immune escape mechanisms.
Considering the distinction between the immune desert and

the dysfunctional TME, despite their similar subtypes, we
integrated histological, immunological, and molecular features to
yield a more comprehensive understanding of the driving
mechanisms behind each subtype. This insight could potentially
facilitate the development of effective and precise therapeutical
strategies for SGC. Specifically, ID-derived subtypes show high
stemness features, whereas ED-derived subtypes show high levels
of APCs. Differences in normal cell-origin characteristics were
observed in their oncogenic counterparts.
Based on these findings, different precise treatment strategies

can be proposed for each subtype. For example, in ID-derived
subtypes, where cancer stems cell proliferation and oncogenic
signaling pathways have been identified as the main causes,
effective treatment strategies that eliminate cancer stem cells and
suppress their proliferation are required. Possible treatments
include cell cycle inhibitors or agents targeting CSC features47.
Conversely, in the ED-derived subtypes, where T-cell and APC
dysfunction has been identified as the main causes, treatment
strategies are needed to restore T-cell function through immune
checkpoint blockade or chimeric antigen receptor-T-cell
therapies48.
Similarly, recent studies have demonstrated further subtyping

within both ACC and MEC based on immunogenic and
proteogenomic profiling within each subtype11–13. ACC has been
classified into immune-hot and -cold subtypes, with immune
checkpoint B7-H4 identified as a therapeutic marker for the
immune-cold subtype. In contrast, MEC has been categorized into
immune subgroups based on immune cell status. Previous
research has indicated that these immune subgroups can induce
heterogeneity within histologic subtypes. According to our results,
it is crucial to consider additional factors, such as immune
checkpoint molecules, especially in samples exhibiting diverse
intrinsic cell compositions based on histologic origin.
We observed heterogeneity in the scores while comparing

immunity between the histological subtypes (Fig. 3d–h). Chal-
lenges in obtaining specific clinical features from public datasets
have limited our ability to identify factors responsible for this
heterogeneity, such as diagnosis, demographics, or treatment.
Further analyses incorporating detailed clinical information are
necessary to understand the influencing factors within these
subtypes.
Additionally, we explored the impact of PCA-based sample

outlier and immune subtypes on this heterogeneity. Firstly, we
considered outliers based on gene expression profiles deviating
from SGC subtypes and removed them. Consequently, we
obtained clearer statistical significance between origin-derived
subtypes (Supplementary Fig. 1). Secondly, we identified distinct
immune subtypes within the same subtype. In line with previous
studies12,13, significant differences were observed between
immune subtypes in each subtype (Supplementary Fig. 2a–f).
Classifying immune subtypes within the same subtype could
enhance our understanding of heterogeneous events in origin-
based subtypes.
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Consistent with the results of previous studies10, we found that
MECA exhibits heterogeneous T-cell functionality. Specifically, half
of the MECA samples showed characteristics similar to those of
ED-derived subtypes. To further investigate the cellular composi-
tion of MECA, we compared ID-like and ED-like MECA samples. No
significant differences were observed between the two subtypes
regarding the level of fibroblast, ductal/basal epithelial cells, and
intercalated duct specific cells (myoepithelial cells). However, ED-
like MECA had higher numbers of macrophages and DCs in the
excretory duct, which consist of excretory duct. Although MECA
can be classified as an ID-derived subtypes based on its
histological origin, MECA subtypes with heterogeneous cellular
composition, including high APCs resembles ED-derived subtypes.
Therefore, combination therapies that target both ID and ED
subtypes may be more effective for MECA, which exhibit
characteristics of both subtypes.
Despite comprehensive and in-depth analyses, our study has a

few limitations. First, the number of bulk RNA-seq samples used
was relatively few (n= 94). Single-cell transcriptomics increases
the resolution of cell composition and cell-type-specific pathway
status identification. We hope that the rarity and lack of available
samples will be resolved in the near future to ensure the increased
availability of fresh tumors and normal tissues for single-cell
analysis. Second, different types of genome-scale data, such as
genomic mutations and epigenetic alterations, will provide more
opportunities for multifaceted analyses, such as tumor mutation
burden or neoantigen burden analysis and the regulatory
mechanisms of the identified pathways. MYC-NFIB fusion gene is
prevalent in > 70% of ACC cases and is a major driver of this
malignancy49. The role of the fusion gene in immune suppression
can be assessed using genomic data (such as fusion gene-derived
neoantigens) and downstream transcriptome effects. Finally, our
study was primarily based on computational analysis, which
requires further confirmatory tests. We hope that a more active
collection of tumor tissues or the construction of patient-derived
models (such as patient-derived xenograft) will expedite the active
validation and discovery of resistance mechanisms against
conventional immunotherapy.
In conclusion, our study suggests that the cellular composition

of normal cells may play a role in determining the characteristics
of their oncogenic subtypes. Our findings highlight the relation-
ship between histological origin and the TIME, which can be used
to propose potential mechanisms of cellular components that
contribute to tumorigenesis.

METHODS
Sequencing data and sample acquisition
Data from 76 cases (20 adenoid cystic carcinomas, 40 myoepithe-
lial carcinomas, and 16 salivary duct carcinomas) used in the
Memorial Sloan Kettering Cancer Center study10 were collected
from the National Center for Biotechnology Information Sequence
Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra). FASTQ files
were downloaded with the “fasterq-dump” function of the SRA
Toolkit. Additionally, we included twenty cases of mucoepider-
moid carcinomas (MEC) from our previous study13. In accordance
with the Declaration of Helsinki, we obtained informed written
consents from all MEC patients, which were approved by the
Institutional Review Board at Severance Hospital, Yonsei University
College of Medicine (IRB 255-001). The specific criteria for
selecting MEC patients were clearly defined in the previous
description and are detailed in Supplementary Table 1. In this
study, primary tumors and corresponding normal tissues from
twenty patients with mucoepidermoid carcinoma were utilized.
Fresh frozen tissues obtained during surgery were processed for
RNA sequencing library preparation using the TruSeq Stranded
Total RNA Sample Prep Kit protocol. The quality of the libraries,

including the integrity of total RNA, was assessed using the
Agilent 2100 BioAnalyzer. Subsequent sequencing was conducted
using the Illumina HiSeq 2500 system.

RNA-seq processing and analysis
FASTQ files with adapter sequences and low-quality reads were
checked using FastQC v0.11.9 and processed using Trimmomatic
v0.40 with the following options: illuminance:2:30:10, LEADING:20,
TRAILING:20, MIMLEN:20, and CROP:72. The remaining reads were
then aligned to the human reference genome (GRCh38) using
STAR v.2.7.3a in two-pass mapping mode. The read counts for
each sample were obtained using HTSeq v0.11.1. To reduce bias
caused by low expression, genes with more than half of the
samples in each subtype having a zero count or an average count
of < 10 in the group were excluded. Subsequently, relative gene
expression was normalized using the “vst” function of the DESeq2
R package v1.26.050. Combat-seq51 and SVA were used to identify
non-biological batch effects and hidden sources of data variation.

Gene expression profiling with highly variable genes
We performed principal component analysis (PCA) to identify the
highest biological variation using the normalized gene expression
profiles of the top 3000 genes. PCA was conducted using the
“prcomp” function in base R. Unsupervised hierarchical clustering
analysis (HCA) based on similar gene expression patterns was
conducted using the stats R package. We measured the Euclidean
distance between two groups and clustered them using the
complete method. Based on the PCA results, the principal
components were mapped onto 50 cancer hallmark gene sets
using single-sample gene set enrichment analysis (ssGSEA). GSEA
was performed using a normalized gene expression matrix with
the gene set variation analysis (GSVA) R package v1.44.5 and
clusterProfiler R package v3.14.3. As a reference, gmt files were
downloaded using the msigdbr R package v7.5.1 (https://
github.com/igordot/msigdbr).

The cancer genome atlas (TCGA) data acquisition and analysis
Public RNA-seq read count data were downloaded from TCGA to
compare the immunity of pan-cancers with salivary gland
carcinomas. We collected the HTSeq-count based expression data
of pan-cancers (33 cancer types) using TCGAbiolinks R package
v2.21.3: uterine carcinosarcoma (n= 56), prostate adenocarcinoma
(n= 551), pheochromocytoma and paraganglioma (n= 186),
uveal melanoma (n= 80), kidney chromophobe (n= 89), brain
lower grade glioma (n= 529), adrenocortical carcinoma (n= 79),
uterine corpus endometrial carcinoma (n= 587), ovarian serous
cystadenocarcinoma (n= 379), thyroid carcinoma (n= 568), rec-
tum adenocarcinoma (n= 177), esophageal carcinoma (n= 173),
kidney renal papillary cell carcinoma (n= 321), cholangiocarci-
noma (n= 45), liver hepatocellular carcinoma (n= 424), colon
adenocarcinoma (n= 521), bladder urothelial carcinoma (n= 433),
breast invasive carcinoma (n= 1222), glioblastoma multiforme
(n= 174), cervical squamous cell carcinoma and endocervical
adenocarcinoma (n= 309), head and neck squamous cell carci-
noma (n= 546), skin cutaneous melanoma (n= 472), sarcoma
(n= 265), stomach adenocarcinoma (n= 407), testicular germ cell
tumors (n= 156), lung squamous cell carcinoma (n= 551),
pancreatic adenocarcinoma (n= 182), mesothelioma (n= 86),
kidney renal clear cell carcinoma (n= 611), lung adenocarcinoma
(n= 594), thymoma (n= 121), acute myeloid leukemia (n= 151),
and lymphoid neoplasm diffuse large b-cell lymphoma (n= 48).

Profiling of tumor immune microenvironments (TIME)
Stromal and immune cell levels were determined using the
ESTIMATE algorithm17 and the immune score was considered the
total immunity in the TIME. The pan-cancer immune subgroups
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were classified using the 50th percentile. Furthermore, immune
cell population gene signatures were used to calculate the
immune infiltration, T-cell infiltration, antigen-presenting machin-
ery, and angiogenesis scores with ssGSEA as described pre-
viously52. Cytolytic score (CYT) was calculated as the geometric
mean expression of GZMA and PRF1 (CYT score= √ GZMA ×
PRF1), as described previously53. We performed a correlation
analysis between the total T-cell fraction and cytolytic activity,
which was considered significant if (1) P < 0.05 and (2) correla-
tion > 0.2 (up or downregulated). Similarly, we performed the
deconvolution of cell-type fractions using immunoedeconv R
package v2.1.0 by incorporating six algorithms (xCell21, TIMER22,
quantiseq23, MCP counter24, Epic25, and CIBERSORT absolute
mode26). T-cell functionality, including dysfunction and exclusion
scores, was inferred from the Tumor Immune Dysfunction and
Exclusion (TIDE)54. We considered samples that were smaller than
(Q1 - 1.5 * interquartile range (IQR)) or larger than (Q3+ 1.5 * IQR)
as outliers and removed them. Markers for measuring immune cell
type, T-cell activation, and TIME activity used in this study are
described in Supplementary Table 2.

T-cell receptor (TCR) repertoire analysis
The TCR repertoire was analyzed using MIXCR v3.0.1355 with
paired-end reads, which were aligned using the RNA-seq mode.
Aligned reads were assembled to extract TRB-CDR3 gene regions
using default parameters based on the developer instructions
(https://github.com/milaboratory/mixcr/). As TCR clonotypes can-
not be effectively detected below the 100 bp read length, TCR
analysis was performed only with sixty-eight samples with a
200 bp read length. The remaining samples were further analyzed
and visualized using the Immunarch R package v0.6.6.

Stemness & tumor suppressor gene analysis
Cancer cell stemness was measured using an mRNA expression-
based stemness index (mRNAsi)35. To calculate mRNAsi, we
downloaded the Progenitor Cell Biology Consortium and TCGA
PanCanAtlas datasets and trained stemness signatures using
normal stem cells following the workflow proposed by PanCan-
Stem (https://github.com/ArtemSokolov/PanCanStem). A one-
class logistic regression algorithm was used to estimate the
stemness index for each sample. Normal stem cell capacity and
tumor suppressor gene score were estimated using single-sample
gene set enrichment analysis (ssGSEA) with all the human
suppressor genes (Supplementary Table 2).

Cell type decomposition analysis
The cellular composition was inferred using the BayesPrism R
package v2.056. We trained the model using public single-cell
RNA-seq data for adenoid cystic carcinoma (GSE210171) as prior
information and subsequently, performed deconvolution. The
decomposed cell types were annotated using ScType57. The
annotated cell types were used as reference cells for downstream
analyses (Supplementary Table 4).

Gene network analysis
We input differentially expressed genes (DEGs) that were up- and
downregulated between the ID- and ED-derived subtypes.
Subsequently, we performed an analysis of Gene Ontology (GO)
terms and pathways, utilizing the REACTOME database. To
illustrate their interactions, we selected specific terms and genes
associated with cancer stemness and potential signaling path-
ways. These analyses were deemed significant under a p-value
threshold of 0.05, employing ClueGO and CluePedia within the
Cytoscape software.

Immunohistochemistry
Formalin-fixed paraffin-embedded (FFPE) tissue blocks of MEC
tumors that were previously sequenced, were sectioned onto
glass slides at 5-um. Hematoxylin and eosin (H&E) stains were
performed following standard procedures. Anti-CD45 (DAKO,
catalog no. M0701, 0.5 mg/mL) and anti-CD3 (DAKO, catalog no.
A0452, 1.2 mg/mL) antibodies were applied and sections were
incubated for 24 h, followed by a 60-min incubation with
biotinylated horse anti-mouse IgG (Vector Laboratories, catalog
no. PK-6200) for CD45 antibody, and horse anti-rabbit IgG (Vector
Laboratories, catalog no. PK-6200) for CD3. Slides were counter-
stained with hematoxylin and enclosed in a coverslip with
Permount cover medium (Thermo Fisher Scientific). Slides were
digitally scanned, and the quantification of stained slides was
performed by counting the number of positive leukocytes in the
central region of the tumor under 400x magnification (Supple-
mentary Table 3). The fields were chosen randomly by a head
and neck/salivary pathologist blinded to the immune infiltration
score (IIS) and T-cell infiltration score (TIS) values, in the central
region of the tumor. In total, positively stained leukocytes were
counted digitally in 3 fields per section via QuPath 0.4.4 (https://
qupath.github.io.) and the arithmetic mean was used for
statistics.

Statistical test
We employed statistical test to evaluate differences between
groups and determine significance. Throughout this study, group
comparisons were conducted using the Wilcoxon Rank Sum test.
For multiple group comparison, the Kruskal-Wallis test was used.
To account for multiple comparisons, corrections were made using
both the False Discovery Rate (FDR) and Bonferroni correction
methods. Statistical significance was evaluated between groups
according to following threshold: *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The public data sources used in this study, including RNA-seq data from 76 cases (20
ACC: PRJNA601423, 40 MECA: SRP109264, and 16 SDC: SRP096726), were down-
loaded from the Sequence Read Archive (SRA). Additionally, we uploaded all normal-
tumor paired samples derived from all MEC patients in the SRA under PRJNA1014965
accession number. Detailed clinical information is described on Supplementary
Table 1.
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