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Open and reusable deep learning for pathology with WSInfer
and QuPath
Jakub R. Kaczmarzyk 1✉, Alan O’Callaghan2, Fiona Inglis2, Swarad Gat 1, Tahsin Kurc1, Rajarsi Gupta1, Erich Bremer 1,
Peter Bankhead 2,3,4 and Joel H. Saltz 1,4

Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To
address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of
deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic,
prognostic, and predictive capabilities of digital pathology.
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Histopathology is the bedrock of cancer diagnosis and tradition-
ally relies on the examination of physical slides containing human
tissue specimens using high-power microscopy. In recent years,
the field has been moving towards digital pathology, whereby
glass slides are scanned as high-resolution images, known as
whole slide images (WSIs). Each individual WSI is typically very
large, often over 40 gigabytes uncompressed. The widespread
adoption of digital pathology therefore poses considerable
challenges for data storage and visualization, but also unlocks
the potential to apply computational methods for diagnostics and
prognostics.
It is difficult to overstate the transformative effect deep learning

has had on digital pathology research. Many studies have
suggested the potential for deep learning-based artificial intelli-
gence (AI) methods to revolutionize different aspects of pathology
practice, such as by identifying lymphocytic infiltrates, micro-
satellite instability, genomic aberrations, and other clinically
important phenotypes1–3. However, the myriad algorithms pub-
lished in the literature belies a dearth of implementations that are
actually usable within the research community. In most cases, it is
simply not possible for other research groups to validate the use
of published methods on their own images and cohorts. One
reason for this is that required data are not available: a recent
survey of 161 peer-reviewed studies using deep learning for
pathology found that while 1 in 4 shared code, only 1 in 8 shared
trained model weights4,5. Furthermore, in the minority of cases
where code and models are available, they are typically not in a
form amenable to pathologists without coding experience to use
and explore. The result is that reported findings cannot properly
be reproduced and interrogated by the wider community, and the
key domain experts— pathologists— often find themselves to be
particularly excluded. Tackling problems such as model general-
ization and overcoming batch effects urgently requires an
increase in openness, replicability, and reusability.
In the present paper, we respond to the call to “make deep

learning algorithms in computational pathology more reproduci-
ble and reusable”4 by introducing WSInfer (Whole Slide Inference):
a collection of software tools designed to streamline the sharing
and reuse of trained deep learning models in digital pathology
(Fig. 1). In the current implementation, we have focused on the

generic task of patch classification, which is widely used across a
broad range of pathology applications with deep learning models
that facilitate diagnostic, prognostic, or predictive capabilities. The
models currently included in the WSInfer Model Zoo include those
for classifying lymphocytic regions, tumor tissue, Gleason grades,
and other phenotypes (Table 1); we have used some of the models
in collaborative projects that study the immune landscape of
cancer6–9. We provide an example below of how WSInfer may be
used to create spatial maps of tumor and tumor-infiltrating
lymphocytes (TILs) in WSIs, which have been suggested to be both
prognostic and predictive in several cancers6,10–12. Because WSIs
are so big, they are typically broken into patches to make analysis
practicable. Trained patch-based deep neural networks are
typically applied across a WSI to classify patches into different
tissue components (e.g. tumor, stroma, lymphocytes) or make
predictions directly related to patient outcome. The output of
patch classification is typically a spatial classification map, which
can often be integrated across the WSI to create a single output
representing a diagnosis, prediction, or ‘score’ for that slide.
WSInfer provides an open-source, cross-platform, and cross-

language ecosystem to make deep learning methods uniquely
accessible and intuitive for a wide range of digital pathology
stakeholders. The core inference runtime is developed in Python,
making it readily accessible for data scientists and deep learning
specialists working in digital pathology — for whom Python is
typically the programming language of choice. By also providing
an extension in the widely adopted QuPath software, we aim to
greatly broaden access. We anticipate that making the application
of models more streamlined in this way will encourage more
pathologists to try the methods on new data. This should, in turn,
make it easier to identify strengths and weaknesses, and thereby
accelerate the critical feedback loop necessary to develop robust
and generalizable algorithms that might improve diagnostic,
prognostic, and predictive capabilities.
Several tools exist for deploying trained models on whole slide

images, including TIA Toolbox13, MONAI14, SlideFlow15, and
PHARAOH16. WSInfer complements these by specifically targeting
highly optimized, user-friendly support for patch-based WSI
inference methods. We expect that these tools may be used
together and are keen to promote interoperability. To this end, the

1Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA. 2Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The
University of Edinburgh, Edinburgh, UK. 3Edinburgh Pathology and CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK. 4These
authors jointly supervised this work: Peter Bankhead, Joel H. Saltz. ✉email: jakub.kaczmarzyk@stonybrookmedicine.edu

www.nature.com/npjprecisiononcology

Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00499-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00499-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00499-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00499-9&domain=pdf
http://orcid.org/0000-0002-5544-7577
http://orcid.org/0000-0002-5544-7577
http://orcid.org/0000-0002-5544-7577
http://orcid.org/0000-0002-5544-7577
http://orcid.org/0000-0002-5544-7577
http://orcid.org/0009-0007-0695-6918
http://orcid.org/0009-0007-0695-6918
http://orcid.org/0009-0007-0695-6918
http://orcid.org/0009-0007-0695-6918
http://orcid.org/0009-0007-0695-6918
http://orcid.org/0000-0003-0223-1059
http://orcid.org/0000-0003-0223-1059
http://orcid.org/0000-0003-0223-1059
http://orcid.org/0000-0003-0223-1059
http://orcid.org/0000-0003-0223-1059
http://orcid.org/0000-0003-4851-8813
http://orcid.org/0000-0003-4851-8813
http://orcid.org/0000-0003-4851-8813
http://orcid.org/0000-0003-4851-8813
http://orcid.org/0000-0003-4851-8813
http://orcid.org/0000-0002-3451-2165
http://orcid.org/0000-0002-3451-2165
http://orcid.org/0000-0002-3451-2165
http://orcid.org/0000-0002-3451-2165
http://orcid.org/0000-0002-3451-2165
https://doi.org/10.1038/s41698-024-00499-9
mailto:jakub.kaczmarzyk@stonybrookmedicine.edu
www.nature.com/npjprecisiononcology


WSInfer Model Zoo implements a minimal model configuration
specification that accompanies each trained model, with the
intention that it may be used by other software beyond the direct
WSInfer ecosystem. We host several trained patch classification
models in the Zoo, including two models from TIA Toolbox, and
intend to incorporate more models in future work. There are other
important tasks in digital pathology, including pixel classification,
nucleus detection, and slide-level inference. In future work, we
plan to include such models. We are actively developing slide-
level classification models as well as methods to distribute them in
a reusable and reproducible manner.
It is important to note that WSInfer itself supports a variety of

patch classification models but is agnostic to a user’s choice of
model. It is intended for research use only, and we make no claims
regarding the suitability of the models for specific applications.
Hence, users assume the responsibility of verifying the suitability
of any model for their purposes. Indeed, it is our expectation that

promising digital pathology methods will often be found not to
perform well on new images; generalization across cohorts,
scanners, and laboratories is a hard problem. However, we believe
that an important first step to addressing this must be to enable
existing models to be properly scrutinized by the research
community, to identify what does and does not work. We hope
that WSInfer may help further this aim to benefit the wider digital
pathology community, and ultimately patients.
One current use case with potential clinical value is the spatial

identification of TILs. There is evidence that TILs are prognostic
and predictive in a variety of cancers6,10–12, and patch classifica-
tion deep learning models have been developed for the
identification of tumor and lymphocyte regions. One can use
these models via WSInfer. With the QuPath WSInfer Extension, for
example, one may label tumor regions with one of the tumor
models in the Zoo, and additionally use a lymphocyte patch
classification model in the same region. The spatial maps

Fig. 1 WSInfer workflow. The WSInfer ecosystem streamlines the deployment of trained deep neural networks on whole slide images
through three steps. a In Step 1, users begin by selecting their WSIs and specifying the platform for model inference along with the choice of a
pretrained model. If employing the WSInfer Python Runtime, the dataset is expected to be a directory containing WSI files. Alternatively, when
using the WSInfer QuPath extension, the image currently open in QuPath serves as the input. QuPath users also have the option to designate
a region of interest for model inference. The pretrained model can be selected from the WSInfer Model Zoo or users can provide their own
model in TorchScript format. b In Step 2, WSInfer performs a series of processing steps, including the computation of patch coordinates at the
patch size and spacing prescribed by the model. Image patches are loaded directly from the WSI and used as input to the patch classification
model. The model outputs are aggregated and saved to CSV and GeoJSON files. c In Step 3, model outputs can be visualized and analyzed in
QuPath or other software. This example shows breast tumor patch classification on a slide from TCGA.

Table 1. Models currently available in the WSInfer Model Zoo.

Tissue type Model outputs Training dataset Citation

Breast Tumor-negative, tumor-positive TCGA BRCA 7

Colorectal Background, normal colon mucosa, debris, colorectal adenocarcinoma epithelium, adipose, mucus,
smooth muscle, cancer-associated stroma, lymphocytes

NCT-CRC-HE-100K 13,19

Lung Lepidic, benign, acinar, micropapillary, mucinous, solid TCGA LUAD 25

Lymph nodes Metastasis-negative, metastasis-positive PatchCamelyon 13,17,26

PanCancer Lymphocyte-negative, lymphocyte-positive 23 TCGA cancer types 8

Pancreas Tumor-negative, tumor-positive TCGA PAAD 27

Prostate Grade 3, grade 4 or 5, benign TCGA PRAD 28
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produced by these models can allow one to visualize the extent of
lymphocyte infiltration. In colorectal cancers, this can be done
with a single model that classifies tumor and lymphocytes
simultaneously (see the “Colorectal” model in Table 1). In the
online documentation for the QuPath WSInfer Extension, we
include a script that may be used to create these TIL maps (see
“Code Availability”).
Another potential use case is screening hematoxylin-and-eosin-

stained tissue images. For example, one might screen sentinel
lymph node sections for breast cancer metastasis using a model
trained on the CAMELYON dataset13,17,18. This may assist
pathologists in detecting the presence of metastatic cells across
entire whole slide images. In addition, WSInfer includes several
tumor patch classification models, which may aid pathologists in
identifying and measuring tumor regions. WSInfer also includes a
model that classifies colorectal tissue patches into multiple
phenotypes (e.g., tumor, stroma, lymphocytes, adipose, normal
mucosa)13,19, and these outputs can be visualized as a map of
tissue phenotypes. These may aid pathologists form impressions
of tissue and identify regions that require further attention.
The use cases of WSInfer are primarily driven by the models

available, and as such we anticipate that the range of applications
will expand over time with the addition of future models. A topic
of current work is the incorporation of models predicting
microsatellite instability status20 and genomic aberrations21. This
may expand the potential predictive and prognostic uses of
WSInfer. In the future, we plan to incorporate specimen-level deep
learning models, which render a prediction for an entire WSI, as
well as models for pixel classification and nucleus detection.

METHODS
WSInfer comprises three main components: (1) the WSInfer
inference runtime, (2) the QuPath WSInfer extension, and (3) the
WSInfer Model Zoo. Together these provide tools designed to
meet the needs of a diverse range of users, including pathologists,
computational researchers, and data scientists.

Inference runtime
The WSInfer inference runtime deploys trained patch classification
deep learning models on whole slide images and is available as a
command-line tool and Python package. It requires three inputs
from the user: a directory of whole slide images, a trained patch
classification model, and a directory in which to write results. One
may use a model from the Zoo or provide a local trained model
Each WSI undergoes a series of processing steps motivated by ref.
22. First, patches are extracted from tissue regions at a uniform size
and physical spacing. Next, the patches are run through the
forward pass of the deep learning model. The runtime saves
model outputs in comma-separated values and GeoJSON files.
These output files can be used for downstream analyses or
visualized using other software, including QuPath.
We timed WSInfer in two environments: one with an enterprise-

grade Quadro RTX 8000 GPU on RedHat Linux and the other with
a consumer RTX 2080 Ti GPU on Windows Subsystem for Linux
(Windows 11 and Debian 12). In both cases, we used the breast
tumor classification model “breast-tumor-resnet34.tcga-brca” from
the WSInfer Model Zoo and WSIs from The Cancer Genome Atlas.
The model uses 350 × 350-pixel patches at 0.25 micrometers per
pixel. In the enterprise environment, analysis of 1061 WSIs took 6 h
and 46min, or 23 s per WSI (median tissue area= 173mm2). In the
second environment, we applied the same model to 30 WSIs, a
subset of the initial 1061. The running time was 14 min and 17 s,
or 29 s per WSI (median tissue area= 179mm2).

QuPath extension
QuPath is a popular open-source software platform for bioimage
analysis23. QuPath’s support for visualizing, annotating, and
analyzing whole slide images has led to the software being
widely adopted within the digital pathology community: to date, it
has been downloaded over 400,000 times and cited in over
2400 studies. We therefore developed the QuPath WSInfer
Extension as an alternative inference engine to make patch-
based classification widely accessible within a familiar, intuitive,
and interactive user interface.
The QuPath WSInfer Extension introduces patch-based deep

learning support to QuPath the first time, building upon the
software’s existing features to provide an end-to-end analysis
solution. Users are guided through the steps of selecting a deep
learning model and one or more regions of interest for inference.
The extension will then proceed to download the model if
required, generate tile objects, and run inference (powered by
Deep Java Library and PyTorch) at the appropriate resolution and
patch size. The user can then visualize the tile classifications and
view interactive maps of predicted class probabilities. Furthermore,
the tiles can be reused to run inference using additional models,
making it possible to integrate information across models. In this
way, for example, TILs may be identified using a tumor model and
a lymphocyte model. Finally, because the user has access to all
QuPath’s other features (e.g. for tile merging, cell segmentation,
data export), WSInfer can be integrated into sophisticated QuPath
analysis pipelines, which are run either interactively or through
automated scripts. We provide an example script on the
documentation website that applies a tumor model and lympho-
cyte model to produce a spatial map of tumor and TILs, and it is
possible that such maps may, in the future, assist pathologists in
estimating likelihood of treatment response.
The extension can use a GPU if one is installed and if CUDA

software is installed (please see “Code Availability” for a link to
documentation including installation instructions). A GPU provides
fast processing but may not be available for many users. We
measured the running time of the QuPath extension using the
breast tumor classification model “breast-tumor-resnet34.tcga-
brca” with CPU and GPU. Running time was 6 min 37 s on a
100mm2 region of interest using an Intel© Core™ i5-12600K
processor in Windows 11 with QuPath v0.4.4 and extension v0.2.1.
The same region took 40 s using an NVIDIA RTX 2080 Ti GPU in the
same environment.

Model zoo
We curated a collection of trained pathology models for broad,
unencumbered reuse and have hosted this Zoo on Hugging Face
Hub. Each model repository contains a model card24, pretrained
weights in TorchScript format, and a configuration JSON file. The
model card is a markdown file with human-readable metadata
including the purpose of the model, its architecture, description of
training data, how to apply it to new data, intended uses, and
relevant citations. TorchScript is a serialization format that contains
weights and a graph of the forward pass of the model, and it
allows the use of the model without a Python dependency. To add
a model to the Zoo, one creates a new model repository on
Hugging Face Hub and uploads a model card, TorchScript file of
the model, and configuration JSON file. One may optionally upload
other files as well. Crucially, the user owns the model repository
and can license and manage the contents independently. The
registry of models in the Zoo is maintained as a JSON file in a
dedicated public repository on Hugging Face Hub. After publishing
a model on Hugging Face Hub, one may submit a pull request to
this repository adding the model location to the registry.
We have also developed a client utility to enhance the

interoperability of the Zoo with other software. The client is
available as a Python package or command-line tool and primarily
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lists and downloads models from the Zoo. The client can also
validate Model Zoo repositories and model configuration JSON
files, functionalities we hope will ease the use of WSInfer.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The results published here are in whole or part based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga. Whole slide image files used in runtime
benchmarks may be downloaded from https://portal.gdc.cancer.gov/projects/TCGA-
BRCA. The whole slide image file shown in Fig. 1 is hosted at https://
portal.gdc.cancer.gov/files/d46167af-6c29-49c7-95cf-3a801181aca4. The Model Zoo Reg-
istry is available at https://huggingface.co/datasets/kaczmarj/wsinfer-model-zoo-json,
and all currently available models can be found at https://huggingface.co/kaczmarj.

CODE AVAILABILITY
The WSInfer Python Runtime is developed for Python 3.8+ and is available under the
Apache 2.0 license (https://github.com/SBU-BMI/wsinfer). We provide a user guide for
the command-line tool at https://wsinfer.readthedocs.io/en/latest/user_guide.html.
The QuPath WSInfer extension is also open-source software, written in Java (https://
github.com/qupath/qupath-extension-wsinfer). Please refer to https://
qupath.readthedocs.io/en/stable/docs/deep/wsinfer.html for documentation of the
QuPath WSInfer extension, including a step-by-step guide, guidance for GPU support,
and example scripts demonstrating the use of the extension in analysis pipelines.
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Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
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