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Integrative modeling uncovers p21-driven drug resistance and
prioritizes therapies for PIK3CA-mutant breast cancer
Hon Yan Kelvin Yip 1,8, Sung-Young Shin 1,8, Annabel Chee1,7, Ching-Seng Ang2, Fernando J. Rossello3,4,5,6, Lee Hwa Wong1,
Lan K. Nguyen1✉ and Antonella Papa 1✉

Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which
cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to
systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have
developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive
versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K
pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of
resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance,
we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted
drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the
associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively
caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our
integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to
prioritize combination therapies for PI3K-mutant breast cancer.
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INTRODUCTION
Cancer complexities undermine efficacy of anti-cancer treat-
ments, but identification of cellular and molecular contexts
provides opportunities for more effective therapies. PIK3CA
encodes the p110α subunit of PI3K and is mutated in ~40% of
luminal, estrogen receptor positive (ER+) breast cancer1. PI3K
phosphorylates PIP2 and generates PIP3, which activates
several effector targets to sustain cellular growth. The
3-phosphoinositide-dependent protein kinase 1, PDK1 and
AKT are critical mediators of the PI3K signaling output. PDK1
phosphorylates AKT on T308, and a second phosphorylation
event catalyzed by the mTOR complex 2 (mTORC2) on AKT
S473, leads to full AKT activation and promotion of cell growth
and proliferation (Fig. 1a)2.
Numerous drug agents have been developed to inhibit PI3K

pathway components for cancer treatment3. The PI3Kα inhibitor
alpelisib, i.e., BYL719, has been approved for the treatment of
PIK3CA-mutant, ER+ metastatic breast cancer and is in clinical
testing for additional malignancies4. However, PI3Kα inhibitors in
monotherapy fail to induce stable tumor remission due to a
number of factors, including dynamic reactivation of growth-
promoting signaling nodes which cause treatment failure5.
Acquisition of secondary mutations in compensatory genes also
contributes to resistance to PI3Kα inhibition6, highlighting the
urgent need to identify co-targets that complement single PI3Kα-
targeting agents.

To this end, studies have found that several markers of
resistance to PI3Kα inhibition are linked to reactivation of
members of the PI3K pathway. These include mTORC17,8,
p110β9, and activation of the PDK1-SGK1 axis10. Inhibition of the
Retinoblastoma tumor suppressor, Rb, via selection of high levels
of cyclin D1, was also reported to cause resistance to BYL71911,
indicating that cell cycle regulators play a critical role in
moderating cellular responses to this drug.
The discovery of various mechanisms of resistance to PI3Kα

inhibition in recent years has led to the development of
combination therapies that rescue the sensitivity to BYL719 in
pre-clinical models of breast cancer5. However, the wealth of
combinatorial treatments for BYL719-resistant breast cancer also
raises the challenge of how to best prioritize the application of
these new targeted therapies to improve patients’ outcomes.
Moreover, whether additional PI3K pathway-independent
mechanisms contribute to the resistance to PI3K-based therapies
in breast cancer has not been fully explored.
By integrating previously identified mechanisms causing resis-

tance to BYL719, we have constructed quantitative and predictive
mathematical models representing the PI3K signaling network
under a BYL719-sensitive versus BYL719-resistant cell state. Using in
silico modeling, we tested how targeted inhibition of each member
of the PI3K network synergized with PI3Kα inhibition, and the effect
this combination would have on cell proliferation. We found that
PDK1 was the top predicted co-target with PI3Kα suppressing
activation of critical biomarkers of resistance and enhancing
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response to BYL719 in parental and BYL719-resistant T47D cells.
Through phosphoproteomics we also found that control of DNA
damage response pathways by the cyclin-dependent kinase (CDK)
inhibitor p21 hides an unexpected vulnerability of BYL719-resistant
cells. Consistently, targeting the Checkpoint kinase 1, CHK1,

specifically caused death of BYL719-resistant T47D cells. Altogether,
these studies reveal the contribution of unappreciated markers of
resistance to PI3Kα inhibition, and provide an integrated framework
that can be exploited for the identification of more tailored
treatments for breast cancer patients.
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RESULTS
Integrated computational models capture signal dynamics of
PI3K network
To provide a systems-level understanding of signaling dynamics
occurring upon drug perturbations, including PI3Kα inhibition, we
developed a mechanistic computational model that captures the
complexity of the PI3K signaling network. The model was
formulated using ordinary differential equations (ODEs) describing
biochemical interactions as a series of ODEs based on established
kinetic laws12. The model integrates canonical components of the
PI3K pathway and contains reported signaling hubs implicated in
the acquired resistance to BYL719 (Fig. 1a). These include: p110α
and β-isoforms of PI3K and key downstream effectors (AKT/mTOR/
S6K1, SGK3/NDRG1, SGK1/FOXO3, P-Rex1/Rac1, c-Myc); parallel
signaling cascades (PI3K/AKT/mTOR, Ras/Raf/MEK/ERK, ERα) and
prominent receptor tyrosine kinases (RTKs) such as IGFR/IR and
ErbB; nodes converging on critical cell cycle checkpoints (CDKs/
Rb/Cyclin D/E and p21) (Fig. 1a). Importantly, the PI3K model also
encapsulates feedback and feed-forward molecular loops together
with reported crosstalk mechanisms: AKT/mTORC1/S6K1/IRS; AKT/
FOXO3/ErbB; CyclinD/CDKs/TSC2/mTORC1. Description of model
generation, model reactions, ODE equations, model scope and
assumptions are included in Supplementary Information.
To provide context specificity to the in silico representation of

the PI3K network, we calibrated our model against data obtained
from the ER+, T47D human breast cancer cell line harboring the
PIK3CA H1047R mutation, and sensitive to BYL71913. Model
calibration involves estimation of unknown model parameters to
minimize mismatch between experimental data and simulated
outputs12,14. To perform this, we employed a combination of new
kinetic and dose-response data together with published reports
monitoring phosphorylation and total levels of multiple nodes of
the PI3K network under distinct stimuli, IGF-1/Insulin and HRG (Fig.
1b and Supplementary Fig. 1A)15,16. Parameter estimation was
implemented using a genetic algorithm-based optimization
procedure coded in MATLAB (Supplementary Information). Given
the large size of our model, we assumed that multiple parameters
would likely fit the experimental data equally well, a phenomenon
commonly known as “model unidentifiability”16. To mitigate
potential biases of using a single best-fitted parameter set, and
overcome model unidentifiability, we employed an ensemble
approach whereby we repeated the parameter estimation process
with different starting points of parameter values, and obtained
multiple parameters sets (n= 77) that fitted the data with similar
high quality. These parameters sets were collectively used for
subsequent simulations (Supplementary Fig. 1B and Supplemen-
tary Dataset 1) and demonstrated a faithful replication of
experimental data (Fig. 1b). We refer to this calibrated model
the ‘parental PI3K model’ as it describes the state of the BYL719-
sensitive, parental T47D cell line.

To independently validate the parental PI3K model, we
generated new predictions and compared these to new experi-
mental data. We simulated dynamic activation of multiple network
proteins in T47D cells in response to growth-media stimulation
over 24 h, with or without BYL719, and performed corresponding
experiments for validation (Supplementary Fig. 1C, D). Simulations
correctly predicted that inhibition of key signaling markers such as
ERK, AKT, S6 and Rb would occur in T47D cells in response to
BYL719 (Supplementary Fig. 1D). These iterative computational-
experimental analyses allowed us to build a predictive model
tailored to study signaling dynamics in T47D cells.
To generate a computational model that recapitulates a cell-

state associated with resistance to PI3Kα inhibition, we established
pools of BYL719-resistant T47D cells, i.e., Resistant Pools (RP) 1,
RP2 and RP3 (Fig. 1c). We performed 2D and 3D growth assays and
found that BYL719 had a potent cytostatic effect on parental cells
while BYL719-RPs kept proliferating even under high BYL719
concentration, confirming their resistant behavior (Fig. 1c, d and
Supplementary Fig. 1E, F). We then profiled phosphorylation and
total levels of key components of the PI3K network in RPs and
T47D parental cells under standard growing condition, and used
these data to adjust the parental model and generate the
‘resistant PI3K model’ (Supplementary Fig. 2A, B and Supplemen-
tary Information). We further validated both models by generating
predictions of temporal changes in phosphorylation levels of
important molecular hubs (AKT, ERK and S6) upon BYL719
treatment. Model simulations showed rapid inactivation of these
signaling molecules in parental and RPs upon drug treatment (Fig.
1e) but also predicted that levels of phospho-S6 would remain
higher in RPs than parental T47D cells. Time-course characteriza-
tion of phospho-AKT, phospho-ERK and phospho-S6 in response
to BYL719 confirmed model predictions (Fig. 1f, g and Supple-
mentary Fig. 2C, D) and was consistent with previous reports7,8.
Collectively, we conclude that our parental and resistant-PI3K

models faithfully recapitulate signaling dynamics observed in
BYL719-sensitive and resistant T47D cells and define new
quantitative tools to explore signaling dynamics in defined
molecular settings.

Computational modeling prioritizes synergism between drug
combinations
To prioritize efficacy of combinatorial therapies for BYL719-
resistant breast cancer, we exploited our computational models
and simulated the effect of various pair-wise drug combinations
directed at PI3Kα and other components of the PI3K network. We
interrogated 24 network nodes and simulated the consequences
of inhibiting each of them along with PI3Kα. To assess the efficacy
of each drug combination, we used cyclin D1, Rb, and S6 as
molecular readouts given their established role in promoting cell
growth and resistance to BYL7197,8,11. Moreover, higher cyclin D1

Fig. 1 Mathematical modeling captures signaling pathways behaviors. a Integrated PI3K network model. IGFR: insulin-like growth factor-1
(IGF-1) receptor; IR insulin receptor, ErbB ErbB receptor family. Bar-headed lines indicate inhibitory processes, arrows reflect activations. Blue
lines denote crosstalk reactions, red lines reflect feedback reactions. See also Supplementary Tables 1 and 2. b Comparison of model
predictions (blue lines) and experimental data (red lines) in time-course and dose-response experiments with indicated time and growth
factors’ concentrations. Solid lines indicate mean values shown with associated standard error (n= 77 best-fitted parameter sets). ERK1/2 and
AKT phosphorylation were analyzed at 10, 30 and 90min of IGF-1 (13 nM) stimulation. Data were downloaded from HMS LINCS Center
(https://www.cancerbrowser.org/). Expression of Cyclin D1, p21, and cMyc, ERK1/2 and AKT phosphorylation were analyzed at 120, 240, 480,
and 720min of 1 nM Heregulin (HRG) stimulation15. Dose-response data of phospho-AKT and phospho-ERK upon HRG stimulation at 0, 0.05
and 1 nM were from Neve et al.15. Dose-response of phospho-AKT T308 and phospho-ERK T202/Y204 in T47D cells upon insulin stimulation at
0.1, 1, 5, 10 and 20 nM were generated in this study (Fig. S1A). Quantified values display single data points. c Generation of BYL719-resistant
T47D pools (RPs). d 2D growth assays of parental and RPs under steady state (left) or on 1 μM BYL719 (right). Inset: crystal violet of parental
and RP1 at day 6 of culture. Data are represented as mean ± SD. One-way ANOVA. ****p < 0.0001 (n= 3 replicates of culture). e Model
prediction of signaling response to BYL719 in parental T47D cells. Blue and red lines indicate parental and resistant model, respectively. Solid
lines denote mean values, error bars denote standard error (n= 77 best-fitted parameter sets), *p < 0.05. f Experimental validation using data
in (g) and Supplementary Fig. 2A, B. Data points are presented as mean ± SE *p < 0.05 (n > 3 independent experiments). g Parental and RP1
T47D cells were treated with 1 μM BYL719 for the indicated times; phosphorylation of candidate proteins were monitored by WB.
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levels and phospho-S6, and reduced Rb activity were found in our
RPs compared to parental T47D cells (Supplementary Fig. 3A).
In silico simulations compared the effect of inhibiting either

PI3Kα alone, one single PI3K network target, or PI3Kα plus a
network target, and assessed the synergism of each pair-wise drug
combination on cyclin D1 levels and phosphorylated Rb and S6
(Fig. 2a–f and Supplementary Fig. 3C, D). Possible synergistic
effects (or lack thereof) were quantified using the coefficient of
drug interaction (CDI) index where CDI < 1, =1, >1 indicate a
synergistic, additive, or antagonistic effect, respectively17. Accord-
ingly, CDI values allowed us to rank simulated drug combinations
and prioritize the most synergistic pairs for experimental
validation. We found strong consistency between predicted drug
combinations ranking across the molecular readouts indicating
robustness in model predictions (Supplementary Fig. 3B).
As previously indicated, our model simulations consistently

found that co-targeting IGF1R8, members of the SGK family of
kinases10, mTORC17 with BYL719, would reduce cyclin D1 levels,
promote Rb reactivation, and also inhibit S6 phosphorylation in
parental cells (Fig. 2a–c and Supplementary Fig. 3C) and RPs (Fig.
2d–f and Supplementary Fig. 3D), thus affecting the status of
biomarkers of resistance to BYL719. Notably, the top predicted
synergistic co-target with PI3Kα, for both parental and resistant
model, was PDK1 (Fig. 2a–f). Time-course simulations showed that
while single PI3Kα or PDK1 inhibition blocked major signaling
markers (phospho-AKT, phospho-S6, and cyclin D1) to some
extent (Fig. 2g), combined PI3Kα plus PDK1 inhibition markedly
and durably inhibited these signals over 48 h of drug treatment
(Fig. 2g). To validate this, we treated parental and RP cells with
BYL719 and the PDK1 inhibitor GSK2334470, either in single or in
combination, and measured the dynamic responses of phospho-
Rb, Cyclin D1, phospho-AKT and phospho-S6 over 48 h (Fig. 2h).
We found that BYL719 plus GSK2334470 suppressed these
growth-promoting markers more potently than single-drug
treatments, at 24 and 48 h (Fig. 2h and Supplementary Fig. 3E)
thus demonstrating durable synergism. Importantly, BYL719 plus
GSK2334470 significantly blocked growth of parental and BYL719-
resistant cells (Fig. 2i) confirming the superior anti-proliferative
effect.
Finally, to determine the suitability of PDK1 and PI3Kα as

therapeutic co-targets, we explored genetic dependencies using
the Cancer Dependency Map (DEPMAP) database17. We found
that compared to cells with wild-type PIK3CA (n= 13), PIK3CA-
mutant breast cancer cell lines (n= 7) displayed increased
dependency on PDK1 and were more susceptible to PDK1
knock-out for their proliferative capacity (Supplementary Fig. 3F).
Together, these integrated computational and experimental

analyses support the notion whereby co-targeting PI3Kα with
PDK1 defines an optimal strategy to fully inhibit PI3K pathway in
PIK3CA-mutant cells resistant to BYL719.

Selection of high p21 levels promotes resistance to PI3Kα
inhibition
To explore whether additional signaling axes outside the PI3K
network contribute to BYL719 resistance, we conducted quanti-
tative mass spectrometry (MS)-based phosphoproteomics. Par-
ental and RPs cells were processed according to the label-free
quantitative MS method (Fig. 3a) and phospho-peptides quanti-
fied (Fig. 3b and Supplementary Fig. 4A). Enrichment of phospho-
Ser/Thr and Tyr peptides allowed us to identify 8495 phospho-
peptides and 6065 total peptides (Fig. 3b). Ingenuity Pathway
Analysis (IPA)18 revealed that control of cell cycle checkpoints and
response to DNA damage pathways were both highly enriched in
RPs relative to parental, sensitive T47D cells (Fig. 3c). Consistently,
cell cycle analysis by flow cytometry confirmed that BYL719 had a
potent cytostatic effect on parental cells, which arrested in G0-G1

and G2-M phases, whereas RPs kept cycling and dividing
irrespective of the inhibitor (Fig. 3d).
Next, we monitored activation status and expression level of

key members of cell cycle checkpoints by Western Blotting (WB)
(Fig. 3e). In addition to confirming high levels of cyclin D1 and
phospho-Rb, we noticed that RPs showed an unexpected increase
in the levels of the CDK inhibitor p21 compared to parental cells
(Fig. 3e). These changes were accompanied by increases at the
mRNA level, indicating a likely transcriptional regulation (Fig. 3f).
Interestingly, this condition was unique to p21 as other CDK
inhibitors (p27, p18 and p53) showed no alterations across cell
lines (Fig. 3e). However, since T47D cells express a mutant p53
(p53L194F), to ascertain its biological role in this context, we
knock-out p53 in RP2s, generating RP2-p53KO cells, and found
that upon complete p53 depletion, p21 levels remained readily
detectable (Supplementary Fig. 4B). Furthermore, 2D growth
assays showed that the loss of p53 did not impair the proliferation
of RP2-p53KO cells in comparison to RP2-Scr (Supplementary Fig.
4C), indicating that the p53 L194F mutation does not exert
growth-promoting effects and that p21 expression in BYL719-
resistant cells is driven by p53-independent mechanisms.
Next, to assess whether p21 was able to regulate the

proliferative capacity of RPs, we utilized our computational
models and simulated the effect of varying p21 levels on key
markers of cell cycle progression and proliferation. Using the
parental PI3K model, we predicted that graded increases in p21
levels would upregulate cyclin D1, inhibit Rb, and increase
phospho-S6 (Fig. 4a). Moreover, the resistant PI3K model
estimated that diminishing p21 levels in RPs would reduce cyclin
D1 and phospho-S6 levels, and reactivate Rb, indicating the
presence of a crosstalk between these molecules (Fig. 4b).
Interestingly, others have previously shown that p21 can positively
regulate formation of the cyclin D1-CDK4/CDK6 complex19.
To confirm these predictions and validate a role for p21 in

promoting survival of RPs, we targeted CDKN1A (encoding p21)
with two independent guide RNAs, and generated RP-p21 knock-
down (KD) T47D lines. We found that reduced p21 levels
decreased cyclin D1 levels (Fig. 4c and Supplementary Fig. 5A)
and significantly impaired the growth capacity of all RPs (Fig. 4d
and Supplementary Fig. 5B). Our data also showed that p21KD
suppressed phosphorylation of Rb and S6 (Fig. 4c and Supple-
mentary Fig. 5A) and hence abated critical pro-survival signals.
Moreover, considering that the functional output of p21 can also
be influenced by its localization20, we next quantified the cellular
distribution of p21 in the T47D cell series by immunofluorescence
(IF). In cells maintained in growing conditions, we observed a
nearly equal distribution of p21 between the nucleus and
cytoplasm. However, upon BYL719 treatment, there was a marked
increase in p21 nuclear localization across all cell types
(Supplementary Fig. 5C). Notably, p21 nuclear distribution was
significantly more pronounced in RPs than in T47D cells
(Supplementary Fig. 5C). This suggests that not only resistant
cells exhibit higher levels of p21, but they also display a more
pronounced nuclear accumulation of p21 compared to their
parental counterparts.
Finally, we investigated the status of p21 in breast cancer

patients using public datasets (METABRIC and TCGA). We
confirmed that ~4% of breast cancer patients displayed
amplification/ increased expression of CDKN1A compared to
average levels across all samples (Supplementary Fig. 5D)20. We
then focused on breast cancer samples with PIK3CA mutations
and observed that PIK3CA-mutant patients with high CDKN1A
expression were associated with poorer overall patients survival
compared to patients with mutant PI3K but lower CDKN1A levels
(Fig. 4e). Notably, this correlation was not found in PIK3CA
wildtype patients (Fig. 4f). We also studied the association
between cyclin D1 and PIK3CA mutations given the established
oncogenic role of cyclin D1 in breast cancer, and its deregulation
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Fig. 2 Computational model predicts synergistic drug combinations. a–f Model prediction of drug synergism (synergy index, log2 scale)
was generated using coefficient of drug interaction (CDI) index based on phospho-S6, cyclin D1 levels, or phospho-Rb. Bars indicate mean
values ± standard error (see Supplementary Dataset 2). g Simulation of phospho-AKT, phospho-S6, and cyclin D1 levels in response to BYL719
and GSK2334470. Solid lines denote mean values, error bar denotes standard error (n= 77 best-fitted parameter sets), ###p < 0.001. h WB of
T47D parental and resistant cells (RP1) treated with BYL719 (1 μM) or GSK2334470 (0.5 μM), either alone or in combination, for 24 and 48 h.
i Growth curves of T47D cells treated with BYL719 (1 μM) and GSK2334470 (0.5 μM), either alone or in combination, for 6 days. Drugs were
added to the medium every 2 days. Data points are presented as mean ± SD. Student’s t test comparison between BYL719/GSK2334470 co-
treatment and BYL719 alone of the RP1, RP2 and RP3 on day 6 culture, ###p < 0.001 (n= 3 replicates of culture).
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in our experimental system. Surprisingly, high CCND1 levels did
not predict outcomes in breast cancer patients, irrespective of
the PIK3CA status (Supplementary Fig. 5E, F). Thus, these findings
suggest a unique cooperation between PI3K and p21 in breast
cancer malignancy.

To further corroborate these findings, we next generated T47D
cells resistant to the pan-PI3K inhibitor BKM-120. We found that
also in response to this alterative targeted therapy, the resulting
resistant pools displayed increased p21 levels compared to control
cells (Supplementary Fig. 5G). This indicates that selection of high-
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p21 levels plays a protective, pro-survival role in the face of
diverse PI3K-based therapeutic challenges.

Evasion of cellular senescence overcomes the anti-
proliferative effect of BYL719
The cytostatic effect induced by BYL719 prompted us to test
whether this cellular state was associated with therapy-induced
senescence (TIS). To test this, we scored percentages of cells
positive to the senescent marker β-galactosidase (β-gal) in
parental, RPs and RPs-p21KD T47D cells upon BYL719. We found
that parental cells showed low levels of senescence under
standard growing conditions (~7%) (Fig. 5a), and that addition
of BYL719 for 48 h significantly increased the β-gal positivity
(~55%) (Fig. 5a). RPs also showed low senescence in standard
conditions (~3%), but the addition of BYL719 only mildly increased
the percentage of β-gal cells (~13%), which remained significantly
lower than that observed in parental cells (Fig. 5a). Next, we
quantified the senescence in RP-p21KD pools and found that p21
knock-down in RPs restored percentages of β-gal positivity to
similar levels observed in parental cells (~40%) (Fig. 5b). These
data collectively indicate that BYL719 treatments induce a potent
senescence response in parental T47D cells and that selection of
high-p21 contributes to bypassing this cytostatic condition. We
also tested whether alterations in p16, another critical regulator of
cellular senescence occurred in these cells and found that p16
levels remained unchanged in parental and RPs even when these
were treated with BYL719 (Supplementary Fig. 6A). This demon-
strates that p21 plays a unique role in overcoming the BYL719-
induced senescence response.
We next asked whether PDK1 inhibition, like PI3Kα inhibition,

causes TIS. We found that treatment with the PDK1 inhibitor
GSK2334470 resulted in a threefold increase in senescence in
T47D parental cells compared to DMSO-treated cells (Supplemen-
tary Fig. 6B). However, in RPs, GSK2334470 only caused minimal
β-gal staining (Supplementary Fig. 6B). This indicates that similar
to PI3K inhibition, PDK1 inhibition triggers senescence in sensitive
cells, albeit to a lesser extent than that observed with BYL719.
Moreover, in 2D growth assays (Fig. 2i) we observed that BYL719-
RPs proliferated more rapidly than parental T47D cells even when
treated with GSK2334470, indicating that acquisition of resistance
to PI3K inhibition also confers resistance to single PDK1 inhibition.

Genomic instability is a vulnerability of BYL719-resistant
breast cancer cells
Senescence defines a quiescent cell state that can be induced by
DNA damage. To explore whether the senescence observed in
BYL719-treated T47D cells was associated with damage to DNA,
we immuno-stained the T47D cell series with the DNA damage
marker γ-H2AX and 53BP1. We found that 48 h of BYL719
treatment doubled the γ-H2AX positivity in parental cells, reaching
levels significantly higher than those observed in RPs (Fig. 5c).

Similarly, T47D cells showed diffuse 53BP1 nuclear staining in
DMSO which became localized in intense nuclear foci upon
BYL719 treatment; similar to γ-H2AX, the intensity of 53BP1
nuclear foci was higher in parental cells than RPs (Fig. 5d).
Importantly, p21KD rescued the γ-H2AX intensity in RPs, i.e., RP-

p21KD cells, compared to control samples (Fig. 5e). This led us to
conclude that prolonged PI3K inhibition causes DNA damage-
induced senescence and that selection of high-p21 levels
contributes to repair the damaged DNA and promotes exit from
this arrested cell state.
Given the increased DNA damage caused by BYL719 in T47D

cells, we next wondered whether targeting DNA damage response
pathways could provide a valuable approach to complement
PI3Kα inhibitors in the treatment of resistant cells. To this end, we
focused on essential regulators of the G2-to-M cell cycle
checkpoints whose blockade induces death of p53-mutant cells,
such as the T47D cells21. First, we found that RPs showed higher
phosphorylation levels of CHK1-Ser345, ATR-S428 and BRCA-
S1524, confirming that these cells have heightened activation of
DNA damage repair and replication checkpoints (Figs. 5f and 6a).
Second, we tested the cell viability of T47D cells upon increasing
concentrations of the CHK1 inhibitor MK-8776 (Fig. 6b). We found
that 3 days of MK-8776 treatment mildly but significantly limited
survival of parental cells and RPs, and caused a small percentage
of cell death (Fig. 6c). However, in combination with BYL719, CHK1
inhibition effectively constrained cell growth in parental cells (Fig.
6b) and also rescued the sensitivity of RPs to BYL719 (Fig. 6d).
Importantly, this effect was associated with increased DNA
damage (Fig. 6e), which not only partially rescued the senescence
response in RPs (Fig. 6f), but significantly enhanced their cell death
compared to single-drug treatments (Fig. 6g).
These data indicate that blocking CHK1 in combination with

BYL79 provides an effective therapeutic approach to specifically
target and kill BYL719 resistant cells (Fig. 6h).

Extending the applicability of experimental and in
silico models
To broaden the scope of our findings, we tested the response of
the osteosarcoma Saos2 cell line to BYL719, as these cells
demonstrated resistance to anti-cancer treatments following
induced p21 expression22. To this end, we chronically exposed
three independent plates of Saos2 cells to increasing concentra-
tions of BYL719 (starting at IC50: 2 μM), or DMSO (similar v/v) as
control. We generated 3 BYL719-resistant cell lines (BY-1, BY-2, and
BY-3) and confirmed that they proliferated more rapidly than
control cells in the presence of BYL719 (Fig. 7a). Importantly, we
detected elevated levels of p21 and CHK1 phosphorylation in
BYL719-resistant cells compared to control samples (Fig. 7b).
Consistently, a combination treatment of BYL719 and the CHK1
inhibitor MK-8776 effectively suppressed the growth of both cell
types. These data further support a role for high-p21 in drug
resistance, and highlight the efficacy of co-targeting PI3K and

Fig. 3 Phosphoproteomics identifies cell cycle checkpoints and DNA damage response pathways enriched in BYL719-resistant
T47D cells. a Phosphoproteomics work-flow: total protein lysates of T47D parental cells and RPs were processed and phosphopeptides
enriched through TiO2 beads. Phosphopeptides were quantified using data-dependent acquisition (DDA)-MS analysis. Raw data were
imported into MaxQuant to generate relative quantities; statistical analysis and data clustering were performed using Perseus v1.5.5.3, and
pathway analysis using Ingenuity Pathway Analysis, IPA. b Heatmap of significantly changed phosphosites (425) between RP and parental cells
(Student’s t test; p < 0.05, n= 3 biologically independent experiments). The phosphosite intensities were Z-score normalized followed by
unsupervised hierarchical clustering analysis. Phosphosites in yellow are intensities higher than the mean and in cyan are intensities lower
than the mean of the respective phosphosites across all samples. c Top enriched canonical pathways identified in RPs compared to parental
T47D cells. Green bars indicate cell cycle and DNA damage pathways. d Cell cycle profiles of T47D cells based on BrdU incorporation and
propidium iodide (PI) staining using flow cytometry (top). T47D cells were treated with vehicle, DMSO (0.1% v/v) or BYL719 (1 μM) for the
indicated durations. Bottom, table summarizing percentages of cells (mean ± SD) in different phases of cell cycle, n= 3 independent
experiments. ***p < 0.001 and ****p < 0.0001. e WB of T47D cells left untreated or treated with BYL719 (1 μM) for 1 and 24 h, and probed with
the indicated antibodies. f qPCR quantifying CDKN1A mRNA levels in T47D cells left under growing condition, or treated with 1 μM BYL719 for
24 or 48 h. Data are presented as mean ± SD, **p < 0.01 (n= 3 replicates of culture).
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CHK1 in therapy-resistant cells, especially those with mutations in
PI3K and p53 (Fig. 7c).
We next sought to evolve the in silico PI3K network model to

generate a phenomenological model that integrates major cell
cycle phases (encompassing G1, S, G2/M phases) and key

phenotypic outputs (i.e., DNA Repair, and Apoptosis). This
phenotypic model also incorporates DNA Damage (DD) and CHK1
activity as explicit model components to trigger biological
outcomes: DNA repair and cell viability, or apoptosis (Fig. 7d).
Using a similar simulation approach as with the original model, we
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determined the impact of co-inhibiting each node of the evolved
phenotypic model (n= 25, including CHK1) in conjunction with
PI3Kα on cell viability. A detailed description of the construction of
the new model along with model assumptions is provided in the
'Construction of the phenotypic model‘ section of the Methods;
while detailed rate equations and kinetic parameters are provided
as Supplementary Table S4 and Supplementary Dataset 3.
Model simulations revealed that co-inhibition of PI3Kα and

CHK1 exhibited a marked synergistic effect on suppressing cell
viability, ranked as the second most potent combination among
all the evaluated pairs (Fig. 7e). Co-inhibition of PDK1 and PI3K
remained the most synergistic combination (see Fig. 2a–f),
indicating the essential role of full PI3K pathway inhibition for
cancer suppression. Notably, the order of synergistic drug pairings
obtained from the phenotypic model closely aligned with the
predictions from the original PI3K model, reinforcing the
experimental synergy observed with CHK1 and PI3K inhibitors.

DISCUSSION
We have integrated computational and experimental approaches
to tackle an important question in breast cancer treatment:
resistance to oncogene-based targeted therapies. We have
studied molecular responses of a PIK3CA-mutant, ER+ breast
cancer cell line to short-term and chronic exposure to BYL719, and
defined signaling adaptations within the PI3K network that cause
drug resistance. Our model predictions show that PDK1 is the
most effective target enhancing the antitumor activity of BYL719
in sensitive and resistant T47D breast cancer cells. Modeling
showed that PDK1 plus PI3Kα inhibition display the highest
synergistic drug-score, superior also to compounds targeting
mTORC1 or cyclin D1 (Fig. 2a–f), which translated into stable
inhibition of markers of proliferation and growth suppression of
resistant cells (Fig. 2h, i). Thus, consistent with studies emphasizing
a role for PDK1 in promoting breast cancer malignancy23, our
predictions indicate that PDK1 is also a prominent target for the
treatment of resistant disease in ER+ breast cancers with PIK3CA
mutations. Notably, the in vivo efficacy of this drug combination
was previously reported in pre-clinical model of breast cancers10.
Our modeling also supports the notion whereby in a context in
which AKT is still inhibited (Fig. 1g) compensatory PDK1 activation
in response to BYL719 rescues a pro-growth signal by engaging
with the SGK1/3 kinases10,24. Consistently, RPs show higher
phosphorylation of the SGK1-target NDRG1 than parental T47D
cells (Supplementary Fig. 2A). Thus, by building and training new
in silico models, we have generated new tools that accurately
predict effective combinatorial therapies directed at key compo-
nents of the PI3K pathway. These tools can guide the prioritization
of combinatorial treatments when monotherapies fail.
Several oncogene based-targeted therapies have been

approved for breast cancer, however, lack of predictive biomarkers
of response remains a clinical hurdle5. Rapalogs and inhibitors of
CDK4/CDK6 ribociclib and palbociclib can improve response of ER
+/HER2− breast cancer to hormone therapies, but how to best
identify which patient benefits from one or the other therapy is

unknown25. Our in silico approach offers the ability to capture
context-specific and dynamics of cellular responses to clinically
relevant drugs, and provides a new means to analyze personalized
treatments for PIK3CA-mutant patients. In future, these models can
be integrated with additional datasets into unified quantitative
frameworks to rationally design and prioritize therapeutic
strategies for different types of breast cancers, or malignancies,
with PI3K alterations.
Beyond the PI3K network, we have also shown that T47D cells

become resistant to BYL719 thanks to the pro-survival effect
induced by the selection of high-p21 levels. Better known as the
CDK inhibitor downstream to the tumor suppressor p53, p21 has
been shown to regulate several biological processes in response
to DNA damage, in a p53-independent manner20. Upregulation of
p21 in response to oncogene induced DNA-damage (e.g., PML-
RARα) was reported to promote DNA repair and contributed to
stem cell maintenance in the hematopoietic and mammary
epithelial compartments26,27. By interacting with the proliferating
cell nuclear antigen (PCNA), p21 can displace DNA replication
enzymes and blocks DNA synthesis in favor of DNA repair28.
Consistently, we now show that p21 upregulation also occurs in
T47D cells and Saos2 cells upon chronic BYL719 treatments and,
by promoting repair of damaged DNA, high-p21 favors bypass of
therapy-induced senescence (TIS) (Figs. 5 and 7a–c). Our findings
provide multiple new insights into the events that ultimately
cause resistance to PI3Kα inhibition. First, we found that the
BYL719-induced cytostasis is associated with a senescence
response. While TIS has been observed in vitro and in vivo29,
including human studies in response to chemotherapies30,31 we
add that this also occurs in response to PI3Kα inhibition, and PDK1
inhibition (Fig. 5a and Supplementary Fig. 6B). Second, we find
that the BYL719-induced senescence is associated with DNA
damage, consistent with reports showing that the pan-PI3K
inhibitor BKM120 and BYL719 itself decrease de novo nucleotide
synthesis and cause replication stress in breast cancer models32.
Third, unlike the common knowledge whereby p21 promotes
senescence20, we find that selection of high-p21 favors evasion of
this cellular defense mechanism by promoting repair of damaged
DNA. Evasion of cellular senescence has been associated with
selection of tumor cells with stem-like properties33 and impor-
tantly, that p21 upregulation promoted senescence bypass was
previously reported in response to chemotherapeutic agents22. In
Li Fraumeni-derived fibroblasts and Saos2 osteosarcoma cells with
p53 loss, forced p21 expression caused an initial senescence
response but also favored selection of escaped cells with even
higher p21 levels, aggressive phenotypes, and resistant to
doxorubicin and cisplatin22. More recently, high-p21 levels were
shown to promote tumor growth and resistance to HER2-targeted
therapies in HER2 and PIK3CA mutant breast cancers34. Thus, we
conclude that high-p21 levels can be used as a biomarker to
identify tumor cells with potential acquired resistance to systemic
and targeted therapies inducing DNA damage.
Further, the dependency between high-p21 and repair of DNA

damage is underscored by the efficacy with which CHK1 inhibition
and BYL719 increase death rates of RPs (Fig. 6f), but show low

Fig. 4 p21 knock-down rescues sensitivity of RPs to BYL719. a, b Model predictions assessing inter-dependency between p21 levels and
biomarkers of resistance to BYL719. Increases in p21 level correlate with higher cyclin D1 levels, increased Rb and S6 phosphorylation, in
parental and resistant models. Solid lines indicate mean values, shaded areas indicate standard errors (n= 77 best-fitted parameter sets).
Simulation was carried out in 1 μM BYL719 treatment condition. c WB of T47D parental cells or with targeted p21 knock-down (KD). CRISPR/
Cas9 was used to transduce RPs with scramble (Scr) (RP1-Scr) or two independent guide-RNAs directed at CDKN1A (RP1-p21KD-1, and RP1-
p21KD-2). Cells were left either untreated or treated with 1 μM BYL719 for 24 h. See also Supplementary Fig. S5A. d CDKN1A knock-down re-
sensitizes T47D RP1 cells to BYL719. The T47D cell series was treated with 1 μM BYL719, refreshed every 2 days for 6 days. Crystal violet at day
6 of treatment, bottom. Data are presented as mean ± SD. One-way ANOVA, **p < 0.01 (n= 3 replicates of culture). See also Supplementary Fig.
5B. e Breast cancer patients (METABRIC) with alterations in PIK3CA (Mutations, Mut) and expressing high CDKN1A levels associate with poorer
patients’ outcomes compared to patients with PIK3CA mutations but low CDKN1A (n= 524 patients). f Probability of overall survival of breast
cancer patients harboring wildtype PIK3CA and high CDKN1A levels (n= 752 patients).
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toxicity on quiescent, parental T47D cells (Fig. 6c). CHK1 is a target
of the ATM/ATR kinases and is activated in response to DNA
damage and replication stress35, and controls replication initiation
forks36. CHK1 loss can lead to mitotic catastrophe and death in
cells with Tp53 alterations which have lost control of the G1/S

checkpoint, and rely on G2/M checkpoint regulators such as CHK1
to safeguard genome stability21. By inhibiting CHK1 activity in cells
that depend on DNA repair for survival, such as the BYL719-
resistant cells, we propose a new synthetic lethal approach based
on PI3Kα inhibition. Importantly, the synergism between CHK1
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inhibition and inhibition of PI3K pathway components has been
observed also in triple-negative breast cancer (TNBC) cell lines
with mutations in PI3K, PTEN, plus p5337, and extends to high-
grade serous ovarian carcinoma38. Thus, in a mutant p53
background, high-p21 level sensitizes cells to compounds that
target DNA synthesis and DNA repair, and defines a vulnerability
of cells treated with DNA damaging agents, including PI3K
inhibitors.
Finally, we assessed whether PDK1 inhibition affected p21 levels

in parental and RPs and noticed that when combined with
BYL719, GSK2334470 decreased p21 levels (Fig. 2h). Interestingly,
p21 protein stability is controlled by the mTORC1 substrate 4EBP1,
and active mTORC1 leads to higher p21 protein levels39. Therefore,
by repressing mTORC1 activation, PDK1 inhibition also affects p21
protein stability and defines a strategy to limit p21 upregulation.
Collectively, in this study we have generated new computa-

tional tools and identified critical genetic determinants causing
resistance to PI3K-based therapies and propose new combination
treatments for PIK3CA-mutant resistant breast cancers.

METHODS
Computational modeling
Mathematical models were formulated using ODEs based on
synthesis of model components and network interactions.
Detailed accounts of model reactions, reaction rates and
equations are included in Supplemenatary Tables S1 and 2.
Model construction and simulation were implemented in
MATLAB in conjunction with the IQM toolbox (https://
iqmtools.intiquan.com/). The parental PI3K model was fitted to
experimental data and parameter estimation, and was imple-
mented using genetic algorithms as part of the Global
Optimization Toolbox in MATLAB. Values of all best-fitted
parameter sets are provided in Supplementary Dataset 1.
The resistant PI3K model was derived from the parental model

by adjusting initial conditions of model species between parental
and RPs, guided by experimental measurement. Details on model
generation, scope and assumptions, as well as model fitting are
provided in the Supplemental Information.

Mathematical model description and assumptions
To systematically and quantitatively interrogate the dynamic
cellular response to drug treatments and the adapted behaviors of
the PI3K signaling network, we constructed a dynamic mathema-
tical model that integrates canonical components of the PI3K
pathway and major reported signaling axes implicated in the
acquired resistance to PI3K inhibition.

Upstream receptor tyrosine kinases (RTKs)
The PI3K pathway sits downstream multiple RTKs including the
IGF-1R/IR and ErbB families of tyrosine kinase receptors40,41, which
have been shown to confer resistance to PI3Kα inhibition42–44.
Thus, IGF-1R/IR and ErbBs were chosen as single model species,
each representing their respective RTKs family. In addition, ErbB2
(HER2) and ErbB3 (HER3) are the most abundantly expressed
members of their RTKs family in T47D cells45, and act as preferred
binding partners among the ErbB family receptors, thus defining
prototypical molecules in our model system46.
Our model incorporates the p110α and β isoforms of PI3K and

their key downstream effector signaling axes, such as AKT/mTOR/
S6K1/S6, SGK3/NDRG1, SGK1/FOXO3, P-Rex1/Rac1 and c-Myc (Fig.
1a). Their inclusion is based on studies showing that p110β and
SGKs confer resistance to isoform selective or pan-PI3K inhibi-
tors42,47,48. Our model also includes the Ras/Raf/MEK/ERK MAPK
signaling pathway, a major crosstalk pathway that displays
reciprocal interplay with the PI3K signaling and frequently confers
resistance to inhibitors targeting PI3K/AKT signaling41,49. Both IGF-
1R/IR and ErbB can promote activation of the p110α/β/PIP3/PDK1-
AGC protein kinase family (AKT, SGK1, and SGK3) pathways; and
ErbB directly activates the Ras-Raf-MEK-ERK pathway, as shown in
Fig. 1a.

Cell cycle machinery
An important feature of our mechanistic model is the incorpora-
tion of the critical cell cycle machinery (CDKs/Rb/Cyclin D/E/E2F
and p21), downstream PI3K/AKT/mTOR and the Ras/MAPK path-
way. We assumed that mTORC1 controls the translation of c-Myc
and cyclin D1 mRNA by activating eukaryotic translation initiation
factor 4E (eIF-4E)50,51. The transcriptional repressor activity of Rb
can be antagonized by sequential phosphorylation events,
initiated by cyclin D1-CDK4/6 in early G1 phase, followed by
cyclin E-CDK2 in late phase52. Hyper-phosphorylated Rb loses its
association with chromatin to release its suppressive role on E2Fs
in the nucleus53. E2Fs induces expression of cyclin E indepen-
dently and also in collaboration with Myc54, as shown in Fig. 1a.
The model also includes the positive auto-regulation of E2F54.
Expression of p21 was assumed to be regulated by ERK55.
Furthermore, AKT phosphorylates p21 and enhances its protein
stability, which promotes cell survival56.

Major feedback loops and crosstalk mechanisms
Signaling dynamics and drug response behaviors are strongly
determined by the presence of positive and negative feedback
interactions within signaling networks41,57. Thus, our model aimed
to capture these events through a careful synthesis of the
literature. Below we discuss the salient mechanisms included in
the model.

Fig. 5 Resistance to BYL719 overcomes DNA-damage induced cellular senescence. a β-gal senescence assay of parental and RP cells left
untreated or treated with 1 μM BYL719 for 48 h. Percentages of β-gal positive cells were calculated by dividing the number of β-gal (blue) cells
over the total number of nuclei (DAPI). Violin plots showing median plus 1st and 3rd quartiles. Kruskal–Wallis analysis, *p < 0.05, **p < 0.01,
****p < 0.0001; ####p < 0.0001 for comparison between cells in BYL719. Right, β-gal stains (bright-field) of parental and RP cells treated as
indicated. Scale bar= 50 μm (n= 10 fields of view). b Percentage of senescence in RPs with targeted p21 KD, quantified as in (a). Right, β-gal
staining of T47D cells treated as indicated. Violin plot showing median plus 1st and 3rd quantiles. Kruskal–Wallis analysis, *p < 0.05,
****p < 0.0001; ####p < 0.0001 for comparison between RPs and Parental cells (n > 10 fields of view). c γH2AX fluorescence intensity was
quantified in parental T47D cells and RPs upon 1 μM BYL719 treatment for 48 h; each data point represents one nucleus. Mean ± SD is shown,
one-way ANOVA, ****p < 0.0001 (n > 40 nuclei per group). Bottom, representative γH2AX images of parental and RPs in 1 μM BYL719 for 48 h.
Scale bar= 5 μm. d 53BP1 fluorescence intensity was quantified in parental T47D cells and RPs upon 1 μM BYL719 treatment for 48 h; each
data point represents one nucleus. Mean ± SD is shown, one-way ANOVA, ****p < 0.0001. Bottom, representative 53BP1 images of parental
and RPs in 1 μM BYL719 for 48 h. Scale bar= 5 μm. e DNA damage quantification of T47D cells with targeted p21 KD and treated with 1 μM
BYL719 for 48 h. γH2AX fluorescence intensity was quantified as in (d). Mean ± SD is shown, one-way ANOVA, ****p < 0.0001 (n > 40 nuclei per
group). Representative images of γH2AX in parental and RPs. Scale bar=5 μm. fWB analysis of DNA damage repair activators in T47D parental
and RP cells treated with 1 μM BYL719 for 48 h.
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Rb-mediated feedback to mTORC2/AKT. We assumed that hyper-
phosphorylated Rb directly suppresses the kinase activity of
mTORC2 toward its substrate AKT. This was because phosphory-
lated Rb binds Sin1, an integral component of mTORC2, thereby
blocking AKT access to mTORC2, and ultimately leading to

attenuated AKT activation58. This constitutes a negative feedback
loop between Rb and mTORC2/AKT.

Cyclin D1-CDK4/6 mediated feedback loop. Another feedback
loop emanating from the cell cycle module to an upstream
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pathway is governed by cyclin D1-CDK4/6 complex, which
phosphorylates and inhibits TSC2 at Thr-146259. This effectively
generates a positive feedback between Cyclin D1-CDK4/6 and
mTORC1, as shown in Fig. 1a.

S6K-mediated negative feedback loop. There are a number of
known negative feedback loops originating from mTORC1 that
ultimately limit PI3K/AKT activation, including one mediated by
S6K and one by Grb10, both acting through IRS1/22. Although
these feedback mechanisms are biochemically distinct, function-
ally they act in a similar manner, that is to shut down PI3K/AKT
activation when it is exceedingly high. Thus, to keep the model
simple yet biologically relevant, we only included the S6K-
mediated feedback loop60–62.

GAB-mediated feedback loop. A major role of PI3K is to catalyze
PIP2 phosphorylation to PIP2. In the model, we assumed that PIP3
in turn can recruit the adapter proteins GAB1/2, which enhances
PI3Kα and β activation through association with the p85 subunit
of PI3K63–65. Effectively, these interactions create positive feedback
loops between PI3K and GAB1/2.

P-Rex1-mediated feedback loop. P-Rex1 is a guanine nucleotide
exchange factor (RacGEF) of Rac1, which promotes the activity of
Rac1. Interestingly, P-Rex1 is activated by PIP366–68. Moreover,
p110β is a direct Rac1 target, and Rac1 activates p110β69. Thus,
these interactions form a positive feedback loop between P-Rex1
and p110β via Rac1 and PIP3, as shown in Fig. 1a. In addition,
P-Rex1 catalyzes the activation of Rac1, which sequentially
stimulates the kinase activity of PAK170. PAK1 enhances ERK
signaling by phosphorylation of Raf-1 (S338) and MEK1
(S298)71–73. For simplicity, we assumed that Rac1 directly
phosphorylates MEK.

ERK-mediated feedback loops. Multiple negative feedback
mechanisms are induced by ERK towards upstream signaling
components, including Raf, Ras and RTKs74. In our model, we
included two ERK-mediated negative feedback loops on Ras and
ErbB as representatives of a short- and long-feedback loop (Fig.
1a) in a nested feedback structure. We have previously demon-
strated that individual feedback loops within coupled structures
like this possess distinct dynamics-modulating function74, thus
supporting the explicit modeling of two ERK-mediated loops.

FOXO3-mediated feedback loop. Both AKT and SGK1 phosphor-
ylates FOXO3 at residues T32, S253 and S315, which promotes

FOXO3 binding to 14-3-3 proteins and decreases its interaction
with transcription coactivators CBP/p30075,76; note that SGK1 has a
marked preference for Ser-315, whereas AKT favors Ser-25376.
FOXO3 binds to S1/S4 on the ESR1 promoter and induces ERα
expression77.

ER-mediated feedback loops. The estrogen receptor (ER) plays a
key role in the progression of breast cancer, particularly the
luminal subtypes that encompass the T47D cell line. Once bound
by estrogens, ER dimerizes and translocates to the nucleus where
it interacts with transcriptional proteins78. In the model, we
assumed that ERα induces the expression of c-Myc79 and promote
the expression of SGK380,81. ERα signaling is also regulated by
other network components, including FOXO3 and ERK. FOXO3 is
known to bind to the ERα promoter and enhance ERα signaling77;
and ERK1/2 phosphorylates ERα at a number of serine sites which
increases its activity82. These interactions are captured in our
model, as displayed in Fig. 1a.

NDRG1-mediated feedback loop. In the model, we assumed that
ErbB is negatively regulated by NDRG1 since NDRG1 enhances the
interaction of ErbB with the ubiquitin ligase NEDD483,84. Further-
more, NDRG1 is phosphorylated by SGK1/3 at T346/T356/T366,
priming it for further phosphorylation by GSK-3β at S342/S353/
S46285,86. Phosphorylation by GSK-3β is a common priming event
for ubiquitination by the E3 ligase SCF complex Fbw786. Thus,
Fbw7 targets NDRG1 for degradation by the 26S proteasome86.

Other crosstalk mechanisms. There are multiple reciprocal cross-
talk mechanisms between the PI3K/AKT and Ras/ERK pathways. In
the model, we assumed that Ras directly activate PI3Kα through
interacting via an amino-terminal Ras-binding domain (RBD)69. In
the opposite direction, AKT phosphorylates and inhibits Raf, which
leads to inhibition of the Raf/MEK/ERK cascade87,88, providing
another crosstalk point between the two pathways. In addition,
ERK phosphorylates GAB1 at six serine/threonine residues (T312,
S381, S454, T476, S581, S597)89, which inhibit GAB1/PI3K
association and thus suppresses the activity of PI3K90. ERK can
also phosphorylate GAB2 and negatively regulates p85 recruit-
ment91. Thus, in the model we assumed that ERK inhibits GAB,
providing another crosstalk point between the two pathways.

Model implementation
The new PI3K-centered model was formulated using ordinary
differential equations (ODEs) following the interaction map

Fig. 6 CHK1 inhibition sensitizes BYL719-resistant T47D cells to death. a WB of parental and RPs treated with 1 μM BYL719 for 24 h and
probed with the indicated antibodies. b T47D parental cells and RPs were treated with 1 μM BYL719 alone or in combination with either 5 or
10 μM of the CHK1 inhibitor MK-8776 for 3 days. Cell viability was quantified using CellTiter-glo, Data presented as mean ± SD, one-way
ANOVA, ****p < 0.0001 (n= 3). c T47D parental cells and BYL719-RPs were treated with the indicated doses of MK-8776 for 4 days and
percentage of dead cells quantified through PI staining. Data presented as mean ± SD, one-way ANOVA comparison between DMSO and MK-
8776 treatments of the same cell line, **p < 0.01. ****p < 0.0001 (n= 3). d Growth curve of T47D cells treated with BYL719 (1 μM) or MK-8776
(5 μM) alone or in combination for 6 days. Drugs were refreshed every 2 days. Data points represent mean ± SD, one-way ANOVA,
****p < 0.0001, Student’s t test, ###p < 0.001 comparing response to BYL719 alone or in combination with MK-8776 between RPs and parental
cells (n= 3). e DNA damage quantification in parental and RPs treated with 1 μM BYL719 and 5 μM MK-8776 for 48 h. γH2AX fluorescence
intensity was quantified and each data point represents one nucleus. Mean ± SD is shown, one-way ANOVA, ***p < 0.001 (n > 40 nuclei per
group). f β-gal assay of parental and RPs treated with BYL719 (1 μM) or MK-8776 (5 μM) alone or in combination for 4 days. Percentage of
positive cells was calculated as the number of β-gal positive cells over total number of nuclei. Violin plot showing median plus 1st and 3rd
quantiles. Kruskal–Wallis analysis, *p < 0.05; #p < 0.05, ##p < 0.01, ####p < 0.0001 for comparison between treatments of the same cells (n > 10
fields of view from each triplicate wells). g Cell death assay of T47D parental cells and RPs treated with BYL719 (1 μM) or MK-8776 (5 μM) alone
or in combination for 6 days. Number of dead cells were quantified through PI staining and normalized over total cell number quantified by
Hoechst 33342 dye. Data are presented as mean ± SEM, one-way ANOVA, ***p < 0.001, ****p < 0.0001; #p < 0.05, ####p < 0.0001 for comparison
with BYL719 treated cells (n= 3 replicates of culture). Inserts show PI-stained (red) T47D parental cells and RP1 cells in different conditions.
Nuclei counterstained with Hoechst33342 (blue). Scale bar= 100 μm. h BYL719 treatments cause DNA damage and senescence in T47D cells.
Selection of high-p21 levels promotes repair of damaged DNA and evasion of drug-induced cellular senescence. p21 can also promote
formation of the cyclin D1-CDK4/CDK6 complex, further supporting cell cycle progression19,116. In combination with BYL719, the CHK1
inhibitor MK-8776 leads to excessive DNA damage and death of BYL719-resistant cells.
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depicted in Fig. 1a. The rate equations and full set of ODEs are
given in Supplementary Tables 1 and 2. The model was
implemented and numerically solved using MATLAB in conjunc-
tion with the IQM Tools (https://iqmtools.intiquan.com/) and the
SUNDIALS suite (SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers, https://computing.llnl.gov/projects/sundials).
This combination of tools provides a scalable and powerful

approach to construct and simulate ODE models of medium to
large size, such as our model. Specifically: (1) an ODE function file
containing definition of all model reactions, reaction rates and
rate equations is created in IQM Tools based on the IQM syntax;

(2) the ODE function file is transformed into C source code by
IQM; (3) MATLAB then compiles and links the C code and
SUNDIALS libraries into a binary MEX file; (4) and finally the MEX
file is used for numerical solving by SUNDIALS’s ODE solver
package CVODE. The main reason we employed SUNDIALS is
because CVODE is significantly faster (~10 times) than conven-
tional MATLAB solvers such as ODE15s in solving stiff and non-
stiff ODE systems. Note that the speed may depend on a
complexity and stiffness of the ODE systems. Essentially, the IQM
toolbox provides an efficient MATLAB interface to SUNDIALS’s
CVODE package.

Fig. 7 High-p21 and increased CHK1 activation in Saos2 BYL719-resistant versus parental cells. a Cell growth assays shown as log2 fold-
change (FC) of Saos2 parental and resistant pools (BYs) in either DMSO (Steady-state) or 2 μM BYL719. b WB showing increased levels of p21
and pCHK1-S345 in resistant compared to parental Saos2 cells treated with 1 and 2 μM BYL719 for 24 h. c Growth curves showing that BYL719
and MK-8776 better suppress growth of Saos2 BYs than single treatments. d The phenotypic model: a phenomenological model containing
major cell cycle phases (encompassing G1, S, G2/M phases) and key biological outcomes, such as DNA Repair (R) and Cell Apoptosis (A). See
also Supplementary Table 4 and Supplementary Dataset 3 for rate equation and kinetic parameters. BYL: PI3Kα inhibitor, BYL719. MK: CHK1
inhibitor, MK-8776. Arrow: activation, bar-headed arrow: inhibition process. e Model simulations of drug synergism for 25 drug pairings co-
targeting PI3K. Error bars indicate mean values ± standard error (n= 77). Single drugs are combined using either their IC50 (top panel) or an
IC75 (bottom panel) concentration, displaying consistent results.
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Model calibration and generation of “parental PI3K model”
Kinetic parameters in dynamic models are not determined
experimentally and require calibration, or fitting, through experi-
mental data to estimate unknown parameters. The potential
discrepancy between simulated model output and experimental
data can be minimized to find the best parameter values92,93.
Model calibration is a critical step that provides a specific
biological context to an otherwise ‘generic’ model. In this study,
parameter estimation was performed by identifying the parameter
set p in order to minimize the following ‘objective function’ that
quantifies the mismatch between experimental measurements
and corresponding simulated outputs94:

JðpÞ ¼
XM

j¼1

XN

i¼1

yDj;i � yjðti; pÞ
σj;i

 !2

where M is the number of the experimental datasets used for
fitting; N is the number of time points within each dataset; yj (ti,p)
represents the numerically solved value of the model state
variable yj evaluated at time ti and parameter set p; while yDj,i is
the mean value of the corresponding data point at ti with the
associated variance of measured data σj,i. Note that when
averaged or single valued data are used, σj,i is set to be 195.

Model calibration for T47D parental cells. We first generated a
‘parental model’ by performing model calibration using datasets
obtained exclusively from the parental T47D breast cancer cell
line. These include time-course and dose-response data of
phosphorylated AKT and ERK, and expression of Cyclin D1 and
p21 in response to stimulation by IGF-1, insulin and HRG, which
were quantified and presented in Fig. 1b. ERK1/2 and AKT
phosphorylation data by IGF-1 were downloaded from HMS LINCS
Center (https://www.cancerbrowser.org/). ERK1/2 and AKT phos-
phorylation data and total level of cyclin D1, Myc and p21 by HRG
were sourced from Neve et al., T47D cells15. Dose-response data of
pAKT and pERK levels upon HRG stimulation were obtained from
Neve et al., T47D cells15. Dose-response of pAKT, pERK and pS6
levels in T47D cells upon insulin stimulation were obtained from
in-house experiments.

Genetic algorithm specification. We employed a genetic algo-
rithm (GA) to optimize the objective function J due to its ability to
avoid being trapped in local minima, use probabilistic selection
rules, and based on our experience, work well for ODE models
with a large number of parameters96–98. This was implemented
using the Global Optimization Toolbox and the function ga in
MATLAB. Selection rules select the individual solutions with the
best fitness values (i.e., elite solutions) from the current popula-
tion. The elite count was set to 5% of the population size.
Crossover rules combine two parents to generate offspring for the
next generation. The crossover faction was set at 0.8. Mutation
rules apply random changes to individual parents to generate the
population of the next generation. For the mutation rule, we
generated a random number from a Gaussian distribution with
mean 0 and standard deviation σk, which was applied to the
individuals of the current generation. The standard deviation
function (σk) is given by the recursive formula as follows:

σk ¼ σk�1 1� k
G

� �

where k is the kth generation, G is the number of generations, and
σ0= 1.

Calibration implementation. Due to the size of our model, model
calibration was carried out on a multi-processor virtual server
consisting of 32 Intel Xeon 2.10 GHz processors running in parallel.
To derive at the best fitted parameter set, we performed repeated

GA runs with population size of 2000 and the generation number
set to 100. During these runs, we also changed the mutation rate,
crossover rate and even the population size in order to escape
from being trapped in local minima99. After multiple repetitions of
the GA process where the best fitted set obtained from a previous
repeat was used as the starting point of the next repeat, we
arrived at a best fitted set as the objective function was not further
reduced, and the fitted parameter values no longer change.

Ensemble simulation to mitigate issues with model unidentifiability.
Dynamic models in systems biology, particularly those of large
size, face challenges of poor identifiability. This is primarily due to
a lack of informative experimental data, and the existence of ‘local
minima’ in the objective function landscape100. Thus, generally
there is a trade-off between model identifiability and level of
biological details. In this regard, our PI3K model suffers from
unidentifiability because of its detailed scope and interactions,
which were a deliberate design decision as we aimed to capture
mechanistic feedbacks and crosstalk between multiple related
pathways, and to facilitate a comprehensive prediction of drug
response and drug combinations. To cope with this issue, we
employed a two-pronged approach. First, we avoided the reliance
(and possible biases) on a single best-fitted parameter set by
repeating the GA-based procedure described above hundreds of
time, each time with a different initial guess (generated from a
log-uniform distribution in a range between −3 and 3), to obtain a
final total of 77 independent best-fitted parameter sets that fitted
the training data equally well (see Supplementary Fig. 1B and
Supplementary Information). Critically, rather than using any
single sets, we utilized all the obtained sets collectively for
subsequent simulation and analysis, considering explicitly the
mean and variance of simulated behaviors. This ‘ensemble’
strategy thus allows us to generate high-confidence predictions
without strictly imposing identifiability on our model. Second, to
gauge the calibrated model’s predictive power before making
entirely new predictions, we further validated it with independent
datasets that were not used during calibration (for example, see
Supplementary Fig. 1A–D and relevant discussion in the main
text). Together, our approach helps maximize the predictive
capability of our parental model.

Generation of “resistant PI3K model”
To generate a model describing the state of T47D cells resistant to
BYL719 (called the resistant PI3K model) we comparatively
profiled the basal (i.e., under standard growing condition)
expression and/or phosphorylation levels of key network compo-
nents between resistant and parental T47D cells. We next utilized
this data to modify the basal signaling levels of the parental model
and produced the resistant PI3K model. For example, our data
showed that the expression levels of p21 and Cyclin D1 were
about 7 and 3 folds higher in resistant cells than parental T47D
cells, respectively; while the levels of AKT and ERK are relatively
similar between the two cell types (Supplementary Fig 2C, D).
Thus, in the resistant model, the initial concentrations of p21 and
Cyclin D1 were adjusted accordingly to reflect the differential
values in expression. This model customization strategy has been
previously employed by us95,101 and others102, and proved to be a
simple yet efficient strategy to specify models with the same
network wiring to different biological contexts.

Construction of the phenotypic model
Our data shows that BYL719 treatment causes DNA damage in
T47D cells (Figs. 5 and 7d). Accumulation of DNA damage can
prompt cells to initiate apoptosis and prevent proliferation of
damaged cells. A crucial early step in this process involves the
recruitment of the Mre11/Rad50/NBS1 (MRN) complex to double-
stranded DNA break sites103–105. This action primes ATM
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activation, culminating in its auto-phosphorylation. Concurrently,
ATR becomes active and similarly undergoes auto-
phosphorylation. Once activated, both ATM and ATR phosphor-
ylate a number of downstream targets, notably c-Abl (a non-
receptor tyrosine kinase that phosphorylates the BH3-only protein
Bim, countering the anti-apoptotic process) and specific caspases
(namely caspase-8, -9, and -3)106–108.
For model simplicity, we assumed that DNA damage directly

promoted apoptosis. The model also incorporates DNA damage-
driven CHK1 activation, given that both ATM and ATR phosphor-
ylate CHK1109. Once activated, CHK1 orchestrates the phosphor-
ylation of diverse targets, including CDC25A, B and C, as well as
p53110. This phosphorylation cascade inhibits CDC25A, B and C,
blocking the transition to the G2/Mitosis phases. Concurrently,
CHK1 also promotes DNA repair (R) by regulating the expression
of DNA repair genes through activation of the transcription factor
GADD45111,112. Importantly, Cyclin D1 and cyclin E, outputs from
the mechanistic PI3K network model, drive the transition from G1
to S phase and act as inputs into the phenomenological model,
thereby linking these two models to make up the new phonotypic
models.
As with the original models, the phenotypic model was

formulated using ordinary differential equations (ODEs) based
on established kinetic laws95,101 (Supplementary Table 4). The
model was then used to assess the impact of co-inhibiting PI3K
with each of the 25 model nodes, including CHK1 as co-target, on
cell viability. Cell viability was defined as the number of cells in
DNA repair phase (R) or in G2/M phase (M), the latter emerging
from successful DNA repair (Fig. 7d).

Establishment of cell lines resistant to targeted therapies
The T47D human breast cancer cell line was purchased from the
ATCC and cultured in RPMI1640 media supplemented with 10%
fetal calf serum, 0.2 Units/ml of insulin, and 1% penicillin/
streptomycin, as recommended. T47D cells were split in 1:3 to
1:4 twice a week. Cells with passage number lower than 20 were
used in all experiments. To establish BYL719-resistant cell pools,
T47D cells (200,000 per well in a 6-well plate) were exposed to
increasing concentrations of BYL719 (Selleckchem, #S2814),
starting with 1 μM and up to 30 μM, over 2 months. T47D resistant
pool 1, 2 and 3 (herein RP1, RP2 and RP3) were generated and
maintained in 1 μM BYL719, pulsed every 2 days. Similar
procedures were used for the generation of T47D cells resistant
to BKM-120 (Supplementary Fig. 5G).
For Saos2 cells, three independent plates of cells were

chronically exposed to increasing concentrations of BYL719
(starting at 2 μM), or DMSO (similar v/v) for comparison. DMSO-
treated cells reached confluency every 4–5 days, BYL719-treated
cells remained quiescent for several weeks. However, after
6 weeks, BYL719-treated cells started to proliferate and to grow
under selection.

CDKN1A and Tp53 knock-down via CRISPR/Cas9
The Alt-R CRISPR-Cas9 System kit (Integrated DNA Technologies)
was used to knock-down CDKN1A (p21) and TP53 in T47D cells
according to the “Cationic lipid delivery of CRISPR ribonucleopro-
tein complex into mammalian cells” user guide Version 3. Briefly, a
Cas9:crRNA:tracrRNA ribonucleoprotein (RNP) complex was gen-
erated by mixing equimolar concentrations of crRNA and tracrRNA
stocks in nuclease-free duplex buffer, followed by the addition of
the Cas9 enzyme and Cas9 PLUS reagent, mixed in Opti-MEM
medium. Two independent crRNAs targeting CDKN1A (i.e., AB and
AD) and one targeting Tp53 (i.e., AA) were used in this study.
Transfection was performed by mixing 400,000 T47D RP cells with
the RNP complex and lipofectamine 3000 in a 12-well plate. Cells
were left undisturbed in a tissue culture incubator (37 °C, 5% CO2)
for 48 h, after which complete RMPI medium with 10% FBS was

used. CDKN1A knock-down was assessed by Western blotting
using the indicated p21 and p53 antibody.

Cell growth assays
T47D cells were plated in 24-well plates (25,000 cells/well) in full
growth medium and left to attach overnight. The day after, one of
the plates was washed in 1X PBS and fixed in 10% formalin at
room temperature (RT) for 15min, then washed with 1X PBS twice
and stored at 4 °C until the end of the experiment (Day 0 plate).
Remaining plates were treated as indicated in figures, and fixed on
day 2, 4 and 6. At the end of the assay, cells were stained with
crystal violet solution (0.1% (w/v) crystal violet in 20% methanol/
dH2O at RT for 30 min. Each well was washed in 1X PBS three
times and air dried overnight. Cell-bounded crystal violet was
extracted in 10% (v/v) acetic acid solution for 30min. Solutions
were transferred to a 96-well plate and their absorbance
measured at 590 nm using a PHERAstar FSX plate reader.

Protein lysates and immunoblotting
T47D cells (150,000 cells/well) were plated in 6-well plates and
treated as indicated. Standard protocols were used for western
blotting analyses. At the end of each experiment, cells were
washed in ice-cold PBS, scraped in RIPA lysis buffer (20 mM Tris-
HCl pH7.8, 150mM NaCl, 1% (v/v) NP-40, 0.05% (w/v) Sodium
Deoxycholate, 0.4% (w/v) SDS, supplemented with 1X complete
protease inhibitor (Roche) and 1X PhosSTOP (Roche)). Lysates
were sonicated and cleared by centrifugation. Standard Laemmli-
Buffer with 10% final concentration of β-mercaptoethanol was
added and samples boiled for 5 min, resolved in NuPAGE Bis-Tris
4–12% protein gels (Life Technologies), and transferred onto
nitrocellulose membranes. Membranes were blotted for 1 h in 5%
(w/v) skimmed milk/ TBS-T (0.1% Tween 20 in Tris-buffered saline)
and probed with the indicated primary antibodies in 5% (w/v)
bovine serum albumin (BSA)/TBS-T overnight at 4 °C. After 3
washes in TBS-T buffer, membranes were probed with Amersham
ECL horseradish peroxidase (HRP)-secondary antibodies (GE
Healthcare) for 1 h at RT, followed by 3 washes in TBS-T buffer.
Signal detection was performed by incubating membranes with
Pierce ECL Western Blotting substrate followed by x-ray film
development. All blots were derived from the same experiments
and were processed in parallel. Uncropped scans of the most
important blots are provided as Supplementary Figs. 7 and 8 in
the Supplementary Information.

3D cell growth assay
Poly-2-hydroxethyl methacrylate (HEMA) solution (3% w/v) was
prepared by dissolving poly-HEMA (Sigma-Aldrich, P3932) in 95%
ethanol at 37 °C overnight. Wells of 24-well plates were coated
with 400 μl poly-HEMA solution overnight. T47D cells (30,000/well)
were plated and treated as indicated for 4 days. At the end of the
treatment, cell aggregates were collected by centrifugation and
dissociated with trypsin for cell counting.

Proteomics
Culture of T47D cells and cell lysis. T47D cells, parental and
resistant pools, were plated in 15 cm dishes, let to seed for 48 h
and then treated with 1 μM BYL719 for 24 h before harvest. Cells
were scraped off in growth medium and spun at 250 × g for
10min at RT. Cells were washed with 1X PBS at 320 × g for 7 min,
cell pellets were lysed in RIPA buffer containing protease inhibitor
(Roche) and 1X PhosSTOP (Roche, in HPLC-grade water) on ice for
5 min, and then sonicated and cleared at 4 °C by centrifugation.

Protein precipitation and digestion. Cell lysates were precipitated
in 5X volume of ice-cold acetone at −20 °C overnight. Protein
precipitates were spun at 17,000 × g for 10min at 4 °C and washed

HYK Yip et al.

16

npj Precision Oncology (2024)    20 Published in partnership with The Hormel Institute, University of Minnesota



once in ice-cold acetone. Proteins were re-solubilised in 8 M urea
buffer containing 10mM tris(2-carboxyethyl) phosphine (TCEP)
assisted by sonication. Protein concentration was quantified and
samples normalized to the same volume. Samples were then
alkylated in 55 mM iodoacetamide for 45min in the dark. Urea in
samples was diluted to 1 M with 25 mM triethylammonium
bicarbonate (TEAB), pH 8.0 before digestion with Pierce™ Trypsin
Protease, MS Grade (Thermo Fisher Scientific, #90059) at 37 °C
overnight. Samples were then acidified with formic acid to a final
concentration of 1% (v/v).

Samples’ clean-up and phosphopeptide enrichment. Solid-phase
extraction (Oasis HLB, Waters, #WAT094226) was used for peptides
cleaning. Briefly, cartridges were conditioned with 80% (v/v)
acetonitrile/0.1% (v/v) trifluoroacetic acid (TFA) followed by
equilibration with 0.1% TFA. Samples were then loaded and
allowed to bind to the sorbent in the columns. Columns were then
washed twice with 0.1% TFA and peptides eluted in 80% (v/v)
acetonitrile/0.1% (v/v) TFA. Samples were freeze-dried overnight.
Samples were then resuspended in loading buffer (2 M lactic acid
in 50% acetonitrile and 5% TFA) through vortexing and sonication.
Titansphere, spherical TiO2 beads (GLSciences, 5020-75000) at a
ratio of 6 mg/mg proteins were conditioned by washing in
Washing buffer (50% acetonitrile and 5% TFA) followed by
Loading buffer. Samples were incubated with 80% of the
conditioned TiO2 beads for 60 min with 450 × g shaking and spun
down. Supernatants were incubated with remaining TiO2 beads
for an extra 30 min. After TiO2 enrichment, beads were packed
into a home-made stage tip (a C8 plug in a 200 μl tip). Peptide
samples were loaded into the tips and spun through the tips at
1250 × g for 10 min. Tips were then washed with Loading buffer
and Washing buffer until all samples were loaded. Phosphopep-
tides were eluted in 1% (v/v) ammonium hydroxide followed by
30% (v/v) acetonitrile. Samples were freeze-dried overnight.

Data-dependent acquisition (DDA) LC-MS/MS. Samples were
analyzed by LC-MS/MS using Orbitrap Lumos mass spectrometer
(Thermo Scientific) fitted with nanoflow reversed-phase-HPLC
(Ultimate 3000 RSLC, Dionex). The nano-LC system was equipped
with an Acclaim Pepmap nano-trap column (Dionex—C18, 100 Å,
75 μm× 2 cm) and an Acclaim Pepmap RSLC analytical column
(Dionex—C18, 100 Å, 75 μm× 50 cm). Typically for each LC-MS/MS
experiment, 10 μl of the peptide mix was loaded onto the
enrichment (trap) column at an isocratic flow of 5 μl/min of 3%
CH3CN containing 0.1% formic acid for 8 min before the
enrichment column is switched in-line with the analytical column.
The eluents used for the LC were 5% DMSO/0.1% v/v formic acid
(solvent A) and 100% CH3CN/5% DMSO/0.1% formic acid v/v
(solvent B). The gradient used was 3% B to 25% B for 177min, 20%
B to 40% B in 5min, 40% B to 80% B in 5min and maintained at
80% B for the final 5 min before equilibration for 10min at 3% B
prior to the next analysis.
The mass spectrometer was operated in positive-ionization

mode with spray voltage set at 1.9 kV and source temperature at
275 °C. Lockmass of 401.92272 from DMSO was used. The mass
spectrometer was operated in the data-dependent acquisition
mode MS spectra scanning from m/z 350–1550 at 120,000
resolution with AGC target of 5e5. The “top speed” acquisition
method mode (3 s cycle time) on the most intense precursor was
used whereby peptide ions with charge states ≥2–5 were isolated
with isolation window of 1.6m/z and fragmented with high
energy collision (HCD) mode with stepped collision energy of
30 ± 5%. Fragment ion spectra were acquired in Orbitrap at 15,000
resolution. Dynamic exclusion was activated for 30 s.

Protein identification and quantification. MS data from DDA
profiling were processed using Maxquant v1.5.5.1. MS/MS spectra
were searched against the Uniprot human reference proteome

FASTA file (downloaded on 21 February 2017). Digestion mode
was set as trypsin. Label-free quantification (LFQ) was applied.
Carbamidomethyl cysteine was set as a fixed modification;
oxidation of methionine, phosphorylation of serine, threonine
and tyrosine were considered variable modifications. False
discovery rate (FDR) was set to 0.01.

Data analysis. Statistical analysis was performed using the
Perseus package (Max Planck Institute of Biochemistry)113. A
localization probability of ≥0.75 to a single amino acid residue for
phosphopeptide was applied and parameters were set as default.
Differential expression between groups was analyzed by two-
sample t-test with the significance cut-off being p < 0.05. Pathway
enrichment analysis was performed using the Ingenuity Pathway
Analysis (IPA) package (QIAGEN Inc., https://
digitalinsights.qiagen.com/IPA) using default settings.

Cell cycle analysis
T47D cells (150,000 cells/well) were plated in 6-well plates and
treated as indicated. One hour before the end of treatment, cells
were pulsed with 1:100 BrdU (Invitrogen #00-0103). For cell cycle
analysis, cells were trypsinised, pelleted by centrifugation and ice-
cold 70% ethanol was added dropwise into each sample while on
gentle vortex. After fixing on ice for 1 h, cells were washed twice in
PBS at 500 × g for 10 min. 2 N HCl/0.5% Triton X-100 was added
dropwise to permeabilise and denature the DNA at RT for 30 min.
The pH was neutralized with 0.1 M sodium tetraborate decahy-
drate NaB4O7 solution (pH8.5) and samples washed in 1%BSA/PBS.
Cells were labeled with anti-BrdU primary antibodies (abcam
#ab6326) and secondary antibodies in 1% BSA/0.2% Tween-20 in
PBS. Samples were resuspended in propidium iodide/RNase
solution. Cell cycle profiles were analyzed using a BD LSRFortes-
saTM X-20 flow cytometer. Raw data were analyzed using FlowJo
10.3.0 software package.

Quantitative reverse-transcription PCR
Cells were lysed in TRI reagent (Thermo Fisher Scientific, #AM9738)
and total RNA extracted using Direct-zol RNA Miniprep Kits (Zymo
Research, #R2050). RNA was reverse-transcribed into cDNA with
QuantiTect Reverse Transcription Kit (QIAGEN). qPCR was
performed in 2X QuantiNova STBR Green PCR Master Mix in
CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Ct
values were determined in Bio-Rad CFX Manager v3.1 software
package and the relative quantification was derived using the
ΔΔCt method.

β-galactosidase cell senescence assay
T47D cells (25,000 cells/well) were plated on collagen-coated glass
coverslips (10 μg/cm2) in 24-well plates overnight and treated as
indicated. Drugs were pulsed every 2 days and at the end of
treatments, cells were washed with 1X PBS and processed
according to the senescence β-galactosidase (β-gal) staining kit
(Cell Signaling Technologies, #9860). Cells were then counter-
stained with DAPI (1 μg/ml) and mounted in 70% glycerol on glass
slides. Olympus dotSlide digital virtual microscope was used to
acquire DAPI and bright-field images. Total cell number (DAPI) and
β-gal positive cells were quantified using Fiji software package.

γH2AX and 53BP1 staining
T47D cells (200,000 cells/well) were plated in 6-well plates and
treated as indicated. At the end of each treatment, cells were
treated with KaryoMAX Colcemid at 10 mg/ml for 1 h prior to
harvest. Cells were subjected to hypotonic treatment in 0.075 M
KCl (room temperature for 5 min), cyto-spun onto slides, and
incubated in ice-cold KCM buffer (120 mM KCl, 10 mM Tris-HCl pH
7.5, 20mM NaCl, 0.5 mM EDTA, 0.1% (v/v) Triton X-100 and
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protease inhibitor) for 5 min. Slides were incubated in ice-cold
KCM extraction buffer (KCM and 0.4% Triton X-100) for 5 min,
followed by an incubation in ice-cold KCM blocking buffer (KCM,
2% BSA, protease inhibitor and AEBSF) for another 5 min. Slides
were incubated in anti-centromere human CREST (calcinosis,
Raynaud phenomenon, esophageal dysmotility, sclerodactyly, and
telangiectasia) and anti-phospho-histone H2A.X (Ser139) (Merck
Millipore JBW301), or anti-53BP1 (ab21083) and secondary
antibodies for 1 h at 37 °C in KCM block buffer. After antibody
incubation, slides were washed three times with ice-cold KCM, and
then fixed in 4% (v/v) formaldehyde (in KCM) and mounted with
DAPI in Vectashield media. Images were collected using a Zeiss
imager M2 fluorescence microscope linked to an AxioCam MRm
CCD camera system. Image analysis was performed in Fiji software
package. DAPI stain was used to create a mask for nuclei.
Integrated fluorescence intensity of γH2AX per nucleus and 53BP1
per nucleus was quantified.

Cell death assay
T47D cells (25,000 cells/well in 24-well plate) were incubated with
propidium iodide (PI) (1 mg/ml) (Thermo Fisher Scientific, P3566)
and Hoechst 33342 solution (0.5 mg/ml) (Thermo Fisher Scientific,
#62249) in a cell culture incubator for 30min. Multiple fields per
wells were imaged using a Leica DMi8 inverted microscope at ×10
magnification. Fiji software package was used to quantify the
number of PI+ cells and the total cell number per field.

p21 cellular localization
T47D cells were grown on collagen-coated cover slips (25,000
cells/well in a 24-well plate) and treated as indicated. Cells were
then fixed in 4% formaldehyde for 15 min and washed with 1X
PBS three times. Permeabilisation and blocking step was done by
incubating cells in 5% normal goat serum with 0.3% Triton-X 100
for 1 hr at RT. Standard IF protocol was used to probe for p21
using the rabbit mAb CST#2947. Cells were stained with DAPI and
Wheat Germ Agglutinin-Alexa Fluor 555 for nuclear and whole cell
segmentation, respectively. Multiple fields per well were imaged
using a Leica DMi8 microscope at 20X magnification. Integrated
intensity of p21 localization in nuclei and whole cells was
quantified using the CellProfiler software package.

CellTiter-Glo assay
The dose-response of T47D cell lines to small molecule inhibitors
was assayed using the CellTiter-Glo® 3D-Cell Viability assay
(Promega, #G9681) according to the manufacturer’s instructions.
Briefly, 5000 cells/well were plated in a 96-well plate and treated
with increasing concentrations of inhibitors. At the end of each
treatment, culture media was removed and plain RPMI media was
added to each well. An equal volume of CellTiter reagent was
added to the wells and plate/s shaken in a PHERAstar FSX for
5 min. Plates were then incubated in the dark for 30 min on a
platform rocker, at the end of which contents were transferred
into white OptiPlates and the integrated luminescence signal
detected using a PHERAstar FSX.

Simulation of drugs combinations and drugs synergy
Drug synergy was computed based on coefficients of drug
interaction (CDI) metric17,114: CDI= E12/(E1 × E2), where E12 is the
normalized effect induced by drug 1 combined with drug 2, on a
specific biological readout; E1 and E2 represent the effect of a
single drug. CDI values lower than 1 indicate synergistic effects,
CDI values equal or higher than 1 indicate additive or antagonistic
effects, respectively. The degree of synergism versus antagonism
is indicated by how small or large CDI values are compared to 1.

Patient survival analysis
mRNA expression, mutation profile and associated overall survival
(OS) data from 2509 breast cancer patients (METABRIC)115 were
downloaded from cBioPortal (https://www.cbioportal.org/). Breast
cancer patients were classified based on CDKN1A and CCND1
expressions into three groups having either low, normal, or high
expression levels. These were associated with the PIK3CA
mutational status defined as either mutated or wildtype.
Combination sub-groups were derived as such: (i) PIK3CA
mutation and CDKN1A (or CCND1) high; (ii) PIK3CA mutation and
CDKN1A (or CCND1) low; (iii) PIK3CA wildtype and CDKN1A (or
CCND1) high; (iv) PIK3CA wildtype and CDKN1A (or CCND1) low. OS
between sub-groups were subsequently performed using R
package ‘survival’, with p < 0.05 considered significant.

List of antibodies with catalog numbers and dilutions:

Rabbit monoclonal anti-Phospho-Akt
(Ser473) (clone D9E)
1:1000 dilution

Cell Signaling
Technology

Cat# 4060;
RRID:AB_2315049

Rabbit monoclonal anti-Phospho-Akt
(Thr308) (clone D25E6)
1:1000 dilution

Cell Signaling
Technology

Cat# 13038;
RRID:AB_2629447

Rabbit monoclonal anti- Phospho-S6
Ribosomal Protein (Ser240/244) (clone
D68F8)
1:2000 dilution

Cell Signaling
Technology

Cat# 5364, RRI-
D:AB_10694233

Rabbit monoclonal anti-S6 Ribosomal
Protein (clone 5G10)
1:2000 dilution

Cell Signaling
Technology

Cat# 2217;
RRID:AB_331355

Mouse monoclonal anti-Actin (clone
AC-40)
1:5000 dilution

Sigma-Aldrich Cat# A3853;
RRID:AB_262137

Rabbit monoclonal anti-Phospho4E-
BP1 (Thr37/46) (236B4)
1:1000 dilution

Cell Signaling
Technology

Cat# 2855;
RRID:AB_560835

Rabbit monoclonal anti-Akt (pan)
(clone 11E7)
1:1000 dilution

Cell Signaling
Technology

Cat# 4685;
RRID:AB_2225340

Rabbit monoclonal anti-Phospho Rb
(Ser807/811)
1:2000 dilution

Cell Signaling
Technology

Cat# 8516; RRI-
D:AB_11178658

Rabbit monoclonal anti-Phosphop44/
42 MAPK (Erk1/2) (Thr202/Tyr204)
1:1000 dilution

Cell Signaling
Technology

Cat# 4370;
RRID:AB_2315112

p44/42 MAPK (Erk1/2)
1:1000 dilution

Cell Signaling
Technology

Cat# 4696; RRID:
AB_390780

Rabbit polyclonal anti-Cyclin D1
1:1000 dilution

Cell Signaling
Technology

Cat# 2922;
RRID:AB_2228523

Mouse monoclonal anti-Cyclin A
(clone AT10.2)
1:1000 dilution

Santa Cruz
Biotechnology

Cat# sc-53227;
RRID:AB_782329

Rabbit monoclonal anti-CDK4 (clone
D9G3E)
1:1000 dilution

Cell Signaling
Technology

Cat# 12790;
RRID:AB_2631166

Mouse monoclonal anti-CDK6 (clone
DCS22)
1:1000 dilution

Cell Signaling
Technology

Cat# 3136;
RRID:AB_2229289

Rabbit monoclonal anti-CDK2 (clone
78B2)
1:1000 dilution

Cell Signaling
Technology

Cat# 2546;
RRID:AB_2276129

Rabbit monoclonal anti-p21 Waf1/
Cip1 (clone 12D1)
1:1000 dilution

Cell Signaling
Technology

Cat# 2947
RRID:AB_823586

Mouse monoclonal anti-p18 INK4C
(clone DCS118)
1:1000 dilution

Cell Signaling
Technology

Cat# 2896;
RRID:AB_331203
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Table continued

Rabbit monoclonal anti-p27 Kip1
(clone D69C12)
1:1000 dilution

Cell Signaling
Technology

Cat# 3686;
RRID:AB_2077850

Rabbit monoclonal anti-Phospho-
Chk1 (Ser345) (clone 133D3)
1:1000 dilution

Cell Signaling
Technology

Cat# 2348;
RRID:AB_331212

Mouse monoclonal anti-PCNA (clone
PC10)
1:1000 dilution

Cell Signaling
Technology

Cat#2586;
RRID:AB_2160343

Rabbit monoclonal anti-CDKN2A/
p16INK4a (clone EPR1473) 1:1000
dilution

Abcam Cat# ab108349;
RRID:AB_10858268

Mouse monoclonal anti-p53 (clone
1C12)
1:1000 dilution

Cell Signaling
Technology

Cat# 2524;
RRID:AB_331743

Rabbit polyclonal anti-53BP1
1:500 dilution

Abcam Cat# ab21083
RRID:AB_722496

Mouse monoclonal anti-phospho-
Histone H2A.X (Ser139) (clone
JBW301) 1:1000 dilution

Millipore Cat# 05-636,
RRID:AB_309864

Rabbit monoclonal anti-phospho-
NDRG1 (Thr346) (D98G11) XP® 1:500
dilution

Cell Signaling
Technology

Cat# 5482;
RRID:AB_10693451

Rabbit monoclonal anti-hospho-SGK3
(Thr320) (D30E6)
1:500 dilution

Cell Signaling
Technology

Cat# 5642; RRID:
AB_10694357

Uncropped scans of the most important blots and gating
strategy for Fig. 3d are provided as Supplementary Figs. 7–9 in the
Supplementary Information File.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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