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Cancer associated fibroblasts serve as an ovarian cancer stem
cell niche through noncanonical Wnt5a signaling
Yiming Fang1,2, Xue Xiao1,2, Ji Wang1,2, Subramanyam Dasari 1,2, David Pepin3, Kenneth P. Nephew1,2, Dmitriy Zamarin4 and
Anirban K. Mitra 1,2✉

Frequent relapse and chemoresistance cause poor outcome in ovarian cancer (OC) and cancer stem cells (CSCs) are important
contributors. While most studies focus exclusively on CSCs, the role of the microenvironment in providing optimal conditions to
maintain their tumor-initiating potential remains poorly understood. Cancer associated fibroblasts (CAFs) are a major constituent of
the OC tumor microenvironment and we show that CAFs and CSCs are enriched following chemotherapy in patient tumors. CAFs
significantly increase OC cell resistance to carboplatin. Using heterotypic CAF-OC cocultures and in vivo limiting dilution assay, we
confirm that the CAFs act by enriching the CSC population. CAFs increase the symmetric division of CSCs as well as the
dedifferentiation of bulk OC cells into CSCs. The effect of CAFs is limited to OC cells in their immediate neighborhood, which can be
prevented by inhibiting Wnt. Analysis of single cell RNA-seq data from OC patients reveal Wnt5a as the highest expressed Wnt in
CAFs and that certain subpopulations of CAFs express higher levels of Wnt5a. Our findings demonstrate that Wnt5a from CAFs
activate a noncanonical Wnt signaling pathway involving the ROR2/PKC/CREB1 axis in the neighboring CSCs. While canonical Wnt
signaling is found to be predominant in interactions between cancer cells in patients, non-canonical Wnt pathway is activated by
the CAF-OC crosstalk. Treatment with a Wnt5a inhibitor sensitizes tumors to carboplatin in vivo. Together, our results demonstrate a
novel mechanism of CSC maintenance by signals from the microenvironmental CAFs, which can be targeted to treat OC
chemoresistance and relapse.
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INTRODUCTION
Ovarian cancer (OC) is the deadliest gynecologic malignancy and
the fifth leading cause of cancer-related deaths among women in
the USA1. Cytoreductive surgery combined with carbo-taxol
chemotherapy is the current standard of care, but most patients
eventually relapse and develop chemoresistance2,3. The emer-
gence of chemoresistance is a complicated process and several
reports suggest that cancer stem cells (CSCs) or tumor-initiating
cells are responsible for the development of OC chemoresis-
tance4,5. Moreover, accumulating evidence has implicated the
contribution of the tumor microenvironment (TME) in chemore-
sistance and relapse6,7. However, the relationship between the
TME and CSCs in the context of chemoresistance/recurrence and
the underlying regulatory mechanisms are not very well
understood.
Most cancers comprise a heterogeneous population of cells,

and CSCs are a distinct subpopulation that was identified in
several hematologic and solid tumors8. CSCs can undergo
symmetric division for self-renewal and divide asymmetrically to
give rise to progenies that differentiate to contribute to the
heterogeneity in the tumor9. The CSC population may also be
maintained by dedifferentiation of certain non-CSCs10. The
chemoresistance of CSCs is believed to be caused by increased
DNA repair, efflux of toxins, anti-apoptotic genes, and entering a
quiescent state11. Following chemotherapy, CSCs survive and are
enriched in the residual tumors, which eventually cause
recurrence12.
The stem cell niche refers to cellular and acellular components

surrounding the stem cells in normal tissues that provide an

optimal microenvironment and regulate their fate. The cancer
stem cell niche can consist of TME components like cancer-
associated fibroblasts (CAFs), inflammatory cells, mesenchymal
stem cells, extracellular matrix, and cytokines, which provide a
suitable microenvironment for CSCs13,14. CSCs share pathways
for self-renewal with normal stem cells, like Wnt, Sonic Hedge-
hog, and Notch, providing potential targets for eliminating CSCs.
As the predominant cell type in the tumor stroma, CAFs are
primarily responsible for synthesizing and remodeling the
extracellular matrix surrounding the CSCs and provide signals
that initiate or enhance tumor progression15–17. During che-
motherapy, CAFs protect CSCs in multiple ways. By releasing
growth factors, CAFs can activate various survival signaling
pathways in CSCs, which help them resist DNA damage18. CAFs
also reduce CSCs uptake of therapeutic drugs by increasing the
interstitial fluid pressure19. In addition, CAFs promote the
epithelial-to-mesenchymal transition of CSCs, which increases
the self-renewal of CSCs20.
We investigated the role of CAFs in providing a supportive

microenvironment for OC stem cells (OCSCs) in high-grade
serous OC (HGSOC), the most common and lethal OC subtype.
Here, we report how CAFs serve as an OCSC niche,
causing relapse and chemoresistance. We demonstrate that
CAFs signal to proximal OC cells via Wnt5a, inducing a non-
canonical Wnt signaling pathway in the cancer cells, causing
self-renewal of OCSCs and dedifferentiation of some non-OCSCs
into OCSCs.
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RESULTS
CAFs are associated with chemoresistance
The presence of a higher proportion of stroma in tumors has been
implicated to result in poor response to chemotherapy in OC21.
Moreover, neoadjuvant chemotherapy can cause fibrosis in the

residual lesions22,23. Therefore, we performed a deconvolution
analysis of TCGA OC data to test the effect of tumor stage on the
fibroblast score (Fig. 1A). The fibroblast score was determined
using MCP-counter Version 1.2.0, which utilizes a set of fibroblast
markers (Supplementary Fig. 1A) and was found to increase with
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the tumor stage. A reactive stroma signature had been demon-
strated to result in poor OC survival24. Our deconvolution analysis
of that gene expression data further demonstrated that the
fibroblast score was higher in the chemoresistant patients in that
dataset (Fig. 1B and Supplementary Fig. 1B). Since it has been
reported that CSCs are resistant to chemotherapy, we tested the
expression levels of ALDH1A1, a standard marker for OCSCs, in
matched pre- and post-chemotherapy omental metastasis from 7
OC patients (Fig. 1C and Supplementary Fig. 2). A marked increase
in ALDH1A1 expression was observed in the post-chemotherapy
specimen. Similarly, α-smooth muscle actin (αSMA) expression was
higher in the post-chemotherapy specimen, indicating the
enrichment of CAFs (Fig. 1C and Supplementary Fig. 2). Masson’s
trichrome staining did not show a significant difference in the
ratio of cytoplasm to collagen (Fig. 1C and Supplementary Fig. 2).
To experimentally test the effect of CAFs on OC chemoresistance,
we performed colony formation assay with or without CAFs and
treated them with increasing concentrations of carboplatin. The
CAFs used in these and subsequent experiments were isolated
from HGSOC tumors and immortalized with human telomerase
reverse transcriptase unless specified. CAFs were confirmed to
express αSMA and vimentin while lacking the expression of
keratin (Supplementary Fig. 3A). The presence of CAFs significantly
protected the OC cells from carboplatin (Fig. 1D and Supplemen-
tary Fig. 3B, C). It is important to understand if this protective
effect was limited to OC cells in proximity to CAFs or could also be
extended to OC cells further away. To address this, we designed
an experimental setup, which we call interface interaction assay,
where OC cells were seeded in the center and CAFs in the
periphery, with a defined interface where the two cells were in
direct contact (Fig. 1E). The cells were then treated with
carboplatin and its effect on apoptosis was observed using
terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL). OVCAR3 cells were stained with E-cadherin as they are
very epithelial with high expression of E-cadherin and do not
express vimentin (Supplementary Fig. 3A). CAFs were labeled with
vimentin. Carboplatin-induced apoptosis in OC cells growing
alone and in OC cells growing further away from CAFs, while the
OC cells near the CAFs were protected (Fig. 1E and Supplementary
Fig. 3D). A higher percentage of apoptotic OC cells were found at
a distance >400 µm from the CAFs (Fig. 1F). This was further
confirmed in tumors from OC patients. Chemotherapy-treated
patient tumors had a higher rate of apoptosis and cancer cells in
proximity of CAFs were protected (Fig. 1G). Cancer cells were
labeled with pan keratin and CAFs with αSMA. These results

indicate that CAFs protect OC cells in their vicinity from
chemotherapy.

CAFs induce OCSCs
Since CSCs are more resistant to chemotherapy and both CSCs
and CAFs are enriched in post-chemotherapy patients (Fig. 1C), we
studied the possible role of CAFs in regulating OCSCs. Coculturing
CAFs with OC cells increased the number of OCSCs (Schematic
outline in Supplementary Fig. 4A), as evidenced by an increase in
the number of ALDH+ cells in the OC population (non-RFP)
evaluated by immunofluorescence (IF) imaging (Fig. 2A, Supple-
mentary Fig. 4B). This was separately confirmed by labeling the OC
cells with E-cadherin, CAFs with vimentin and assessing ALDH1
expression in the coculture compared to OC monoculture
(Supplementary Fig. 4C). Flow cytometric analysis following
ALDEFLUOR assay in cocultured OC and RFP-CAFs was done to
quantify the fraction of OC cells that were ALDH+ (Fig. 2B,
Supplementary Figs. 4D and 11). The increase in ALDH+ OCSCs
were further confirmed by performing flow cytometric analysis of
ALDEFLUOR assay done in cocultures of RFP expressing OVCAR3
cells with normal CAFs. The fraction of RFP cells exhibiting green
fluorescence was quantified (Supplementary Fig. 4E). OVCAR3 cells
isolated by fluorescence-activated cell sorting (FACS) after
coculturing with RFP expressing CAFs had increased expression
of ALDH1 (Supplementary Fig. 5A). Freshly isolated, non-
immortalized CAFs had a similar effect in inducing ALDH activity
in OC cells (Supplementary Fig. 5B). Similarly, coculture with CAFs
increased spheroid formation in ultra-low adhesion plates,
indicating an induction of OCSCs (Fig. 2C). The gold standard for
evaluating CSCs is the in vivo limiting dilution assay. Therefore, to
confirm our results, we performed an in vivo limiting dilution
assay using OVCAR3 cells cocultured with RFP expressing CAFs for
7 days, then isolated using FACS and injected subcutaneously into
the right flank of mice. The left flank was injected with sham
treated OVCAR3 cells (Fig. 2D). The pre-coculture with CAFs
increased the tumor-initiating cell frequency 10-fold, with an
increase in ALDH1A1 expression in the pre-cocultured tumors,
further confirming the role of CAFs in inducing OCSCs (Fig. 2D, E).
Having performed the previous studies with OC cell lines, we
tested the effect of CAFs on primary OC cells derived from HGSOC
patient ascites. As with OC cell lines, the coculture of patient-
derived OC cells with CAFs increased ALDH+ cells and spheroid
formation (Fig. 2F, G, Supplementary Fig. 11). Having demon-
strated that CAFs can induce OCSCs, we next studied if this is
through increased symmetric division of OCSCs or by potential

Fig. 1 CAFs and OC chemoresistance. A The Cancer Genome Atlas (TCGA) ovarian cancer data contain both clinical and gene expression
profiles from patient samples. Microenvironment Cell Populations-counter (MCP-counter, version 1.2.0) was applied to deconvolve fibroblasts
in TCGA dataset. MCP-counter produced abundance scores for each cell type based on marker genes detected. The fibroblast abundance
score is plotted for each stage. Data from 305 ovarian cancer patients, bar depicts median, *p < 0.005 (t-test). B The Australian Ovarian Cancer
Study (AOCS) dataset (GSE9891) profiled gene expression of 285 ovarian patient samples, segregated into chemo-resistant and chemo-
sensitive. Deconvolution analysis of the AOCS dataset was done using MCP-counter version 1.2.0. The fibroblast scores for sensitive and
resistant patients was plotted. Data from 284 ovarian cancer patients, bar depicts median, *p < 0.005 (t-test). C Representative
immunohistochemical staining for ALDH1A1 (OCSC marker), αSMA (CAF marker), and Masson’s trichrome staining in HGSOC patient
omental metastasis pre- and post-chemotherapy (matched) (Scale bar: 200 μm). The staining for ALDH1A1 and αSMA, and the ratio of pink/
blue for trichrome from 7 matched pre- and post-chemotherapy patient specimens were quantified and plotted (Right). *p < 0.05 (paired t-
test). D Three different HGSOC cell lines (OVCAR3, Kuramochi, OVCAR4) were seeded in 6-well plates with/without CAFs and allowed to form
colonies and treated with increasing doses of carboplatin. Colonies were fixed, stained, and manually counted and quantified using ImageJ.
Mean ± SD from three independent experiments. *p < 0.01 (t-test). E Interface interaction assay of OVCAR3 cocultured with CAFs. OVCAR3 cells
and CAFs were seeded on 10mm coverslip separated by cloning ring. The ring was removed after 24 h and cells were allowed to grow and
merge at the interface followed by carboplatin treatment (33 μM). TUNEL assay was done to label apoptotic cells (green). Cancer cells and
CAFs were stained with E-cadherin (red) and vimentin (teal) respectively. Left: Schematic outline of the assay setup. Right: Images of
immunofluorescence staining of cocultures (Leica SP8, 40x objective). Scale bar: 50 μm. F The distance (μm) between apoptotic OVCAR3 cells
and nearest CAFs in the interface interaction assay was measured by ImageJ and plotted as % of apoptotic cells at increasing distances from
CAFs. 600+ μm is close to the periphery of the imaging field and had fewer cells. G Immunofluorescent staining of pre- and post-
chemotherapy OC patient tumors. TUNEL assay was used to label apoptotic cells and immunofluorescence staining was done to label cancer
cells (pan-keratin) and CAFs (αSMA). Scale bar: 200 μm.
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dedifferentiation of some differentiated OC cells. The latter
mechanism is observed when non-cancer stem cells are grown
for a period, they eventually restore the homeostatic levels of
CSCs25. To test the possible mechanisms, OVCAR3 cells were first
sorted in ALDH+ and ALDH- populations followed by coculture

with CAFs. CAFs could help sustain a high ALDH+ population of
OVCAR3 cells (Fig. 2H, I, Supplementary Fig. 11), while also
inducing ALDH+ cells rapidly in the ALDH- OVCAR3 cells (Fig. 2J, K,
Supplementary Fig. 11). This can indicate that CAFs potentially
induce stemness in OC cells, by increasing symmetric division of
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OCSCs or by preventing their differentiation to maintain their
population, and by causing dedifferentiation of some differen-
tiated OC cells back into OCSCs.

CAFs induce OCSCs through Wnt5a
Our previous data indicated that CAFs afforded protection to
proximal OC cells from carboplatin-induced apoptosis (Fig. 1E–G).
We next tested the effect of CAFs on OCSC induction in proximal
vs. distal OC cells using the same experimental setup. A high
number of ALDH+ cells were observed in OC cells in proximity of
CAFs compared to OC cells further away (Fig. 3A, Supplementary
Fig. 6A). Moreover, conditioned medium from CAFs failed to
induce OCSCs (Supplementary Fig. 6B). Taken together, this
indicates the potential role of a juxtacrine signaling mechanism
or the involvement of insoluble secreted factors that do not travel
longer distances. Therefore, we focused on such factors among
the heterotypic signaling mechanisms that have been reported to
play a role in CSC26. NOTCH and Wnt signaling fit this criterion.
Treatment with a NOTCH inhibitor in CAF-OC coculture did not
inhibit OCSCs (Supplementary Fig. 6C), however, treatment with a
Wnt inhibitor resulted in inhibition of ALDH+ OC cells and
spheroid formation in ultra-low adhesion plates (Fig. 3B, C,
Supplementary Figs. 6D, 7A, and 11). The Wnt inhibitor IWP2
inhibits porcupine O-acyltransferase (PORCN), which is involved in
Wnt processing in the endoplasmic reticulum. IWP2 treatment
inhibited both CAF and OC cells PORCN in the cocultures. To
identify the specific contribution of CAF and OC-derived Wnt,
PORCN was silenced in either CAFs or OVCAR3 cells or both
followed by coculture (Supplementary Fig. 7B). While silencing
PORCN in OVCAR3 cells had no effect on ALDH+ cells, silencing it
in CAFs significantly reduced OCSCs, which was not significantly
different from the effect of silencing PORCN in both CAFs and
OVCAR3 cells (Fig. 3D, Supplementary Fig. 7C). Next, we analyzed
single-cell RNA-seq (scRNA-seq) data from 11 HGSOC patients27 to
identify the potential Wnt involved. Wnt5a was the most highly
expressed Wnt in the tumor fibroblasts (Fig. 3E). Further analysis of
the subpopulations of tumor fibroblasts (Fig. 3F, FB0-FB8) revealed
a marked heterogeneity in them in relation to Wnt5a expression
(Fig. 3G and Supplementary Fig. 7D). The subpopulation FB2 had
the highest while FB8 had the lowest Wnt5a expression. To further
confirm these findings, we used CAFs, OVCAR3, and Kuramochi
cells to determine the baseline expression of a panel of Wnts
reported to play a role in CAF-OC crosstalk involved in CSCs28–33

and are expressed more in OC CAFs compared to normal omental
fibroblasts17. CAFs clearly expressed higher amounts of Wnts than
OC cells, with Wnt5a being the most highly expressed (Fig. 3H).

Interestingly, the coculture of CAFs with OVCAR3 or Kuramochi
cells further induced Wnt5a expression, indicating a potential
reciprocal signaling mechanism (Fig. 3I). A comparison of a panel
of CAFs isolated from OC patient tumors and a panel of patient-
derived normal omental fibroblasts indicated that CAFs have
higher expression of Wnt5a (Supplementary Fig. 7E). Treatment
with carboplatin further induced Wnt5a expression in CAFs (Fig.
3J, Supplementary Fig. 12). Moreover, analysis of the Australian
Ovarian Cancer Study data indicated that high expression of
WNT5A resulted in a significantly higher expression of CSC
markers (Fig. 3K and Supplementary Fig. 8A). Disease-free survival
(DFS) analysis in OC patients using OVMARK database34, selecting
for median survival and for patients who received chemotherapy,
indicated that high WNT5A expression resulted in a significant
decrease in DFS (Hazard ratio= 12.02 on 1df, p= 0.0005253) (Fig.
3L). Since early relapse is an indicator of chemoresistance, in our
analysis, DFS is an effective measurement of the contribution of
WNT5A towards drug tolerance in OC patients receiving
chemotherapy.
Having identified Wnt5a as a key factor secreted by CAFs, which

has potential clinical significance, we studied its role in maintain-
ing OCSCs. Treatment of CAF-OVCAR3 cocultures with a Wnt5a-
specific inhibitor, Box5, abrogated OCSC induction (Fig. 4A–C,
Supplementary Fig. 11). Box5 (Millipore Sigma, Cat. No. 681673) is
a Wnt5a derived hexapeptide that selectively and competitively
inhibits Wnt5a binding to its receptor. Furthermore, knocking out
Wnt5a in CAFs resulted in the loss of OCSC induction in the
cocultures (Fig. 4D and Supplementary Fig. 8B). Treatment of
OVCAR3 cells with Box5 caused a decrease in ALDH1A1, SOX2,
OCT4 and NANOG expression (Fig. 4E). Confocal immunofluores-
cence imaging of 3D heterotypic cocultures consisting of CAFs
and OVCAR3 cells demonstrated increased ALDH1 expression in
OVCAR3 cells in the vicinity of CAFs that expressed Wnt5a (Fig. 4F,
Supplementary Fig. 8C).

Wnt5a signals through a non-canonical Wnt signaling
pathway to induce OCSCs
Wnt5a can inhibit canonical Wnt signaling or induce non-
canonical Wnt signaling in the target cells35. Therefore, we
analyzed the 11 HGSOC patient scRNA-seq data27 using CellChat
v1.5.036, to determine if the CAF-OC crosstalk induces canonical or
non-canonical Wnt signaling. Interestingly, canonical Wnt signal-
ing involved only the cancer cell subpopulations (Fig. 5A, CC0-12),
where they could interact in a paracrine or autocrine manner. The
noncanonical Wnt signaling was predominant in the crosstalk
between CAFs and cancer cell subpopulations, where CAFs were

Fig. 2 CAFs regulate OCSCs. A, B ALDEFLUOR assay for stem cell enrichment in OC-CAF coculture. OVCAR3/Kuramochi cells were seeded
with CAFs and cocultured for a week. ALDEFLUOR assay was performed to label CSC (green). A Fluorescent imaging of OC-CAF coculture
labeled by ALDEFLUOR. Scale bar: 100 μm. B Flow cytometry analysis was done to quantify CSCs in control/CAF cocultured group. Mean ± SD
from three independent experiments. *p < 0.01 (t-test). C Spheroid formation assay of OC-CAF coculture. OVCAR3/Kuramochi cells were
seeded with/without CAFs in ultra-low adhesion plates and cocultured for 14 days. Images and quantification of number of spheroids are
shown as fold change compared to the respective OC cell alone. Scale bar: 400 μm. Mean ± SD from three independent experiments. *p < 0.01
(t-test). D, E Limiting dilution assay for tumor initiation frequency. OVCAR3 cells were cocultured with RFP expressing CAFs for 7 days, followed
by isolation using FACS, then subcutaneously injected into the right flank of female NSG mice. Control, sham treated OVCAR3 cells were
injected into the left flank of the same mouse. D Schematic of the experiment plan (left) and the tumor formation and tumor-initiating cell
frequency calculated by extreme limiting dilution analysis (ELDA) are shown (right). E Representative IHC Images of the xenograft tumor
sections stained with ALDH1A1. Scale bar: 400 μm. F ALDEFLUOR assay for stem cell enrichment in OC-CAF coculture using OC patient derived
ascites cells. Ascites derived ovarian cancer (AOC) cells were seeded with/without CAFs and cocultured for a week. ALDEFLUOR assay was
performed to label CSC (green). Flow cytometry analysis was done to quantify CSCs in control/CAF cocultured groups. Mean ± SD from three
independent experiments. **p < 0.05 (t-test). G Spheroid formation assay using AOCs. AOCs were seeded with/without CAFs in ultra-low
adhesion plates and cocultured for 14 days. Images and quantifications are shown. Scale bar: 400 μm. Mean ± SD from three independent
experiments. *p < 0.01 (t-test). H–K ALDEFLUOR assay of OC-CAF coculture for stem cell enrichment using pure CSC/non-CSC. Following
ALDEFLUOR assay, the OVCAR3 cells were sorted by FACS to isolate pure ALDH+ and ALDH- cells. The ALDH+ and ALDH- cells were then
seeded with CAFs and cocultured for a week. ALDEFLUOR assay was again performed to label CSC (green). Fluorescent imaging (H, J) and flow
cytometric analysis (I, K) of ALDH+ (H–I) and ALDH- (J, K) were shown. Scale bar: 100 μm. Mean ± SD from three independent experiments.
*p < 0.01 (t-test).
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the source of the Wnt and both cancer cells and CAFs were the
recipients (Fig. 5A, CC0-12, and FB0-8). To identify the signaling
induced in OC cells by Wnt5a secreted by CAFs, OC cells were
transfected with Super 8x TOPFlash or FOPFlash plasmids37 and
then cocultured with CAFs. Coculture with CAFs did not induce or

inhibit luciferase activity, indicating that the CAFs do not influence
canonical Wnt signaling in OC cells (Supplementary Fig. 8D).
Similarly, treatment of OC cells transfected with the reporter/
control plasmids with recombinant human Wnt5a did not affect
luciferase activity, while as expected, Wnt3a induced it
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(Supplementary Fig. 8E). Moreover, there was no change in
unphosphorylated β-catenin in ALDH+ vs. ALDH- OVCAR3 cells
(Fig. 5B, Supplementary Fig. 12). Similarly, treatment with
recombinant human Wnt5a or coculture with CAFs did not change
the levels of unphosphorylated β-catenin, while inducing ALDH1
expression (Fig. 5C, D, Supplementary Fig. 12). Taken together, our
data indicates that CAFs do not induce OCSCs through canonical
Wnt signaling. Therefore, we checked the role of non-canonical
Wnt signaling factors like PKC, CaMKII, Jun, and CREB1 in OCSC
induction. Increased PKC phosphorylation was observed in ALDH+

OVCAR3 cells as well as in OVCAR3 cells treated with Wnt5a or
cocultured with CAFs (Fig. 5B–D). Similarly, CREB1 was phosphory-
lated in OCSCs and induced by Wnt5a treatment or CAF coculture
(Fig. 5B–D, Supplementary Fig. 12). However, there was no effect
on CAMKII and Jun (Supplementary Fig. 8F). Treatment of OVCAR3
cells with the PKC inhibitor, staurosporine, resulted in decreased
ALDH activity as well as spheroid formation, indicating the role of
PKC activation in OCSC induction (Fig. 5E, F, Supplementary Figs.
9A, B and 11). Staurosporine treatment also inhibited CREB1
phosphorylation and abrogated Wnt5a-induced CREB1 activation
(Fig. 5G, Supplementary Fig. 12). Conversely, treatment with the
PKC agonist, tetradecanoyl phorbol acetate (TPA), induced CREB1
phosphorylation, demonstrating that PKC activation phosphory-
lates CREB1 (Fig. 5H, Supplementary Fig. 12). CREB1 knockdown
resulted in decreased OCSC induction as evidenced by inhibition of
ALDH activity and spheroid formation (Fig. 5I, J, Supplementary
Figs. 9C, D, and 11).

ROR2 is the key receptor mediating the CAF-OCSC crosstalk
Wnt5a can signal via frizzled receptors along with coreceptors like
ROR1, ROR2, LRP5, and LRP633,35,38,39. Since there are ten
mammalian frizzled family members, we focused instead on
identifying the specific coreceptor(s) responsible for Wnt5a-
mediated OCSC induction. Only LRP5/6 and ROR2 were expressed
in OVCAR3 cells (Supplementary Fig. 9E), so we knocked them
down to identify the relevant coreceptor. Knocking down ROR2
inhibited ALDH activity (Fig. 6A, B, Supplementary Figs. 9F and 11)
and had an even stronger effect on OVCAR3 spheroid formation
(Fig. 6C). Thereafter, OVCAR3 cells were separated into ROR2+ and
ROR2- populations by FACS. ROR2+ cells had higher ALDH1A1
expression and had an increased ability to form spheroids,
indicating an enrichment of OCSCs (Fig. 6D, E). The ROR2+

OVCAR3 cells had higher baseline levels of phosphorylated PKC
and CREB1, which were further induced by Wnt5a, while ROR2-

cells were not responsive to Wnt5a treatment (Fig. 6F, Supple-
mentary Fig. 12). Taken together, our data indicates that ROR2 is
the key receptor involved in the Wnt5a-mediated induction of
OCSCs.

Combination of carboplatin and Wnt5a inhibition is effective
The residual tumors that survive chemotherapy in OC patients are
enriched in OCSCs (Fig. 1C)12. Therefore, to prevent disease
relapse, it is desirable to target these OCSCs in combination with
chemotherapy. We first tested the potential of combining Wnt5a
inhibition with carboplatin treatment in an in vitro spheroid
formation assay using cocultures of CAFs and OVCAR3 cells.
Treatment with the Wnt5a inhibitor, Box5, reduced spheroid
formation significantly, when combined with carboplatin (Fig. 7A).
Based on these results, we proceeded to test the effect of the
combination treatment on OVCAR3 xenografts in vivo. OVCAR3
cells and CAFs were co-injected subcutaneously in female NSG
mice and once the tumors were established, treatment was
initiated (Fig. 7B). Mice were injected with 25 mg/kg carboplatin
once a week and 1.6 mg/kg Box5 thrice a week. The mice were
euthanized once the control tumors reached the permitted limit,
tumors were isolated and weighed. While treatment with
carboplatin or Box5 inhibited tumor growth, a combination of
both was significantly more effective (Fig. 7C, Supplementary Fig.
10A). Tumor sections were stained for ALDH1A1 expression to
study the effect of treatments on OCSCs (Fig. 7D). Similarly, the
residual tumors were dissociated, and the cell suspension was
used for a spheroid formation assay on ultra-low adhesion plates
to assess the effect of the treatments on residual OCSCs (Fig. 7E,
Supplementary Fig. 10B). While carboplatin alone increased the
residual OCSCs, Box5 alone or in combination with carboplatin
reduced OCSCs. Taken together, our data indicates that Wnt5a
inhibition can be potentially combined with chemotherapy to
effectively treat OC patients and improve their treatment
outcomes. In conclusion, CAFs regulate the symmetric division
of OCSCs as well as the dedifferentiation of bulk cancer cells to
OCSCs through secretion of Wnt5a, which acts via its co-receptor
ROR2, on neighboring cancer cells, phosphorylating PKC and
CREB1 (Fig. 7F).

Fig. 3 CAFs interact with OCSCs via Wnt signaling. A Interface interaction assay of OVCAR3 cocultured with CAFs. OVCAR3 cells and CAFs
were seeded on 10mm coverslips separated by a cloning ring. The ring was removed after 24 h and cells were allowed to grow and merge at
the interface. CSCs, cancer cells, and CAFs were labeled with ALDH1 (green), E-cadherin (red), and vimentin (teal), respectively. Top: Images of
immunofluorescence staining of OVCAR3 cells cocultured with CAFs (Leica SP8, 10x objective). Bottom: The distance (μm) between OCSCs and
nearest CAFs in the interface interaction assay was measured by ImageJ and plotted as % of OCSCs at increasing distances from CAFs. Scale
bar: 200 μm. B ALDEFLUOR assay for stem cell enrichment in OC-CAF coculture with IWP2. OVCAR3/Kuramochi cells were seeded with CAFs
and cocultured for a week with 5 μM PORCN inhibitor IWP2. ALDEFLUOR assay was performed to label CSCs (green). Flow cytometry analysis
was done to quantify CSCs in control/CAF cocultured groups. Mean ± SD from three independent experiments. *p < 0.01 (t-test). C Spheroid
formation assay of OC-CAF coculture with PORCN inhibition. OVCAR3/Kuramochi cells were seeded with/without CAFs in ultra-low adhesion
plates and cocultured for 14 days with 5 μM PORCN inhibitor IWP2. Representative images (scale bar: 400 μm) and quantifications of the
number of spheroids are shown. Mean ± SD from three independent experiments. *p < 0.01 (t-test). D Knockdown of PORCN in OC/CAF:
Scrambled negative control (-) or PORCN siRNA (+) was transfected in OVCAR3/CAF 48 h before coculture as indicated. OVCAR3/CAF were
then cocultured for a week. ALDEFLUOR assay was performed to label CSCs (green). CSCs were quantified by ImageJ counting. Mean ± SD
from three independent experiments. *p < 0.01 (t-test). E scRNA-seq data from 11 HGSOC patient tumors was analyzed for the expression of
WNT genes in the CAFs. The boxplot represents imputed expression level of WNT genes in all CAFs. F UMAP plot of CAFs from scRNA-seq of
11 HGSOC patient tumors revealing their heterogeneity. The 9 CAF subpopulations (FB0-FB8) are color coded as shown. G UMAP plot of the
CAFs, colored by WNT5A expression levels as indicated by the scale bar. H qPCR for Wnt expression levels in OVCAR3/Kuramochi cells and
CAFs. I qPCR for Wnt5a expression level in OVCAR3/Kuramochi alone, CAF alone or following coculture with each other. OVCAR3 (OV3),
Kuramochi (Kura) cells were cocultured for 7 days with CAFs followed by FACS isolation and qPCR for Wnt5a. Mean ± SD from three
independent experiments. *p < 0.01 (t-test). J qPCR and immunoblotting for Wnt5a expression in CAFs treated with carboplatin. Mean ± SD
from three independent experiments. *p < 0.01 (t-test). K Patients (n= 285) in the AOCS dataset (GSE9891) were ranked according to WNT5A
expression as WNT5Ahigh (top quartile) and WNT5Alow (bottom quartile). Average expression of CSC markers (ALDH1A1, NANOG, SOX2,
PROM1, and KIT) in WNT5Ahigh and WNT5Alow specimens was calculated and plotted. *p < 0.01 (t-test). L Wnt5a survival analysis from
OVMARK34. Only serous ovarian cancer patients receiving platinum treatment were included in the analysis (GSE30161, n= 42). Hazard
score= 12.02 on 1df, p= 0.0005253, FDR= 0.040.
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DISCUSSION
While most of the research on OC chemoresistance and OCSCs
has focused on cancer cell-intrinsic mechanisms, recent reports
have indicated an important role of the TME8,40. CAFs are a
major constituent of OC TME and we have previously demon-
strated the role of microRNAs in reprogramming resident normal
fibroblasts into CAFs17, while others have reported the involve-
ment of OC extracellular vesicles in inducing CAFs41. CAFs have

been implicated in chemoresistance and have been shown to
have a role in CSC induction42,43. Our present findings have
confirmed the role of CAFs in causing OC recurrence by
providing a CSC niche. Importantly, using a novel coculture
method with a defined OC-CAF boundary and regions where OC
cells and CAFs are further away from each other, we have
determined that CAFs have this influence only on OC cells in
their proximity. This is a critical insight into the manner of the
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crosstalk CAF between CAFs and OCSCs that can result in
chemoresistance and relapse.
The presence of fibrotic residual lesions has been widely

observed following neo-adjuvant chemotherapy in OC patients
and the chemotherapy response correlates with the amount of
stroma21–23, indicating the potential role of CAFs in chemoresis-
tance. Several mechanisms have been identified by which CAFs
induce chemoresistance, including via secretion of IL-6/IL-844,
hepatocyte growth factor (HGF)45, and miR-52246. Here, we report
a Wnt5a-mediated paracrine signaling mechanism that is neces-
sary for the maintenance of OCSC population through increased
symmetric division of CSCs or prevention of their differentiation
and by dedifferentiation of a subpopulation of bulk OC cells.
However, it is important to note that these conclusions are drawn
through experimental data that do not involve direct lineage
tracing. Lineage tracing experiments would be required to
indisputably prove this phenomenon. Since Wnt5a is poorly
soluble in the aqueous microenvironment, this signaling mechan-
ism is limited to the immediate neighborhood. Interestingly,
targeting CSCs cell-autonomous pathways is limited by the
possibility of replenishment through microenvironmental sig-
nals47. However, targeting this crosstalk by inhibiting Wnt5a has
the potential for sustained effects, as evidenced by our xenograft
experiments.
The role of Wnt signaling in OCSCs has been extensively

studied with a greater focus on the canonical β-catenin
pathway activation48,49. Wnt5a has been reported to induce
EMT and cancer stem cells in OC via the TGF-β1/Smad2/3 and
Hippo-YAP1/TAZ-TEAD pathways50,51. Our analysis of published
scRNA-seq data from 11 HGSOC patients27 revealed that
canonical Wnt signaling predominantly involves interactions
between cancer cells in the tumor while non-canonical Wnt
pathways are activated in the cancer cells by CAFs. Moreover,
Wnt5a expression is the highest among all Wnts in these
patient CAFs. We demonstrate that Wnt5a is important for the
maintenance of OCSCs and that CAFs produce significantly
greater amounts of Wnt5a than OC cells. Interestingly, Wnt5a
from peritoneal mesothelial cells promotes OC metastasis52 and
high Wnt5a levels in ascites correlates with poor prognosis53.
Mesothelial cells can be a possible source of CAFs54 and ascites
contains a significant fraction of mesothelial cells and fibro-
blasts that are associated with the OC cells. It is also important
to note that CAFs are a heterogenous population55–57. There-
fore, further studies are needed to determine and characterize
the Wnt5a expressing CAFs that can serve as the OCSC niche.
Our analysis of the scRNA-seq data from HGSOC patient
metastases revealed that there are certain subpopulations of
CAFs that highly express Wnt5a. Interestingly, coculture with
OC cells caused an induction with Wnt5a in CAFs. This points
towards an OC cell induced signaling mechanism that either
increases the expression of Wnt5a in CAFs or enriches for the
Wnt5ahigh CAFs. Further studies are needed to help decipher
the underlying mechanism. Treatment with carboplatin also

increased Wnt5a expression in CAFs, which may involve similar
mechanisms. Wnt5a affects cancer cells in a context-dependent
manner, predominantly activating β-catenin independent path-
ways35,58. Our studies confirm the activation of a non-canonical
Wnt signaling pathway involving ROR2/PKC/CREB1 that sustains
the OCSC population. ROR2 has been implicated in OC
chemoresistance and migration59. We further demonstrate that
ROR2+ OC cells are more stem-like and responsive to Wnt5a
secreted by CAFs.
A phase 1 clinical trial of the porcupine inhibitor WNT974 in

patients with solid tumors that have progressed despite standard
therapy demonstrated that it is well tolerated60. Recent reports
also argue in favor of targeting Wnt signaling at the ligand-
receptor level61. Moreover, a more specific approach of inhibiting
only Wnt5a is not only effective in inhibiting CSCs, as demon-
strated by our in vivo experiments using Box5, but also potentially
less toxic as it does not affect global Wnt signaling like a
porcupine inhibitor. Therefore, developing therapies that combine
Wnt5a inhibition with the standard of care carbo-taxol che-
motherapy may have the potential for reducing disease
recurrence in OC.

METHODS
Reagents
Cells were treated with 10 uM carboplatin (Adipogen, Cat. No. AG-
CR1-3591), 200 uM Wnt5a inhibitor Box5 (Millipore Sigma, Cat. No.
681673) dissolved in pH= 7.0 NaHCO3 buffer, 50 nM Staurospor-
ine (Cell Signaling Technologies, Cat. No. 9953), 100 nM TPA (Cell
Signaling Technologies, Cat. No. 4174), 10 uM IWP2 (Tocris, Cat.
No. 3533) dissolved in DMSO, 200 ng/mL recombinant Human
Wnt3a (R&D System, Cat. No. 5036-WN-010/CF) or Wnt5a (R&D
System, Cat. No. 645-WN-010/CF) dissolved in PBS with 0.1% BSA
(Fisher Scientific Cat. No. BP1600-100).

Human OC cells
Human HGSOC cell lines OVCAR3 were acquired from Ernst
Lengyel at the University of Chicago and OVCAR4 was from
Joanna Burdette, University of Illinois at Chicago. Kuramochi was
procured from the Japanese Collection of Research Bioresources.
The cell lines used were genetically validated and tested to be
mycoplasma free using respective services from Idexx BioResearch
(Columbia, MO). The genetic validation was done using the
CellCheck 16 (16 Marker STR Profile and Inter-species Contamina-
tion Test) and mycoplasma testing was done using Stat-Myco.
Epithelial OC cell lines OVCAR3, OVCAR4, OVCAR8 and Kuramochi
and all CAFs were grown in DMEM media (Corning Cat. No. 10-
013-CV). Media was supplemented with 10% FBS (Atlanta
Biologicals Cat. No. S11150), 1% Penicillin-Streptomycin solution
(100x, Corning Cat. No. 30-002-CI), 1% MEM vitamins (Corning Cat.
No. 25-020-CI), and 1% MEM nonessential amino acids (Corning
Cat. No. 25-025-CI). For experimental seeding or other purposes,

Fig. 4 CAFs signal via Wnt5a. A, B ALDEFLUOR assay of OC-CAF coculture with Wnt5a inhibition. OVCAR3 cells were seeded with CAFs and
cocultured for a week with 200 μM Wnt5a inhibitor Box5. ALDEFLUOR assay was performed to label CSCs (green). A Fluorescent imaging of
OC-CAF coculture labeled by ALDEFLUOR. Scale bar: 100 μm. B Flow cytometry analysis was done to quantify CSCs in control/CAF cocultured
groups with/without treatment. Mean ± SD from three independent experiments. *p < 0.01 (t-test). C Spheroid formation assay of OC-CAF
coculture with Wnt5a inhibition. OVCAR3 cells were seeded with/without CAFs in ultra-low adhesion plates and cocultured for 14 days with
200 μM Wnt5a inhibitor Box5. Representative mages (left) and quantification of number of spheroids (right) are shown. Scale bar: 400 μm.
Mean ± SD from three independent experiments. *p < 0.01 (t-test). D WNT5A was knocked out in CAFs (WNT5A-KO) using CRISPR Cas9, and
the WNT5A-KO CAFs were cocultured with OVCAR3 cells followed by ALDEFLUOR assay to determine the effect on CSC. Fluorescent imaging
and quantification of CSCs are shown. CSCs were quantified by ImageJ counting. Scale bar: 100 μm. Mean ± SD from three independent
experiments. *p < 0.01 (t-test). E qPCR for CSC markers in OVCAR3 cells treated with Box5 for 3 days. Mean ± SD from three independent
experiments. *p < 0.01 (t-test). F Immunofluorescent staining of heterotypic spheroids of OVCAR3+ CAF or OVCAR3 monoculture.
OVCAR3+ CAF (1:1) were seeded in ultra-low adhesion plate for 7 days. The spheroids were isolated, fixed, and stained for respective markers.
ALDH1 was labeled green, Wnt5a was labeled cyan, and vimentin (CAF marker) was labeled red. Scale bar: 200 μm.
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cells were detached using Trypsin EDTA 1x (Corning Cat. No. 25-
053-CI). The serous OC patient ascites-derived OC cells were
obtained from Dr. David Pepin, Harvard Medical School. Details of
cell isolation, IBC protocol and consenting were reported

previously62. Cells were grown in suspension culture in ultra-low
attachment plates in RPMI1640 medium (Corning Cat. No. 10-040-
CV) supplemented with 2% B-27 (Gibco Cat. No. 17504044) and
1% Insulin-Transferrin-Selenium (Gibco Cat. No. 41400045).
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CAFs/fibroblasts
Human primary CAFs were isolated from freshly obtained human
serous ovarian carcinoma specimens as described previously17. CAFs
were characterized for αSMA and Vimentin expression and the
absence of pan-Keratin expression by immunostaining using αSMA,
Vimentin, and pan-Keratin antibodies (Cell Signaling Technologies,
Cat. Nos. 19245S, 5741S, and 4545S respectively). Since the
experiments involve 7-day cocultures with OC cells followed by
ALDEFLUOR assay for OCSCs, it was important to distinguish the
CAFs from OC cells. Therefore, CAFs were immortalized with stable
expression of human telomerase reverse transcriptase (pBABE-neo-
hTERT was a gift from Bob Weinberg (Addgene plasmid # 1774;
http://n2t.net/addgene:1774; RRID:Addgene_1774)) and infected
with lentivirus for stable RFP expression (GenTarget Inc Cat. No.
LVP582). It is specified in the text wherever primary cultures of non-
immortalized CAFs were used for experiments. Normal omental
fibroblasts were isolated from normal human omentum obtained
from female donors as described previously17. All specimens were
de-identified human tissues that were collected during surgery by
the Indiana University Simon Cancer Center’s Tissue Procurement &
Distribution Core using an IRB approved protocol (IRB # 1106005767).
All relevant ethical regulations including the Declaration of Helsinki
were complied with and written informed consent was obtained
from all human participants by the core. The de-identified specimens
were obtained from the core using an institutionally approved ‘non-
human subjects research protocol’ (Protocol # 1606070934).

CAF-OC coculture
For all coculture experiments the CAFs were seeded with OC cells
at a ratio of 2:1 and allowed to grow for 7 days, unless specified
otherwise. Since CAFs grow at a slower rate than the OC cells, the
seeding of larger number of CAFs was found to compensate for
this during the period of coculture.

Bioinformatics analysis
OC patient RNA sequencing data and patient clinical features were
obtained from The Cancer Genome Atlas (TCGA, https://
www.cancer.gov/tcga). Microarray data of the Australian Ovarian
Cancer Study (AOCS) were downloaded from the GEO database
(GSE9891). The oligo (version 1.54.1) R package was used to
normalize the expression matrix from the AOCS dataset.

Microenvironment Cell Populations-counter (MCP-counter, version
1.2.0) was applied to deconvolve cells in TCGA and the AOCS
dataset.

Analysis of scRNA-seq data
Preprocessing scRNA-seq data. Cellular annotation file and count
matrix (filtered) were downloaded from GSE16589727. Stromal cells,
immune cells, and epithelial ovarian cancer cells are identified based
on cellular annotation file provided. In order to remove patient-
specific effects, we ran Seurat v4.2.1 integration workflow (https://
satijalab.org/seurat/articles/integration_introduction.html) for all cells
to derive integration matrix by selecting 8000 features.

Imputation of scRNA-seq data. Considering the high dropout rate
in single-cell sequencing data matrix, Rmagic v2.0.3 (Markov
Affinity-based Graph Imputation of Cells)63 was utilized to impute
missing values, thus restoring the structure of data. We imputed
gene expression using MAGIC (k= 20, t= 3) and integration
matrix.

Annotation. We used the shared nearest neighbor (SNN)
modularity optimization–based clustering from Seurat v4.2.1 for
initial clustering. SingleR v1.10.0 was used to annotate subpopula-
tions of stromal part of all cells and all stromal cells labeled as
fibroblasts. To avoid misclassification of mesothelial and endothe-
lial cells as fibroblasts, we used markers for mesothelial cells
(CALB2, KRT19) and endothelial cells (PECAM1, THBD). Fibroblast
subpopulations were isolated from stromal part for further
downstream analysis workflow described in the tutorial (https://
satijalab.org/seurat/articles/pbmc3k_tutorial.html) except for nor-
malizing step to get 9 fibroblast subpopulations with resolution of
0.5. The same workflow was applied to epithelial ovarian cancer
cells to get 13 cancer cell subpopulations.

Data visualization. To visualize cell layouts, uniform manifold
approximation and projection (UMAP) was generated based on
first 30 principal components. Imputed expression levels of
different WNT variants were compared in fibroblasts and ranked
from highest to lowest based on mean values in boxplot.
To visualize gene expression projected on cell layouts, imputed

expression levels of WNT5A were assigned to corresponding cells
in UMAP. Imputed expression levels of WNT5A were compared in

Fig. 5 Wnt5a activates PKC and CREB1. A scRNA-seq data from 11 HGSOC patient tumors was analyzed for canonical and non-canonical Wnt
signaling in the cancer cell (CC0-CC12) and CAF (FB0-FB8) subpopulations using CellChat v1.5.0. The inferred canonical (top) and non-
canonical (bottom) Wnt signaling network among different CC and FB subpopulations are shown. The width of line connecting nodes
represent the communication probability where thicker indicates higher communication probability. Each subpopulation is represented by a
specific color dot and the color of the connecting line indicates the Wnt secretor subpopulation. (CC: cancer cell; FB: CAF). B–D Immunoblot of
OVCAR3 cells in different CSC conditions. ALDH1, unphosphorylated β-catenin (active), phosphorylated and total PKC, phosphorylated and
total CREB1, and actin were probed. B: ALDEFLUOR assay was done with OVCAR3 cells, which were sorted for pure ALDH+ and ALDH- cells
that were lysed and used for immunoblotting. C OVCAR3 cells treated with 200 ng/mLWnt5a for 2 h were lysed and used for immunoblotting.
D OVCAR3 cells cocultured with CAFs for 7 days and isolated by FACS were lysed and used for immunoblotting. Representative blots shown
from three independent experiments. E ALDEFLUOR assay for stem cell enrichment in OC-CAF cocultures with PKC inhibition. OVCAR3 cells
were seeded with CAFs and cocultured for a week with 50 nM PKC inhibitor Staurosporine (STA). ALDEFLUOR assay was performed to label
CSCs (green). Flow cytometry analysis was done to quantify CSCs in control/CAF cocultured groups with/without PKC inhibition. Mean ± SD
from three independent experiments. *p < 0.01 (t-test). F Spheroid formation assay of OC-CAF coculture with Wnt5a inhibition. OVCAR3 cells
were seeded with/without CAFs in ultra-low adhesion plates and cocultured for 14 days with 10 nM PKC inhibitor Staurosporine (STA).
Quantification of number of spheroids are shown. Mean ± SD from three independent experiments. *p < 0.01 (t-test). G Immunoblot of
OVCAR3 cells with Wnt5a and PKC inhibitor treatment. OVCAR3 cells were treated with 200 ng/mL Wnt5a and 50 nM Staurosporine as
indicated for 2 h, followed by immunoblotting for phosphorylated and total PKC and CREB1. Representative blots shown from three
independent experiments. H Immunoblot of OVCAR3 cells treated with PKC agonist. OVCAR3 cells were treated with 100 nM TPA for up to 2 h,
followed by immunoblotting for phosphorylated and total PKC and CREB1. Representative blots shown from three independent experiments.
I ALDEFLUOR assay for stem cell enrichment in OC-CAF cocultures with CREB1 silencing. OVCAR3 cells were transfected with CREB1 siRNA for
48 h and then seeded with CAFs and cocultured for a week. ALDEFLUOR assay was performed to label CSCs (green). Flow cytometry analysis
was done to quantify CSCs in control/CAF cocultured groups with/without CREB1 silencing. Mean ± SD from three independent experiments.
*p < 0.01 (t-test). J Spheroid formation assay of OC-CAF coculture with CREB1 silencing. OVCAR3 cells were transfected with CREB1 siRNA for
48 h and then seeded with/without CAFs in ultra-low adhesion plates and cocultured for 14 days. Representative images and quantification of
number of spheroids are shown. Scale bar: 400 μm. Mean ± SD from three independent experiments. *p < 0.01 (t-test).
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different fibroblast subpopulations in boxplot. All visualization
methods were implemented in ggplot2 v3.4.0 (https://
ggplot2.tidyverse.org).

Cellular communication analysis. To identify the interactions
between fibroblasts and cancer cells in terms of non-canonical/
canonical WNT signaling pathways, CellChat v1.5.036 was used to
infer cell-cell communication probabilities based on imputed
matrix. The workflow we used was outlined in the tutorial (https://
htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/
master/tutorial/CellChat-vignette.html).

ALDH enzymatic activity assay
ALDH enzymatic activity was measured using an ALDEFLUOR kit
(STEMCELL Technologies Cat. No. 01700) following the manufac-
turer’s instructions. Fluorescent imaging of the ALDEFLUOR assay
was done using an EVOS FL Auto microscope (Thermo Fisher
Scientific). At least 3 different images were taken from 3 different
technical replicates, and at least 3 different biological replicates
were done for each experiment. ALDH positive cells population
was also quantified by LSRII flow cytometer (BD Biosciences) in the
non-RFP cells in cocultures of OC cells with RFP expressing CAFs as
outlined in Supplementary Fig. 4A. The FACS data analysis
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workflow and all FACS data is provided in the supplementary data
file (combined in Supplementary Fig. 11). Of note, the CAFs did
not have ALDH activity. In experiments to separate the ALDH
positive and negative OC cells, ALDEFLUOR assay was followed by
cell sorting using FACS Aria II (BD Biosciences). As an additional
confirmation, RFP expressing OVCAR3 cells were cocultured with
nonfluorescent CAFs followed by ALDEFLUOR assay and quanti-
fication of ALDH+OVCAR3 cells (Supplementary Fig. 4E).

Spheroid formation and imaging
Cancer cells were trypsinized and seeded in 24 well ultra-low
attachment plates (Corning Cat. No. 3473) for spheroid formation
assay. Cancer stem cell media is used in the assay, as described
previously4. 1000 cells were seeded in each well and cultured for
14 days to allow spheroid formation, which were imaged using an
EVOS FL Auto microscope (Thermo Fisher Scientific). At least three
different images were taken from three different technical
replicates, and at least three different biological replicates were
done for each experiment. Spheroids were manually quantified.

Spheroid immunofluorescent staining
3 × 105 OVCAR3 cells were seeded with 3 × 105 CAFs in 6-well
ultra-low attachment plates (Corning Cat. No. 3471). At the time of
seeding, the plate was kept inclined for 30min to help the OC cells
and CAFs aggregate and interact. Thereafter, plates were reverted
to the usual horizontal position and cultured for 7 days to allow
the heterotypic spheroids to grow. Spheroid fixation, blocking,
and antibody staining were done as described by Condello et al.49.
Briefly, spheroids were fixed and permeabilized in suspension for
3 h at 4 °C in PBS containing 4% PFA (Boston BioProducts BM-155)
and 1% Triton X-100 (Thermo Scientific Cat. No. 85112). Spheroids
were dehydrated with increasing concentrations of methanol
(25%, 50%, 75%, 95%, 100%) and rehydrated in the opposite
sequence, then stained with ALDH1 (1:100, BD Bioscience Cat. No.
611194), Wnt5a (1:200, CST Cat. No. 2530) and Vimentin (1:500,
Thermo Fisher Scientific Cat. No. PA1-10003) antibodies. Nuclei
were visualized by Hoechst 33342 (Life Technologies Cat. No.
H3570). The primary antibodies were probed with 1:1000 Alexa
Fluor 488 conjugated anti-mouse IgG (Cell Signaling Technology,
cat. No. 4408S), Alexa Fluor 594 conjugated anti-rabbit IgG (Cell
Signaling Technology, cat. No. 8889) or Alexa Fluor 647
conjugated anti-chicken IgG (Invitrogen, cat. No. A-21449).

Interface interaction assay
OVCAR3 cells and CAFs were trypsinized and counted. 12 mm
round coverslips (TED PELLA, Cat. No. 26023) were placed in wells
of 24-well tissue culture plates (Corning, Cat. No. 09-761-146).
Cloning rings (6 mm diameter, 8 mm height, PYREX, Cat. No.
CLS31666) were carefully placed at the center of the coverslip.

15,000 OVCAR3 cells suspended in 100 μL cell culture medium
were slowly added to the center of the cloning ring. 150,000 CAFs
in 500 μL cell culture medium were added outside the ring in the
well. After overnight incubation to allow attachment, the rings
were removed. The two cell types were allowed to grow and
merge at the interface over 48 h. Thereafter, cells were treated
with 33 μM carboplatin (IC50 for MTT assay) for 48 h followed by
TUNEL staining. For the ALDH1 staining experiment, cells were
fixed and stained 48 h after merger at the interface. Cells were
stained with ALDH1 (1:100, BD Bioscience Cat. No. 611194),
E-cadherin (1:1000, Cell Signaling Technology Cat. No. 3195), and
Vimentin (1:1000, Thermo Fisher Scientific Cat. No. PA1-10003)
primary antibodies. Nuclei were visualized by Hoechst 33342 (Life
Technologies Cat. No. H3570). The primary antibodies were
probed with 1:1000 Alexa Fluor 488 conjugated anti-mouse IgG
(Cell Signaling Technology, cat. No. 4408S), Alexa Fluor 594
conjugated anti-rabbit IgG (Cell Signaling Technology, cat. No.
8889) or Alexa Fluor 647 conjugated anti-chicken IgG (Invitrogen,
cat. No. A-21449). Click-iT TUNEL Alexa Fluor Imaging Assay for
Microscopy (Thermo Fisher Scientific Cat. No. C10245) was used
according to the manufacturer’s protocol to image apoptotic cells.

Tumor immunofluorescence staining
De-identified HGSOC patient tumors collected during surgery by
the Indiana University Simon Cancer Center’s Tissue Procurement
& Distribution Core were obtained from the core using an
institutionally approved ‘non-human subjects research protocol’
(Protocol # 1606070934). Freshly collected tumors were
embedded in OCT compound (Tissue-Tek Cat. No. 4583), flash-
frozen, and stored at −80 °C. 12 µm tumor sections were made
using a cryo-microtome (Leica CM1850), fixed with 4% PFA for
15min at 37 °C, permeabilized with 1X Proteinase K solution
(provided in the Click-It TUNEL Assay kit) followed by TUNEL
staining using Click-iT TUNEL Alexa Fluor Imaging Assay for
Microscopy (Thermo Fisher Scientific Cat. No. C10245). The OC
cells were labeled with Pan-Keratin (1:200, Cell Signaling
Technology, Cat. No. 4545S) and CAFs with αSMA (1:200, Cell
Signaling Technology, Cat. No. 19245 S). Alexa Fluor 594
conjugated goat-anti-mouse (1:1000, Cell Signaling Technology,
Cat. No. 8890S) and Alexa Fluor 647 conjugated goat-anti-rabbit
(1:1000, Cell Signaling Technology, Cat. No. 4414S) were used to
detect the primary antibodies and nuclei were labeled with
Hoechst 33342 (1:10,000, Life Technologies Cat. No. H3570). The
slides were mounted with ProLong Gold (Invitrogen Cat. No.
P36930), and the images were acquired with a Leica SP8 confocal
microscope.

Fig. 6 ROR2 is the Wnt5a co-receptor. A, B ALDEFLUOR assay for stem cell enrichment in OC-CAF cocultures with Wnt5a co-receptor
inhibition. OVCAR3 cells were transfected with LRP5/LRP6/ROR2 siRNA for 48 h and then seeded with CAFs and cocultured for a week.
ALDEFLUOR assay was performed to label CSCs (green). A Fluorescent imaging of OC-CAF coculture labeled by ALDEFLUOR. Scale bar:
100 μm. B Flow cytometry analysis was done to quantify CSCs in control/CAF cocultured groups. Mean ± SD from three independent
experiments. * p < 0.01 # not significant (t-test). C Spheroid formation assay of OC-CAF cocultures with Wnt5a co-receptor inhibition. OVCAR3
cells were transfected with LRP5/LRP6/ROR2 siRNA for 48 h and then seeded with/without CAFs in ultra-low adhesion plates and cocultured
for 14 days. Representative images and quantification of number of spheroids are shown. Scale bar: 400 μm. Mean ± SD from three
independent experiments. *p < 0.01 (t-test). D qPCR for ALDH1A1 expression in ROR2-/ROR2+ OVCAR3 cells. OVCAR3 cells were sorted to
isolate ROR2 negative and positive cells using FACS with a ROR2-APC conjugated antibody. Cells were lysed for RNA extraction. qPCR was
done to determine ALDH1A1 and ROR2 expression. Mean ± SD from three independent experiments. *p < 0.01 (t-test). E Spheroid formation
assay of ROR2-/ROR2+ OVCAR3 cocultured with CAFs. OVCAR3 cells were sorted to isolate ROR2 negative and positive cells using FACS with a
ROR2-APC conjugated antibody. Cells were cocultured with CAFs in ultra-low adhesion plates for 14 days to form spheroids. Spheroids were
quantified and plotted. Mean ± SD from three independent experiments. *p < 0.01 (t-test). F Immunoblots of ROR2-/ROR2+ OVCAR3 treated
with Wnt5a. OVCAR3 cells were sorted using FACS to isolate ROR2 negative and positive cells using a ROR2-APC conjugated antibody. Cells
were seeded in culture plate and starved for 24 h with serum-free media before treatment with 200 ng/mLWnt5a for 2 h followed by lysis and
immunoblotting. Representative blots shown from three independent experiments.
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Gene silencing
Cells were seeded in culture plates in antibiotic-free DMEM one
day before transfection of siRNA. Cells were transfected with
25 nM LRP5, LRP6, ROR2, CREB1 and PORCN siRNA (Dhramacon,
SMARTPool Cat. Nos. L-003844-00-0005, L-003845-00-0005, L-
003172-00-0005, 003619-00-0005, L-009613-00-0005 respectively)
using TransIT-X2 transfection reagent (Mirus, Cat. No. MIR6003)

following the manufacturer’s protocol. The cells were used for
experiments 48 h after transfection unless indicated otherwise.

CRISPR knockout
WNT5A sgRNA (Synthego CRISPRevolution sgRNA EZ Kit, Seq:
uccugggcuuaauauuccaa) and Cas9 enzyme (Synthego Cas9 2NLS)
ribonucleoprotein complexes were made following
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manufacturer’s protocol. The reaction mixture was electroporated
into cells using NeonTransfection System 10 μL Kit (Thermo Fisher
Scientific, Cat. No. MPK1025) with the Neon Transfection System
(Thermo Fisher Scientific, Cat. No. MPK5000). Knockout efficiency
was screened using T7E1 assay, and target protein expression
level was further screened and validated by immunoblotting.

Reverse transcription-quantitative PCR
Reverse Transcription was done using MultiScribe Reverse
Transcriptase kit (Thermo Fisher Scientific, Cat. No. 4311235)
according to the manufacturer’s protocol using a Veriti 96-Well
Thermal Cycler (Thermo Fisher Scientific). Quantitative real-time
PCR for ALDH1A1, Wnt5a, SOX2, OCT4, NANOG, and PORCN was
performed using TaqMan gene expression assay (Applied
Biosystems, Cat. Nos. Hs00946916_m1, Hs00998537_m1,
Hs01053049_S1, Hs00999634_gh, Hs02387400_g1,
Hs00224508_m1 respectively) using GAPDH (Applied Biosystems,
Cat. No. Hs99999905_m1) as an endogenous control on Light-
Cycler 96 PCR system (Roche) using Faststart Essential DNA master
mix (Roche, Cat. No. 06924492001).

Immunoblotting
Immunoblotting was done as previously described ref. 17,64.
Briefly, electrophoresis was performed to separate proteins on
4–20% SDS-PAGE precast gels (Bio-Rad, Cat. No. 4561094) and
transferred onto nitrocellulose membranes (Cytiva Amersham Cat.
No. 10600002), blocked with 5% skim milk, and probed with
ALDH1 (BD biosciences, Cat. No. 611194), unphosphorylated-
β-catenin, pan phosphorylated-PKC, Wnt5a, pan-Keratin, phos-
phorylated-Jun, phosphorylated-CAMKII (Cell signaling Technolo-
gies, Cat. Nos. 19807S, 9371S, 2530S, 4545S, 3270S, 12716S
respectively), phosphorylated-CREB1, pan PKC, CREB1 (Santa Cruz,
Cat. Nos. sc-81486, sc-7769, sc-377154 respectively) primary
antibodies (all at 1:1000 dilution) and detected using HRP-
conjugated Mouse/Rabbit IgG secondary antibodies (Cell Signal-
ing Technologies, Cat. Nos. 7076/7074) at 1:2000 dilution. β-actin-
HRP antibody (Sigma, Cat. No A3854) was used to detect actin. The
full images of the blots are provided in Supplementary Fig. 12. All
blots in a figure derive from the same experiment and were
processed in parallel.

Immunohistochemistry
Immunohistochemical experiments and Masson’s Trichrome
staining were performed by the Immunohistochemistry core
facility of Indiana University School of Medicine using 5 μm thick
formalin-fixed deparaffinized sections as previously described
ref. 17,64. Tumor sections were probed with ALDH1A1 (Abcam, Cat.
No. ab52492) or αSMA (Cell Signaling Technologies, Cat. No.
19245). Images were acquired using EVOS FL Auto microscope
(Thermo Fisher Scientific) using a 20x objective. OpenCV Python
package was used to quantify the positive regions in the slides
and implemented in Python (v3.8.3). Images were read and

converted from BGR to HSV color space. The range for different
regions in the images were set up and used to threshold the
images to get binary values. The percentage of the positive
regions for each image was calculated as the ratio of the number
of non-zero pixels to the total pixels.

Xenograft experiments
OVCAR3 cells (1 × 106) and CAFs (2 × 106) were mixed in 100 µL
growth factor reduced matrigel (Corning, Cat. No CLS356231) and
injected subcutaneously into flanks of 6-week-old, female NSG
mice. The mice were housed in special Indiana University
Laboratory Animal Resources facility for immune compromised
mice, with 12-h day/night cycles. Once tumors were palpable,
mice were randomly segregated into 4 treatment groups (n= 5).
Each group was treated with either carboplatin, Box5, both, or
vehicle. Carboplatin (25 mg/kg) was injected i.p. once a week,
Box5 (1.6 mg/kg) was injected i.p. thrice a week. PBS wa uses as
the vehicle control and injected i.p. thrice a week. After 4 weeks of
treatment, mice were euthanized with CO2, followed by cervical
dislocation. Tumors were removed, weighed, and dissociated with
a gentleMACS Dissociator (Miltenyi Biotec) using human tumor
dissociation kit (Miltenyi Biotec Cat. No. 130-095-929) for
subsequent experiments. For in vivo limiting dilution assay pre-
cocultured or control OVCAR3 cells were injected subcutaneously
in the right and left flanks, respectively of 6-week-old female NSG
mice as indicated in Fig. 2D. Mice were euthanized 71 days after
injection and the tumor take was quantified. The study was
approved by Indiana University’s Bloomington Institutional Animal
Care and Use Committee.

Study approval
All specimens were collected during surgery, having obtained
informed consent prior to participation, by the Indiana University
Simon Cancer Center’s Tissue Procurement & Distribution Core
using an IRB approved protocol (IRB # 1106005767). The de-
identified specimens were obtained from the core using an
institutionally approved ‘non-human subjects research protocol’
(Protocol # 1606070934). All animal experiments were conducted
following protocols approved by the Indiana University Blooming-
ton Institutional Animal Care and Use Committee.

Statistics
Statistical analyses were conducted using Student’s t test. A two-
tailed Student’s t-test was used for comparison between 2 groups.
For all experiments, at least three independent biological
replicates (n= 3) were done. Mean ±SD was shown for each bar
graph. P values of less than 0.01 were considered to be statistically
significant, unless specified in the figure legend.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Fig. 7 Wnt5a inhibition sensitizes tumors to carboplatin. A In vitro spheroid formation of OVCAR3-CAF cocultures with Box5/carboplatin
combination treatment. OVCAR3 cells were seeded with CAFs in ultra-low adhesion plates and cocultured for 14 days with/without 200 μM
Box5 and/or 10 nM carboplatin. Representative images and quantification of number of spheroids are shown. Scale bar: 400 μm. Mean ± SD
from three independent experiments. *p < 0.01 (t-test). B–E In vivo combination treatment of Box5/carboplatin in mouse xenografts. B Mice
were subcutaneously injected with 1 million OVCAR3+2million CAFs. When tumor size reached 1 cm in diameter (on day70 of injection), mice
were randomized into 4 groups of 5 mice per group and treated with 25mg/kg carboplatin weekly or 1.6 mg/kg Box5, three times per week or
a combination of both. The control group received PBS. C Mice were euthanized after 4 weeks of treatment and tumors were isolated,
weighted, and plotted. D Representative IHC Images of the xenograft tumor sections stained with ALDH1A1 (scale bar: 200 μm).
ALDH1A1 staining was quantified and plotted. Mean ± SD from five tumors/group. *p < 0.05. E Residual tumors were dissociated using a
gentleMACS dissociator and used for spheroid formation assay to measure the residual OCSC fraction. The spheroids were imaged and
quantified. Mean ± SD from five tumors/group. *p < 0.01 (t-test). F Schematic overview of the Wnt5a-ROR2-PKC-CREB1 axis mediating the CAF-
OCSC interactions.
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