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Autosurv: interpretable deep learning framework for cancer
survival analysis incorporating clinical and multi-omics data
Lindong Jiang 1, Chao Xu 2, Yuntong Bai3, Anqi Liu1, Yun Gong1, Yu-Ping Wang 3 and Hong-Wen Deng 1✉

Accurate prognosis for cancer patients can provide critical information for optimizing treatment plans and improving life quality.
Combining omics data and demographic/clinical information can offer a more comprehensive view of cancer prognosis than using
omics or clinical data alone and can also reveal the underlying disease mechanisms at the molecular level. In this study, we
developed and validated a deep learning framework to extract information from high-dimensional gene expression and miRNA
expression data and conduct prognosis prediction for breast cancer and ovarian-cancer patients using multiple independent multi-
omics datasets. Our model achieved significantly better prognosis prediction than the current machine learning and deep learning
approaches in various settings. Moreover, an interpretation method was applied to tackle the “black-box” nature of deep neural
networks and we identified features (i.e., genes, miRNA, demographic/clinical variables) that were important to distinguish
predicted high- and low-risk patients. The significance of the identified features was partially supported by previous studies.
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INTRODUCTION
Cancer is one of the leading causes of death worldwide1. It is
estimated that in 2022, 1,918,030 new cases will be diagnosed,
and about 609,360 people will die from cancer (i.e., almost 1700
deaths per day) in the United States2. Accurate cancer prognosis
prediction helps clinicians to conduct more appropriate treatment
allocation for patients to prolong life span, increase life quality,
and reduce unnecessary treatment cost. Recent studies have
applied machine learning (ML) techniques in the analysis of
clinical and genomic features, and they showed that ML has
improved performance in cancer susceptibility, recurrence, and
survival prediction compared to traditional approaches (e.g.,
Kaplan–Meier method)3–5. In practice, several issues can under-
mine the robustness of survival predictions. Firstly, measuring
some important clinical variables (e.g., disease stage) relies heavily
on the clinician’s individual interpretation, which may introduce
human bias, thereby reducing the accuracy and reliability of the
prediction results1. Interestingly, the study5 showed that ML
model can give more accurate predictions than the attending
physicians in cancer survival analysis. Secondly, small sample size
accompanied by high-dimensional input data (e.g., gene expres-
sion data, whole slide image, etc.) can result in overfitting6 and
hamper the generalizability of existing models. Thirdly, the
relationship between predictors and survival outcome may be
non-linear7, and thus existing models that assume a linear
relationship (e.g., Cox Proportional Hazards model8) may produce
inaccurate results.
Following the widespread application of high-throughput

sequencing technologies, omics data (e.g., mRNA expression data,
miRNA expression data) have become more accessible than ever.
Incorporating omics information in analyses could provide models
with a more comprehensive view and mitigate the bias that may
be brought by a single data type. Furthermore, this could help us
understand disease mechanisms at the molecular level. Some
recent studies included omics information in their models for

cancer classification or prognosis1,6,9–15; moreover, several stu-
dies11,13–15 have shown that integrating multi-omics data can
improve model performance compared with single omics. Thus,
efficient, and effective incorporation of multi-omics data into
cancer survival analysis is worth further investigation.
There are many approaches available for survival analysis, such

as the Cox proportional hazard (CoxPH) and related models8,16,17,
random survival forest (RSF)18, Extreme Gradient Boosting
(XGBoost) with Accelerated Failure Time (AFT) (XGB-AFT)19 and
some newly developed Deep Neural Networks (DNN)1,6,9–12,14,20.
CoxPH model assumes a linear relationship between a patient’s
log-risk of failure and covariates8,20. Although it is commonly
applied for survival analysis, the CoxPH model cannot handle
complex data structure well6. In addition, due to the high-
dimension-low-sample-size issue6 commonly seen in analyses
with omics data, directly applying CoxPH on omics data can cause
overfit. Regularization techniques like LASSO or elastic net can
help lower the risk of overfitting by conducting variable selection.
On the other hand, random survival forest is an ensemble tree
method that extends upon Breiman’s random forest (RF)
method21 for the analysis of right-censored survival data. It
handles nonlinearity automatically, can produce highly accurate
ensemble predictors, and can offer nearly unbiased error rate
estimates even in the presence of significant amounts of missing
data. Gradient boosting is another ensemble-based method, and
XGBoost is a library for efficient implementation of its algorithm22.
Generally, random forest can lower the chance of overfitting, while
gradient boosting can reduce the risk of underfitting, and XGBoost
has helped many winner teams in Kaggle structured data
competitions22. XGB-AFT19 adapted the AFT model to integrate
with XGBoost, it captures non-linear data patterns like other ML
approaches and produces survival time estimates directly. More-
over, both RSF and XGB-AFT are not restricted by the proportional
hazard assumption.
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As a trending approach, DNN can also deal with non-linear
relationships intrinsically, which can well represent complicated
data structures. Owing to their flexibility, deep learning (DL)
models can be designed (or combined with other approaches) to
conduct feature extraction and integration from high-dimensional
omics data. DeepSURV20 is a model that is based on CoxPH but
adopts a DNN structure. Katzman et al. demonstrated that
DeepSURV was able to outperform the CoxPH model in prognosis
prediction under various scenarios, highlighting the strength of
deep learning models in handling complex data patterns
compared to conventional approaches. In a similar fashion, Cox-
nnet1 and CoxPASNet6 both adopted feed-forward DNN structures
for prognosis prediction, but unlike DeepSURV, they can handle
high-dimensional gene expression data. Moreover, CoxPASNet
applies a sparse coding technique to further reduce the risk of
overfitting. In the study6 CoxPASNet showed significantly better
performance than Cox-nnet. OmiVAE is a DNN that combines
gene expression and DNA methylation data for cancer classifica-
tion15. OmiVAE consists of a variational autoencoder (VAE) and a
downstream classification network. It can achieve task-oriented
feature extraction and patient classification simultaneously in the
supervised phase of its training scheme15. Zhang et al. showed
that OmiVAE performed better when trained from multi-omics
data than single-omics data. SALMON11 implemented local
maximal Quasi-Clique Merger (lmQCM)23 for co-expression net-
work analysis. The first principal components of the identified
gene/miRNA co-expression modules were then extracted and
input into a CoxPH Regression Network11. In their study, Huang
et al. observed improved performance of SALMON when more
omics data were incorporated. Cheerla et al. built a DL model that
integrates multimodal representations from clinical, omics, and
whole slide image data and performs pan-cancer prognosis
prediction10. MultiSurv, proposed by ref. 12, is another DL-based
pan-cancer prognosis prediction model. It also takes those three
modalities as the input. But it applies a different integration
approach (i.e., computing the row-wise maximum of the feature
representation matrix) and does not depend on the proportional
hazard assumption of the CoxPH model (i.e., owing to their
implementation of the discrete-time survival model formulation).
Finally, for result interpretation and feature importance investiga-
tion, previous DL approaches have applied gradient-based or
perturbation-based methods6,11,13.
In this paper, we develop a deep learning model for prognosis

prediction, namely, AUTOSurv. This model uses multi-omics data
and tackles the high-dimension-low-sample-size issue through
dimension reduction leveraging a specially designed VAE. We
demonstrate that by virtue of its network structure and learning
strategy, AUTOSurv obtained significantly better prognosis
prediction performance compared to other existing modeling
strategies and/or machine learning methods in various cases using
multiple independent datasets. Furthermore, the strengths and
weakness of different feature extraction, dimension reduction, and
data integration approaches are deliberated. To resolve the “black-
box” nature of DNNs, we applied the DeepSHAP interpretation
approach24–26 to the learned AUTOSurv model and identified
important genes, miRNA and pathways that contributed to
distinguishing between high- and low-risk patients. We hope
our work could be a step towards the development of more
advanced deep learning approaches that not only can provide
accurate prognosis prediction but also can unravel hidden
mechanisms underlying cancer progression.

RESULTS
AUTOSurv on multi-omics data integration
The structure of AUTOSurv was presented in Fig. 1 and the
“Methods” section. In general, the AUTOSurv model conducts

prognosis prediction in two steps: (1) A pathway-information-
guided VAE model with KL-annealing learning strategy (KL-
PMVAE) extracts low-dimensional latent features from high-
dimensional gene expression and miRNA expression data jointly;
(2) A multi-layer perceptron network (LFSurv) takes the con-
catenation of the latent features from KL-PMVAE and demo-
graphic/clinical variables as input and computes prognostic index
(PI) for each patient, where higher PI implies higher risk of death.
During the developmental stage, we examined different structures
and learning strategies of AUTOSurv and compared them with
other deep learning approaches to finalize the proposed model. In
this stage, we used The Cancer Genome Atlas (TCGA) Breast
(BRCA) and Ovarian (OV) cancer multi-omics datasets (data
collection and preprocessing details listed in Methods), and three
different cases were designed for performance evaluation. In the
first case (denoted as “mRNA + miRNA + clinical”), gene
expression data, miRNA expression data, and demographic/clinical
data (e.g., age, disease stage, race) were used as model input, and
two strategies for multi-omics integration (“entangle” and “con-
catenate”) were analyzed. In the “entangle” strategy, which is the
final strategy chosen for AUTOSurv, the KL-PMVAE section of
AUTOSurv combines gene expression and miRNA expression
information to derive a joint set of latent features (μgeneþmiRNA) as
input for LFSurv (see Fig. 1c for illustration). In the “concatenate”
strategy, altered KL-PMVAE extracts latent features, μgene and
μmiRNA, from gene and miRNA expression data respectively
(Supplementary Fig. 2). LFSurv takes the direct concatenation of
μgene and μmiRNA, instead of μgeneþmiRNA as input. In the other two
cases (denoted as “mRNA + clinical” and “miRNA + clinical”,
respectively), demographic/clinical data, and a single type of
omics data were used as model input. Gene expression data was
used for “mRNA + clinical”; while miRNA expression data was used
for “miRNA + clinical”. LFSurv takes either μgene or μmiRNA (plus
demographic/clinical data), as illustrated in Supplementary Fig. 2c.
By comparing to “mRNA + miRNA + clinical”, we can examine the
performance gain from multi-omics vs single-omics input features.
Unless otherwise mentioned, KL-annealing was applied for all
VAE-related model structures.
As shown in Fig. 2, AUTOSurv with “entangle” integration

strategy achieved best prediction performance for both TCGA-
BRCA (median C-index= 0.749) and TCGA-OV (median C-index=
0.629) datasets. In the “mRNA + miRNA + clinical” case (Fig. 2a),
compared to the “concatenate” strategy, the “entangle” strategy
had superior performance in integrating two types of omics data
for prognosis prediction in terms of C-index, with the significance
of performance difference checked via two-sided Wilcoxon
signed-rank test (for TCGA-BRCA: median C-index 0.749 vs 0.737,
p-value= 0.010; for TCGA-OV: median C-index 0.629 vs 0.611, p-
value= 0.037). When we compared the effectiveness of multi-
omics data integration in “mRNA +miRNA + clinical” to the
individual omics analysis in “mRNA + clinical” and “miRNA +
clinical”, the “concatenate” strategy did not render better
prediction performance (two-sided Wilcoxon signed-rank test
returned p-value > 0.1 for all comparisons). One possible explana-
tion is that, given miRNA mostly affects the phenotype by
regulating the expression of certain genes, the survival-related-
information underlying gene expression and miRNA expression
data, respectively, may have some degree of overlap. Therefore, if
concatenated directly, the presumably overlapped information in
μgene and μmiRNA can be redundant for LFSurv to predict prognosis.
On the other hand, when the “entangle” strategy was applied, the
decoder of KL-PMVAE was trained to reconstruct the two types of
omics data simultaneously from a common set of latent features
(see the “Methods” section). The aforementioned information
overlap might facilitate utilization of crosstalk (especially the non-
linear interactions) between the two omics data and help our
model extract the most relevant information for the reconstruc-
tion task. Thus KL-PMVAE using “entangle” strategy in “mRNA +
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miRNA + clinical” achieved more efficient feature extraction than
single-omics VAE models in terms of C-index (TCGA-BRCA “mRNA
+miRNA + clinical” vs “mRNA + clinical”: median C-index 0.749 vs
0.731, p-value= 0.002; TCGA-BRCA “mRNA + miRNA + clinical” vs
“miRNA + clinical”: median C-index 0.749 vs 0.738, p-value=
0.037; TCGA-OV “mRNA + miRNA + clinical” vs “mRNA + clinical”:
median C-index 0.629 vs 0.619, p-value= 0.020; TCGA-OV “mRNA
+ miRNA + clinical” vs “miRNA + clinical”: median C-index 0.629
vs 0.613, p-value= 0.014; p-values obtained via two-sided
Wilcoxon signed-rank tests).
We tested the KL-annealing learning strategy (see the

“Methods” section) in AUTOSurv. When only single-omics data
were used (Fig. 2b, c), the prediction performance of AUTOSurv
with or without KL-annealing did not differ significantly in most
scenarios. The exception is for the “miRNA + clinical” case of
TCGA-OV dataset, where AUTOSurv with KL-annealing achieved
significantly better performance (median C-index 0.613 vs 0.581,
p-value= 0.014). When two omics data types were modeled
simultaneously using “entangle” integration strategy in the “mRNA
+ miRNA + clinical” case, the performance of AUTOSurv with KL-
annealing was significantly better (median C-index 0.749 vs 0.737,
p-value= 0.006 for TCGA-BRCA; median C-index 0.629 vs 0.604, p-
value= 0.014 for TCGA-OV). This implies that KL-annealing helped
retain useful information in the latent features when the
reconstruction task of KL-PMVAE became more complicated.
Moreover, for AUTOSurv without KL-annealing, “mRNA + miRNA
+ clinical” performance (with “entangle” strategy) did not improve
compared to “mRNA + clinical” or “miRNA + clinical” (except for
“mRNA + miRNA + clinical” vs “miRNA + clinical” of TCGA-OV
[median C-index 0.604 vs 0.581], p-value equals 0.009). Therefore,

it is reasonable to assume that the combination of the “entangle”
integration strategy and KL-annealing, instead of the “entangle”
strategy alone, gave AUTOSurv better prediction performance
when both omics data types were incorporated. These findings
highlight the subtlety in selecting a plausible structure and
optimization strategy when constructing deep neural networks.
Moreover, the results encourage us to explore in future studies
whether KL-annealing has the potential to boost the performance
of VAE models in more complex integration tasks involving more
than two types of omics data.
To assess the influence of omics data on prognosis prediction,

we fitted LFSurv using only demographic/clinical variables and
obtained testing set median C-index 0.714 for TCGA-BRCA dataset
and 0.623 for TCGA-OV dataset, which are lower than those from
AUTOSurv in the case “mRNA + miRNA + clinical” (median
C-index 0.749 for TCGA-BRCA, p-value= 0.002; median C-index
0.629 for TCGA-OV dataset, p-value= 0.131). It suggests that
incorporating omics information improved prediction perfor-
mance of AUTOSurv, with greater advancement for the TCGA-
BRCA dataset. This finding also implied that the amount of
survival-related information embedded in omics data might vary
across different cancer types, which may raise the issue of
optimizing resource allocation to collect informative types of
omics data and conduct cost-effective survival analysis/prediction
for different cancer types. Nevertheless, considering the notice-
able gap in sample size between the TCGA-BRCA and TCGA-OV
datasets (i.e., 1058 vs 355), this statement may require further
verification, which is out of the scope of this study.
We compared prognosis prediction performance of LFSurv

network with the conventional multivariable CoxPH model using

Fig. 1 AUTOSurv workflow and key components illustration. a KL-PMVAE was trained to conduct integration and dimension reduction on
gene expression and miRNA expression data. b Latent features generated by KL-PMVAE will be combined with the demographic/clinical
variables and fed into the LFSurv network. The output of LFSurv will be a prognostic index (PI) for each patient that reflects the patient’s risk of
death. PImed : median prognostic index. c Illustration of KL-PMVAE. The VAE model consists of an encoder and a decoder. The encoder has one
gene layer (each node represents a gene), one pathway layer (each node represents a pathway), and one miRNA layer (each node represents a
miRNA) and learns a distribution estimate of the latent variables z (parameterized by means μ and variances σ2 which were stored in the latent
bottleneck). The decoder takes a sample ẑ from the distribution estimate as input and outputs the reconstructed expression data x̂miRNA and
x̂gene . d Illustration of LFSurv. This network consists of an input layer, a hidden layer, and an output layer with only one node. The extracted
latent features μ were concatenated with the demographic/clinical variables. The network receives the concatenated features and outputs the
prognostic index (PI).
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only demographic/clinical data (i.e., all clinical variables included
as covariates in a single model). The linear combination of the
covariates (denoted as log-risk function in ref. 20) in CoxPH model
is equivalent to PI in AUTOSurv, and higher value of the log-risk
function implies higher risk of death. For each dataset, we trained
a CoxPH model using the whole tuning set and applied the
trained model to the testing set (see the “Methods” section for
more details about data division). The log-risk function estimates
for the testing set patients combined with their overall follow-up
times and event indicators were used to calculate testing set
C-index following Eq. (5) in the “Methods” section, and we
obtained testing set C-index of 0.673 (p-value= 0.002 vs LFSurv)
and 0.606 (p-value= 0.041 vs LFSurv) for TCGA-BRCA dataset and

TCGA-OV dataset respectively (because no hyperparameter was
applied for the CoxPH model, in each dataset we only have to
train the model once obtaining one testing set C-index). This
implied that some higher-order interactions between the demo-
graphic/clinical variables captured by the hidden layer of LFSurv
are potentially important for survival analysis. It showed the
strength of deep neural networks in utilizing more complex data
structure/feature relationships compared to the conventional
CoxPH model.

AUTOSurv compared to other deep learning approaches
We applied and adapted other recently developed and represen-
tative deep learning methods (CoxPASNet6, OmiVAE15, and

Fig. 2 Boxplots for performance comparison between different models/model structures in terms of testing set C-index. Predictions
measured on TCGA-BRCA and TCGA-OV datasets in three different cases: a mRNA + miRNA + clinical; b mRNA + clinical; c miRNA + clinical.
AUTOSurv Entangle: AUTOSurv with “entangle” integration strategy; AUTOSurv Concat: AUTOSurv with “concatenate” integration strategy,
more details about the alterations of AUTOSurv were illustrated in Supplementary Fig. 2; AUTOSurv Entangle No KL: AUTOSurv (with
“entangle” integration strategy) without KL-annealing; Modif-SALMON: modified-SALMON. The p-value from two-sided Wilcoxon signed-rank
test (null hypothesis H0: median difference is 0; versus alternative hypothesis HA: median difference is not 0) is displayed between boxes.

L Jiang et al.

4

npj Precision Oncology (2024)     4 Published in partnership with The Hormel Institute, University of Minnesota



SALMON11) under the same three cases as mentioned earlier and
compared their performance with AUTOSurv. For the case “mRNA
+ miRNA + clinical”, we focus on the comparisons involving
AUTOSurv [“entangle” strategy]. The results are summarized in
Fig. 2.
The end-to-end DNN CoxPASNet was not originally designed to

handle multi-omics data, so we used only gene expression data
and demographic/clinical variables (the case “mRNA + clinical”)
for this model. The testing set median C-index for CoxPASNet was
0.653 for the TCGA-BRCA dataset and 0.599 for the TCGA-OV
dataset, which was significantly lower than that obtained by
AUTOSurv (TCGA-BRCA: median C-index 0.731, p-value= 0.004;
TCGA-OV: median C-index 0.619, p-value= 0.006) using the same
input data. This implied that dropout combined with sparse
coding might not be efficient enough when dealing with high-
dimensional omics features in an end-to-end feed-forward deep
neural network.
As mentioned in the Introduction, OmiVAE is another end-to-

end deep learning model. Here we tailored OmiVAE to survival
analysis as Surv-OmiVAE, which connects the encoder of KL-
PMVAE to LFSurv and trains them together to achieve “task-
oriented feature extraction” in its supervised phase15. From Fig. 2
we see that Surv-OmiVAE achieved high performance in single-
omics cases (i.e., “mRNA + clinical” of TCGA-OV; “miRNA + clinical”
of TCGA-BRCA). In the case “miRNA + clinical” of TCGA-BRCA
dataset, Surv-OmiVAE outperformed AUTOSurv (median C-index
0.756 vs 0.738, p-value= 0.027). When multi-omics data were
considered, however, AUTOSurv was able to beat Surv-OmiVAE
(TCGA-BRCA: median C-index 0.749 vs 0.740, p-value= 0.027;
TCGA-OV: median C-index 0.629 vs 0.601, p-value= 0.020).
Furthermore, Surv-OmiVAE did not gain improvement in perfor-
mance from multi-omics input features compared to single omics.
Overall, our findings suggest that “task-oriented feature extrac-
tion” can potentially help capture survival-related information in
the latent features and hence increase the prediction accuracy of
LFSurv. Nevertheless, further adaptations are needed to accom-
modate multi-omics scenarios and make full use of information
from different omics types.
For our implementation of SALMON, the widely applied WGCNA

approach27 was adopted for co-expression network analysis. The
first principal components of the identified gene/miRNA co-
expression modules were taken as eigengenes/eigen-miRNAs and
input into LFSurv for prognosis prediction. Figure 2 shows that
AUTOSurv achieved comparable or better performance compared
to the modified-SALMON when single omics data were used as
input in the cases “mRNA + clinical” and “miRNA + clinical”. This
implied that VAE could be more powerful than “WGCNA + PCA” in
dimension reduction for certain types of expression data (i.e.,
miRNA expression data). In the case “mRNA + miRNA + clinical”
for modified-SALMON, the eigengenes and eigen-miRNAs were
concatenated and fed to LFSurv; not surprisingly, the performance
did not improve compared to “mRNA + clinical” where only
eigengenes were incorporated (median C-index 0.735 vs 0.734, p-
value= 0.492 for TCGA-BRCA; median C-index 0.579 vs 0.613, p-
value= 0.019 for TCGA-OV). This could be due to the same
information overlap between the two omics data types
mentioned above.

Framework evaluation and benchmarking with machine
learning methods on non-TCGA datasets
We assessed AUTOSurv framework on two non-TCGA indepen-
dent datasets, the Caldas 2007 Breast Cancer (Caldas-BC) dataset
and the ICGC – Ovarian Cancer Australian (ICGC-OVAU) dataset,
and compared it with other machine learning survival analysis
approaches (i.e., Cox Proportional Hazard model with Elastic Net
[CoxPH-ENet], Random Survival Forest [RSF], Extreme Gradient
Boosting with CoxPH [XGB-CoxPH]28, and Extreme Gradient

Boosting with Accelerated Failure Time (XGB-AFT)). For AUTOSurv,
KL-annealing was always applied, and “entangle” strategy was
implemented for the “mRNA +miRNA + clinical” case in the ICGC-
OVAU dataset. For the machine learning approaches, “WGCNA +
PCA” procedure was implemented to reduce the dimension of
gene/miRNA expression data, and we used the eigengenes/eigen-
miRNAs for model fitting.
From Fig. 3 we observe that AUTOSurv outperformed all the ML

methods significantly for all three cases in the ICGC-OVAU dataset,
and for the only applicable case “mRNA + clinical” in the Caldas-
BC dataset (miRNA expression data not available). For compar-
isons under the same case, all hypothesis tests of median
difference returned p-value ≤ 0.0001 (see Fig. 3).
We also applied modified-SALMON (LFSurv with eigengenes/

eigen-miRNAs and demographic/clinical variables as inputs) to the
non-TCGA datasets. When having same input features, modified-
SALMON yielded significantly better performance than CoxPH-
ENet, RSF, XGB-AFT, and XGB-CoxPH (p-value ≤ 0.001 for all tests,
see Supplementary Fig. 3). This finding might partially support the
application of multi-layer perceptron models in survival analysis. In
Caldas-BC dataset, modified-SALMON yielded significantly higher
C-index than AUTOSurv (median C-index 0.839 vs 0.780, p-
value < 0.001). Note that for the two TCGA datasets, modified-
SALMON also gained comparable prediction performance com-
pared to AUTOSurv in the “mRNA + clinical” case, suggesting that
“WGCNA + PCA” can be a good way to lower the dimension of
gene expression data. For the “miRNA + clinical” case, however,
AUTOSurv performed significantly better than modified-SALMON
in all three available datasets (TCGA-BRCA, TCGA-OV, and ICGC-
OVAU, p-value < 0.05 for all comparisons). This result shows that
VAE is likely more generalizable than “WGCNA + PCA” approach in
omics-data-dimension reduction. Moreover, for ICGC-OVAU data-
set where the “mRNA + miRNA + clinical” case is applicable,
AUTOSurv achieved higher C-index than the single omics
scenarios (“mRNA + miRNA + clinical” vs “mRNA + clinical”:
median C-index 0.735 vs 0.727, p-value= 0.093; “mRNA + miRNA
+ clinical” vs “miRNA + clinical”: median C-index 0.735 vs 0.711, p-
value= 0.003), as well as versus modified-SALMON in “mRNA +
miRNA + clinical” (median C-index 0.735 vs 0.691, p-value < 0.001),
further demonstrating the strength of AUTOSurv in multi-omics
integration for gene/miRNA expression data. Modified-SALMON
on the other hand did not show significant improvement in
prediction when both omics types were considered (“mRNA +
miRNA + clinical” vs “mRNA + clinical”: median C-index 0.691 vs
0.684, p-value= 0.670; “mRNA + miRNA + clinical” vs “miRNA +
clinical”: median C-index 0.691 vs 0.695, p-value= 0.788), again a
possible outcome of the information overlap that we mentioned
earlier.
LFSurv with only demographic/clinical variables as input was

also fitted for the non-TCGA datasets. AUTOSurv (with omics data
as part of its input) outperformed LFSurv [clincial only] approach
for both datasets (ICGC-OVAU, AUTOSurv [“mRNA + miRNA +
clinical”] vs LFSurv [clinical only]: median C-index 0.735 vs 0.685, p-
value < 0.001; Caldas-BC, AUTOSurv [“mRNA + clinical”] vs LFSurv
[clinical only]: median C-index 0.780 vs 0.729, p-value= 0.002),
showing again the role of omics information in boosting model
performance for prognosis prediction tasks in ovarian cancer and
breast cancer studies.
Finally, we fitted the ML models on the TCGA-BRCA and the

TCGA-OV datasets as well to assess their performance on bigger
sample sizes. The results are illustrated in Supplementary Fig. 4.
We see that on the TCGA datasets, AUTOSurv still outperformed
the ML approaches.

Risk-group prediction and DeepSHAP interpretation
For each dataset, the AUTOSurv model that yielded the highest
testing C-index in the “mRNA + miRNA + clinical” case was used

L Jiang et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2024)     4 



as the final model to predict patients’ risk levels and identify
important features via DeepSHAP. We first applied AUTOSurv on
the tuning set and saved the median prognostic index (PImed)
among the tuning set patients. We then applied AUTOSurv on the
testing set, and patients with predicted PI > PImed were assigned to
the high-risk group. Otherwise, they were assigned to the low-risk
group. For the TCGA-BRCA, the TCGA-OV, and the Caldas-BC
datasets, Fig. 4 shows significant differences between
Kaplan–Meier (KM) curves of the two predicted risk groups (Log-
rank test p-value < 0.05). Note that the ICGC-OVAU dataset has a
very small testing set sample size (16 samples in total, 9 patients
assigned to the low-risk group and 7 assigned to the high-risk
group), which potentially explains the wide 95% confidence
intervals of the KM curves. For the TCGA-BRCA and the TCGA-OV
datasets, we have also produced KM curves based on age groups
(i.e., by first quantile, median, and third quantile) and disease
stages for the testing set patients (see Supplementary Fig. 5). On
both datasets, PImed-guided divisions showed greater difference in
survival outcome between the two risk groups compared to age-
group-guided divisions in terms of log-rank test p-values. On the
TCGA-OV dataset, PImed-guided division also outperformed all
disease-stage-guided divisions. On the TCGA-BRCA dataset,
although the ‘stage IV vs stages I - III’ division yielded log-rank
test p-value < 0.0001, this finding is rather trivial since stage IV is
already the latest stage and we only have 7 patients in this
category. On the other hand, PImed-guided division can give more

plausible risk-group predictions to patients in earlier stages of
breast cancer (lower log-rank test p-value than other disease-
stage-guided divisions). Moreover, the age group and disease
stage information used for those additional KM curves are directly
from the testing set patients, yet PImed was derived from the
tuning set data while treating the testing set as ‘unseen data’. This
further demonstrates the capability of AUTOSurv in providing
generalizable predictions.
We conducted an interpretation study via DeepSHAP (see the

“Methods” section) based on tuning set data. Here we present in
detail the interpretation results for the TCGA-BRCA and TCGA-OV
datasets. Results for the non-TCGA datasets can also be found on
our Github website https://github.com/jianglindong93/AUTOSurv.
Following the procedures mentioned in26, the SHAP values
(contribution scores in our setting) of each LFSurv input feature
were calculated for 100 randomly sampled high-risk-group
patients. We present in Fig. 5 the SHAP value summary plots.
Features on the Y-axis are sorted in descending order based on
their overall contribution scores (averaged absolute SHAP values,
see the “Methods” section). Within each row, each dot represents
a patient, the color of the dot indicates its feature value, with red
and blue corresponding to high and low values on the spectrum,
respectively. The X-axis specifies the intensity and direction of the
SHAP values. As an example, for the feature ‘age’, the dots become
redder as they go further along the positive side of the X-axis,
which means that a higher age will contribute to a higher

Fig. 3 Performance comparison between AUTOSurv and other machine learning methods in two non-TCGA datasets: ICGC-OVAU and
Caldas-BC. a the “mRNA + miRNA + clinical” case in ICGC-OVAU dataset; b the “miRNA + clinical” case in ICGC-OVAU dataset; c the “mRNA +
clinical” case in ICGC-OVAU dataset; d the “mRNA + clinical” case in Caldas-BC dataset, which does not have miRNA expression data. CoxPH-
ENet Cox Proportional Hazard model with Elastic Net, RSF Random Survival Forest, XGB-AFT Extreme Gradient Boosting with Accelerated
Failure Time, XGB-Cox Extreme Gradient Boosting with CoxPH. The p-value from two-sided Wilcoxon signed-rank test (i.e., null hypothesis H0:
median difference is equal to 0; versus alternative hypothesis HA: median difference is not 0) is displayed between boxes.
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predicted PI value, hence higher risk of death. Moreover, we see
that for both datasets, the top features with the highest overall
contribution scores are clinical variables (age and clinical stage in
the TCGA-BRCA dataset; age and race in the TCGA-OV dataset).
This shows that clinical variables can play important roles in
survival analysis and should not be ignored even when omics data
are available.
For each of the datasets, a total of 16 latent features (i.e.,

fμigi¼1;¼ ;16) were extracted from the two omics data types and
input into LFSurv. The number of latent features to extract (i.e.,
number of latent features in the bottleneck layer) was tuned as a
hyperparameter. We chose 16 because it was in the best set of
hyperparameters that yielded smallest reconstruction loss for KL-
PMVAE (for both datasets). The numbers of latent features we
tuned across were summarized in Supplementary Table 4. To
identify genes/miRNAs that contributed most to the important
latent features, we calculated KL-PMVAE input factor
(gene/miRNA) contribution scores for each of the top 6 latent
features in Fig. 5 (i.e., μ2, μ5, μ8, μ1, μ9, μ10 for TCGA-BRCA; μ16, μ3,
μ4, μ10, μ12, μ6 for TCGA-OV). For each dataset, if a gene or miRNA
had high contribution scores (i.e., top 10 among all input factors)

for more than one latent feature, we identified it as a Key Input
Factor (KIF). In Supplementary Fig. 6, we present the identified KIFs
for TCGA-BRCA and TCGA-OV with their frequencies as top 10
most contributing factors of latent features.
For TCGA-BRCA dataset, the identified KIFs included 11 genes,

all of which were found to be associated with breast cancer in
existing studies (see Supplementary Table 5 for more details). For
example, the study29 found that CDC20 knockdown inhibited the
migration of metastatic MDA-MB-231 breast cancer cell line.
Recent studies also demonstrated that FABP4 promotes obesity-
associated breast cancer development30. For PSMB9, the study31

found that PSMB9 was overexpressed in breast cancer cells. For
PLIN1, the study32 found that its mRNA expression is significantly
downregulated in human breast cancer.
For TCGA-OV dataset, we identified 5 genes and 1 miRNA as

KIFs (Supplementary Fig. 6b). Four of these factors (FGF18, HERC5,
RPS27A, and hsa-miR-202) were found to be associated with
ovarian cancer in previous literatures33–36. Overexpression of
FGF18 was identified as a predictive marker for poor clinical
outcomes in patients with advanced stage, high-grade serous
ovarian cancer by ref. 33. HERC5 was found to have increased

Fig. 4 Kaplan-Meier (KM) curves for different risk groups. KM curves for the high-risk (PI> PImed) and low-risk (PI � PImed) patient groups in
the testing set of: a TCGA-BRCA dataset; b TCGA-OV dataset; c ICGC-OVAU dataset; d Caldas-BC dataset. PImed for each dataset is derived from
the corresponding tuning set patients.
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expression levels in topotecan-resistant ovarian cancer cell lines
by34. The study35 identified genes with survival-related alternative
splicing events in ovarian cancer, and RPS27A was one of the hub
genes in the gene interaction network. For hsa-miR-20236, found
that miR-202-5p was downregulated in ovarian cancer and verified
the role of miR-202-5p in suppressing cell proliferation, migration,
and invasion in ovarian cancer. Moreover, we obtained the
predicted target genes of miR-202-3p from miRDB37 and
performed gene set functional enrichment analysis on these
target genes via ToppGene Suite38. We found that the Gene
Ontology (GO) terms for extracellular matrix organization
(GO:0030198, FDR adjusted p-value= 6.16E-07) and extracellular
structure organization (GO:0043062, FDR adjusted p-value= 6.16
E-07) were significantly enriched. Interestingly, the paper39

pointed out that extracellular matrix (ECM) dysregulation can
occur during ovarian tumorigenesis, and it plays a role in tumor
progression.
Surprisingly, for both datasets, we found that the associations

between the identified key genes’ expression levels and the
survival outcomes cannot be directly inferred via simple survival
analysis. We created dummy variables according to the median
expression values of the key genes and fitted univariate CoxPH
models using these variables, however, none of the genes reached
significance after multiple testing correction (see Supplementary
Table 6). It could be due to the insufficient power, given the low
sample size or event rate in the TCGA datasets (TCGA-BRCA
dataset has a low event rate [16.54%] and TCGA-OV dataset has a
small sample size [355]). We did a post-hoc power analysis at
significance level of 0.05. For TCGA-BRCA, we have 80% power to
detect a gene having hazard ratio (HR) > 1.23 or HR < 0.81. For
TCGA-OV, we have 80% power to detect a gene having HR > 1.21
or HR < 0.82. Many of the genes did not fall in these detectable
intervals (5 out of 11 genes in TCGA-BRCA; 4 out of 5 genes in
TCGA-OV, see Supplementary Table 6). Another reason might be
due to the complex hidden mechanism underlying cancer
progression, which makes it difficult for univariate/linear models
to capture the associations with a single gene. DeepSHAP on the
other hand, is not constrained by statistical assumptions. More-
over, it takes non-linear relationships into account when back-
propagating through the DNN and considers the expression levels

of all other genes when calculating the contribution scores of a
single gene. Therefore, DeepSHAP has the potential to locate
important genes that are undetectable in univariate survival
analysis. However, at this stage of our interpretation process, we
can only ‘locate’ the key genes. To further uncover their
prognostic relevance (e.g., the directions of the associations), we
may need to delve deeper into harnessing the SHAP values (e.g.,
combine the contributions from a specific gene to different latent
features and weigh the contribution from each latent feature to
the final prediction), which is a potential direction of our
future study.
We made full use of the interpretation-friendly design of our

DNN (i.e., pathway-information-guided node connection, see the
“Methods” section for more details) and applied the same
procedure to concurrently identify the Key Pathway Factors (KPFs)
for the top 6 latent features. The identified pathways and their
frequencies are illustrated in Supplementary Fig. 7. For TCGA-
BRCA, evidence of association with breast cancer or cancer in
general can be found for all the identified pathways in previous
literatures (see Supplementary Table 5 for list of references). The
pathway with frequency three in Supplementary Fig. 7a, R-HSA-
163560, is triglyceride catabolism. According to ref. 40, triglyceride
was found to be significantly elevated among breast cancer
patients compared to controls, and their study suggested that
higher levels of triglyceride may play important role in carcino-
genesis. Using DeepSHAP, we were able to identify KIFs that
contributed most to KPFs. For the KPF: R-HSA-163560 in the
pathway layer, the top two contributing factors were KIFs: FABP4
and PLIN1. According to ref. 41, FABP4 was positively associated
with triglycerides in breast cancer patients. The study32 noted that
PLIN1 plays a distinct role in regulating both triglyceride storage
and lipolysis in adipocytes, and that reduced expression of PLIN1
could be an independent predictor of overall survival for breast
cancer patients.
For the TCGA-OV dataset, evidence of association with ovarian

cancer can be found in previous literatures for six of the identified
pathways (see Supplementary Table 5 for list of references). The
two pathways with frequency three in Supplementary Fig. 7b are
R-HSA-168928 and R-HSA-72163, which correspond to RIG-I/MDA5
mediated induction of IFN-alpha/beta, and mRNA splicing,

Fig. 5 SHAP value summary plots. Summary plot of SHAP values for 100 randomly sampled high-risk patients from a TCGA-BRCA dataset and
b TCGA-OV dataset. Y-axis lists the input features of the LFSurv network, ranked by their overall contribution scores. X-axis shows the SHAP
values of the dots. Each dot represents a patient, the colors indicate their corresponding feature values, with red representing high values and
blue representing low values. For the TCGA-OV dataset, we have stage_h= 1 for patients with stage III or IV (higher stages) ovarian-cancer,
patients with lower disease stages have stage_h= 0. Patients with histological grades G3 or G4 (higher grades) have grade_h= 1, patients in
lower histological grades have grade_h= 0.
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respectively. According to ref. 42, it has been reported that IFN-
alpha specifically targets a subset of ovarian cancer cells that have
stem-like properties. The study43 found that high expression of
RIG-I is associated with poor clinical outcomes in ovarian cancer.
The study44 conducted prognosis prediction for ovarian-cancer
patients based on alternative splicing (AS) events and suggested
AS sites as potential targets for ovarian-cancer treatment. Pathway
R-HSA-168928 includes three of the KIFs in Supplementary Fig. 6b
(HERC5, RPS27A, and UBA52). For the node corresponding to R-
HSA-168928 in the pathway layer of KL-PMVAE, HERC5 is the input
factor that had the highest contribution score with respect to the
difference in its node values between high- and low-risk groups.
Overall, the results suggest that DeepSHAP has the potential to

reveal hidden mechanisms underlying breast and ovarian-cancer
survival and may provide support and guidance for future
molecular-level investigations.

External-cross-dataset validation
To compare the generalizability of the models across datasets, we
trained and tuned the models on the two TCGA cancer datasets
respectively and applied the trained models to the independent
external non-TCGA datasets correspondingly for external valida-
tion. For example, train/tune on TCGA-OV and test on ICGC-OVAU;
train/tune on TCGA-BRCA and test on Caldas-BC. AUTOSurv and
other machine learning methods were all tested. Similar to the
framework evaluation analysis mentioned above, “WGCNA + PCA”
procedure was implemented to reduce the dimension of gene/

miRNA expression data for the machine learning approaches and
the modified-SALMON method. The results were summarized in
Fig. 6.
When trained on TCGA-OV dataset and tested on ICGC-OVAU

dataset, AUTOSurv outperformed all other methods when both
omics types were used as input (see “OV: mRNA + miRNA +
clinical” in Fig. 6). For the single omics cases, AUTOSurv achieved
comparable or higher C-index compared to the machine learning
methods (see “OV: miRNA + clinical” and “OV: mRNA + clinical” in
Fig. 6). The modified-SALMON method performed significantly
better than AUTOSurv in the “mRNA + clinical” case of OV
(AUTOSurv vs Modif-SALMON median C-index: 0.567 vs 0.595, p-
value= 0.049), while AUTOSurv yielded significantly higher
C-index in the “miRNA + clinical” case (AUTOSurv vs Modif-
SALMON median C-index: 0.582 vs 0.549, p-value= 0.037). More-
over, in OV, the performance of modified-SALMON did not differ
between the “mRNA + clinical” case and the “mRNA + miRNA +
clinical” case (median C-index = 0.595 for both cases, p-value=
0.959) while AUTOSurv showed significantly improved perfor-
mance when both omics types were included as input compared
to single omics cases (median C-index, “mRNA + miRNA +
clinical” vs “mRNA + clinical”: 0.619 vs 0.567, p-value= 0.002;
“mRNA + miRNA + clinical” vs “miRNA + clinical”: 0.619 vs 0.582,
p-value= 0.004), which is consistent with our findings in the
previous sections. When trained on TCGA-BRCA dataset and tested
on Caldas-BC dataset with gene expression data and clinical
variables as input, AUTOSurv gained best performance compared

Fig. 6 Performance of different models when trained on TCGA datasets and tested on non-TCGA datasets. OV: Models trained on TCGA-
OV dataset and tested on ICGC-OVAU dataset; BRCA: Models trained on TCGA-BRCA dataset and tested on Caldas-BC dataset. a the “mRNA +
miRNA + clinical” case in OV; b the “miRNA + clinical” case in OV; c the “mRNA + clinical” case in OV; d the “mRNA + clinical” case in BRCA.
The p-value from two-sided Wilcoxon signed-rank test (i.e., null hypothesis H0: median difference is equal to 0; versus alternative hypothesis
HA: median difference is not 0) is displayed between boxes.
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to all other methods (see “BRCA: mRNA + clinical” in Fig. 6).
Generally, when trained on TCGA datasets and tested on external
non-TCGA datasets, AUTOSurv showed highest across-dataset-
generalizability compared to other approaches. Furthermore, KL-
PMVAE of AUTOSurv yielded better overall performance than
“WGCNA + PCA” in omics-data-dimension reduction, and AUTO-
Surv maintained its high efficiency in integrating multi-omics
features.
For both cancer types, AUTOSurv with omics data as part of its

input gained significantly higher C-index than LFSurv with only
demographic/clinical variables as input (OV, AUTOSurv [“mRNA +
miRNA + clinical”] vs LFSurv [clinical only]: median C-index 0.619
vs 0.54, p-value= 0.002; BRCA, AUTOSurv [“mRNA + clinical”] vs
LFSurv [clinical only]: median C-index 0.709 vs 0.672, p-value=
0.004). This indicates that omics information can help improve
model performance even in cross-dataset scenarios.
Additionally, we saved the best performing AUTOSurv model in

the “mRNA + miRNA + clinical” case of OV and the “mRNA +
clinical” case of BRCA, respectively. Prognostic indices of all
patients were calculated using the saved models. For each TCGA
dataset, we denote the median prognostic index among its
patients as PITCGAmed , and patients in its corresponding external
validation dataset will be assigned to high- and low-risk groups

based on PITCGAmed (high-risk group if PI > PITCGAmed , low-risk group if
PI � PITCGAmed ). KM curves for the two risk groups in the external
validation datasets were illustrated in Fig. 7. For both cancer types,
we can see from Fig. 7 that AUTOSurv-derived PITCGAmed from the
TCGA datasets can guide highly distinguishable risk group
divisions on the non-TCGA datasets as well. This finding further
implies AUTOSurv’s cross-dataset generalizability.

DISCUSSION
AUTOSurv is a deep learning model consisting of a specially
designed upstream KL-PMVAE network that extracts low-
dimensional latent features from high-dimensional omics data;
and a downstream multi-layer perceptron LFSurv that receives the
extracted latent features and the demographic/clinical variables as
combined input and calculates a predicted prognostic index (PI)
for each patient. We applied AUTOSurv in different scenarios. It
achieved the highest C-index when gene expression, miRNA
expression, and clinical data were all used. At developmental
stage with TCGA datasets, the highest C-index from AUTOSurv was
achieved in the case where the “entangle” integration strategy
was combined with the KL-annealing learning scheme. Moreover,
although the incorporation of omics data improved model

Fig. 7 Kaplan-Meier (KM) curves for different risk groups in the non-TCGA datasets during external-cross-dataset validation. KM curves
for the high-risk (PI>PITCGAmed ) and low-risk (PI � PITCGAmed ) patient groups in the non-TCGA datasets. a BRCA: KM curves for patients in the Caldas-BC
dataset, with PITCGAmed derived from the TCGA-BRCA dataset; b OV: KM curves for patients in the ICGC-OVAU dataset, with PITCGAmed derived from the
TCGA-OV dataset.
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performance (in developmental stage: median C-index 0.714 vs
0.749 for TCGA-BRCA dataset, median C-index 0.623 vs 0.629 for
TCGA-OV dataset; in external-cross-dataset validation: median
C-index 0.54 vs 0.619 for ICGC-OVAU dataset, median C-index
0.672 vs 0.709 for Caldas-BC dataset), during our interpretation
analysis some clinical variables (e.g., age, disease stage, race) in
the TCGA datasets were assigned the highest contribution scores
by DeepSHAP among all input features of LFSurv. This suggests
that clinical variables are vitally important for survival analysis and
should not be ignored regardless of access to other types of
modalities. Nevertheless, from Fig. 4 and Supplementary Fig. 5, we
see that AUTOSurv-derived PI conferred more plausible risk-group
predictions than age and disease stage, which implies the
potential of omics-data-infused deep learning models in assisting
clinical diagnosis and treatment. For example, the estimated PI
values from AUTOSurv can be combined with age and disease
stage information to build a more accurate treatment recommen-
dation system. Finally, during framework evaluation, AUTOSurv
outperformed other widely applied machine learning approaches
(i.e., CoxPH-ENet, RSF, XGB-CoxPH, and XGB-AFT) in all cases on
two non-TCGA datasets. Also, compared to the machine learning
approaches, AUTOSurv showed better overall performance and
maintained highly effective in multi-omics integration when
trained/tuned on TCGA datasets and tested on non-TCGA
datasets. These results show the strength of deep neural networks
in handling complex data structures and the high efficiency of
AUTOSurv in integrating gene expression/miRNA expression data.
Although we only studied breast cancer and ovarian-cancer data
in this paper, our approach can be directly implemented to
perform prognosis prediction and result interpretation for other
cancer types.
By applying DeepSHAP to TCGA-dataset-trained-AUTOSurv, we

identified genes, miRNA, and pathways that were important for
distinguishing predicted high- and low-risk-group patients, most
of which were found to be associated with breast/ovarian cancer
or cancer in general in previous studies. This is reassuring as it
implies that it is indeed biologically relevant information rather
than random events that is guiding the model predictions. By
virtue of the interpretation-friendly design of KL-PMVAE, we linked
the key pathways with the key genes. This showed that
“AUTOSurv + DeepSHAP” could help us (1) identify potential
biomarkers for cancer prognosis and (2) reveal which pathways
will provide insight into hidden mechanisms. Even so, DeepSHAP
can yield inconsistent results and the same model does not always
assign identical importance to the input features at different
DeepSHAP implementations45. This inconsistency was more
frequently observed when applying DeepSHAP to AUTOSurv
models trained on small sample sizes (i.e., ICGC-OVAU and Caldas-
BC datasets, although RPS27A was found to be a common KIF for
both TCGA-OV and ICGC-OVAU datasets). Therefore, the proce-
dure for selecting key features can be further improved and
standardized to obtain more reliable and robust interpretations.
For instance, we could utilize the SHAP values (i.e., contribution
scores, see the “Methods” section) generated by DeepSHAP as
quantitative measures instead of focusing only on their rankings.
We could also consider the +/- signs of the SHAP values to make
our interpretation more informative. The way of incorporating
those signs, however, needs to be selected with caution so the
positive and negative contribution scores won’t simply cancel
each other out hence undermine the importance of the features.
In this study, we assumed that the interactive crosstalk

(facilitated by presumably overlapping information) between
gene expression and miRNA expression data enabled more
efficient multi-omics integration. The view-specific information
(i.e., here we consider each type of omics data as a different view
of the samples13), however, can also be important especially when
the overlapping information between different types of omics
data is trivial. Moreover, disentangling view-specific and view-

shared aspects of latent features may make the VAE more
interpretable. Models like Deep Probabilistic CCA (DPCCA)46 might
be useful for such disentanglement tasks and combining this
approach with our KL-PMVAE for better multi-omics integration
and feature extraction is a potential future direction of study.
Integration of multiple modalities is another relevant topic, and
some studies have attempted to include whole slide image
data10,12 as one extra input modality for prognosis prediction. For
AUTOSurv we concatenated the latent features (extracted from
omics data) and the clinical variables directly in the input layer of
LFSurv. This approach is straightforward, but our results suggest
that concatenation may not be the best way to handle complex
relationships between different modalities. We expect more
delicate model designs to be developed for multimodal repre-
sentation learning in our future pursuits.
There are several directions that AUTOSurv can be improved in

the future. Firstly, although AUTOSurv achieved better perfor-
mance in many cases compared to other DL models (i.e.,
CoxPASNet6, OmiVAE15, SALMON11, with modifications made to
better suit our purpose), in some cases, Surv-OmiVAE out-
performed AUTOSurv. For example, in TCGA-BRCA dataset, when
miRNA expression data and clinical variables were used as input,
Surv-OmiVAE achieved median C-index 0.756 vs 0.738 from
AUTOSurv. This implies that proper modifications to AUTOSurv
allowing task-oriented feature extraction may be a good starting
point to developing a more advanced model. Secondly, in this
study we excluded many genes to facilitate the “pathway-
masking” design of KL-PMVAE (see the “Methods” section for
more details), which could cause information loss. Improvements
in the pre-filtering process will be another focus in future studies.
For instance, we could combine multiple pathway databases and/
or change the selection criteria for the pathway nodes (e.g., only
exclude pathways that contain fewer than 10 genes or greater
than 500 genes in our dataset) to expand genome coverage.
Thirdly, although AUTOSurv achieved the best performance
compared to other approaches, its predictive performance on
the ovarian-cancer cohorts still lacks clinical meaningfulness. One
biggest challenge is that the sample sizes of these cohorts are
even smaller than the breast cancer cohorts, which can lead to
insufficient training data for AUTOSurv to learn from. In future
study, we could apply transfer learning techniques47 to borrow
strength from models that are trained on larger datasets from
other cancer types or isolated single-omics OV data. Furthermore,
most of the patients in the TCGA-OV dataset and all patients in the
ICGC-OVAU dataset are in advanced stages of ovarian cancer
while most patients in the breast cancer datasets have early-stage
breast cancer, our future study could pay more attention to this
difference when developing ovarian-cancer-specialized prediction
models. Lastly, the downstream LFSurv section of AUTOSurv is a
Cox Proportional Hazard network, and studies have tried to
overcome the proportional hazard constraint to yield more
realistic predictions12,14,48. We could also adjust the learning
objectives of AUTOSurv accordingly to model time-varying effects
of the input features and/or to learn patient-specific survival
distributions14,48.

METHODS
Overview of AUTOSurv
AUTOSurv is a deep learning model for cancer prognosis
prediction combining multi-omics and demographic/clinical data.
There are three major parts to our framework: (1) pathway
information incorporated multi-omics variational autoencoder
(VAE) with KL-annealing learning strategy49 (KL-PMVAE) for
efficient multi-omics integration and latent-feature extraction; (2)
latent-feature-fed survival network (LFSurv) integrates latent
features extracted by the VAE model with demographic/clinical
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variables and conducts final prognosis prediction; and (3)
DeepSHAP25,26 interpretation approach applied to the trained
AUTOSurv model (KL-PMVAE plus LFSurv) assigns importance
scores to input features and identifies the features that make
important contribution in distinguishing between the high- and
low-risk patients. The workflow of AUTOSurv is illustrated in Fig. 1.
The implementations of DeepSHAP are illustrated in Fig. 8.

Data and preprocessing
For model development, we collected survival outcomes (overall
survival time and censoring status), demographic/clinical records
(e.g., age, disease stage, race), and gene and miRNA expression
data for 1,058 female patients with stage I - IV breast cancer, and
for 355 female patients with stage I - IV ovarian cancer from the
Genomic Data Commons (GDC) Breast Cancer (BRCA) cohort and
Ovarian Cancer (OV) cohort of The Cancer Genome Atlas (TCGA)
program, respectively. Data were downloaded from UCSC Xena
data portal (https://xenabrowser.net/datapages/)50 on October
30th, 2021. Demographics of the patients are summarized in
Supplementary Table 1. There are 175 and 222 observed deaths
among the patients for the TCGA-BRCA dataset and TCGA-OV
dataset, respectively. For both TCGA-BRCA and TCGA-OV datasets
on the UCSC Xena portal, the gene expression data contain
log2-transformed fragments per kilobase of transcript per million
mapped reads (FPKM), and the miRNA expression data contain
log2-transformed normalized counts in reads-per-million-miRNA-
mapped (RPM). Although mRNA and miRNA expression data both
come from transcriptome, here we treat them as two omics
because gene regulation by miRNA is part of epigenetic
mechanisms51.
For performance evaluation and comparison with other existing

survival models, we collected survival outcomes, demographic/
clinical records, and gene and miRNA expression data for 133
female patients with stage I - III breast cancer, and for 93 female
patients with stage III - IV ovarian cancer from the UCSC Xena
Caldas 2007 Breast Cancer cohort52 (Caldas-BC) and International
Cancer Genome Consortium (ICGC) Ovarian Cancer – Australian
(OVAU) cohort (https://dcc.icgc.org/releases/current/Projects/OV-
AU), respectively (Caldas-BC cohort does not have miRNA
expression data, neither of the cohorts have race information
recorded). Demographics of the patients are summarized in
Supplementary Table 1. For the Caldas-BC cohort, there are 35
deaths from breast cancer observed. For the ICGC-OVAU cohort,
74 deaths were observed.

We studied genes on autosomes and the X chromosome. For
both BRCA and OV datasets, we randomly extracted 20% of
patients as testing set which was not involved in any of the model
training/tuning procedures during our experiments. The remain-
ing 80% of patients were treated as tuning set and further divided
into training and validation sets with the ratio of 4:1. In each of the
training/validation/testing sets, the gene/miRNA expression data
were rescaled to the range of 0 to 1 using min-max normalization
(Eq. 1) to fit the input requirement of our VAE model15. To denoise
the two omics data types, we followed the filtering procedure
described in53 and excluded genes/miRNAs with variance of <
0.02 in the min-max normalized tuning set. A summary of the
omics features before and after preprocessing can be found in
Supplementary Table 2. The min-max normalization process is
summarized as follows:

vðiÞminmax ¼
vðiÞ � vmin

vmax � vmin
(1)

where vðiÞ and vðiÞminmax are the expression data values for feature v
in patient i before and after min-max normalization. vmax (vmin) is
the maximum (minimum) value of v across all patients in the
dataset considered.

Pathway-mask guided variational autoencoder
We built a VAE model to compute low-dimensional latent
variables zðiÞ 2 Rd from high-dimensional omics data
fxðiÞgi¼1;¼ ;N; x

ðiÞ 2 Rp (N is the number of patients; p is the
number of input features [e.g., number of genes]; d is the number
of latent variables computed from the input data, and p � d),
which can reduce the risk of overfitting in the prognosis
prediction task. Unlike classic autoencoder (AE) models, VAE
learns a distribution estimate instead of a point estimate for the
low-dimensional latent variables z54, which can potentially
increase the efficiency of the information extraction process and
generate “disentangled” latent representations of the input
features. This “disentanglement” allows qualitatively different
information to be encoded into distinct latent variables, which
could contribute to a more interpretable VAE model55,56.
As illustrated in Fig. 1c, the encoder part of KL-PMVAE consists

of a gene layer (each node represents a gene), a pathway layer
(each node represents a pathway), and a miRNA layer (each node
represents a miRNA). Reactome57 pathway information was
obtained from the online resource Database for Annotation,
Visualization, and Integrated Discovery (DAVID)58 (by the time we
collected the pathway information, DAVID adopted Reactome

Fig. 8 Illustration for DeepSHAP implementations. DeepSHAP implementations to identify a latent features/clinical variables that contribute
most to the difference in PI between high- and low-risk groups, and b pathways/genes/miRNAs that contribute most to the difference in
latent-feature values (between high- and low-risk groups) for the most important latent features found in (a). SHAP Shapley Additive
Explanations (SHAP) value (i.e., the contribution score in our setting).
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database Version 78 in its knowledgebase [https://
david.ncifcrf.gov/content.jsp?file=update.html]). We chose Reac-
tome pathways because they have the widest coverage for the
gene list we submitted. Sparse connections were forced between
the gene layer and the pathway layer, where a gene node is
connected to a pathway node only if that gene belongs to that
specific pathway. According to ref. 59, small pathways can be
redundant with larger pathways and large pathways can be overly
general, both of which can hamper the interpretability of the
model. We can rephrase this in the sense of deep neural networks.
On the one hand, pathway nodes that take information from too
many gene nodes can complicate the interpretation process,
especially when we are trying to identify the most important
genes for model prediction. The pathway itself can be overly
general from a biological perspective, and its relationship with
disease outcome might be uninformative. Moreover, including
“overly general” pathway nodes may result in too many trainable
parameters in the deep neural network and make the model
prone to overfitting. On the other hand, since we have thousands
of genes in total, a pathway node connects to very few gene
nodes may only encode trivial information, and detection of
important features can be difficult when they are surrounded by
noisy features. Therefore, we excluded pathways that contain
fewer than 15 genes and pathways with more than 300 genes in
our datasets. Note that there is no gold standard for deciding “too
many” or “too few” gene-node connections for the pathway
nodes; different selection criteria may result in varied model
performance, but the comparison between different selection
threshold is out of the scope of this study. Only genes belonging
to at least one of the remaining pathways were kept. The same
sparse connection pattern was kept between the last two layers in
the gene part of the decoder (Fig. 1c). This pathway-mask design
is inspired by the mask-matrix-forced connections introduced by
ref. 6. It not only incorporates prior biological knowledge into the
network but also reduces the number of trainable parameters
compared to a fully connected design and hence yields a lower
risk of overfitting.
For multi-omics integration, there is a noticeable difference

between the dimensionalities of the two omics data types (for
TCGA-BRCA, TCGA-OV, and ICGC-OVAU datasets, the number of
genes is more than four times that of miRNAs, Supplementary
Table 2). To mitigate potential imbalance in model training/
parameter learning, we concatenated the pathway layer, instead
of the gene layer, with the miRNA layer (Fig. 1c). Because the
pathway nodes contain forward-propagated-gene-node informa-
tion, and the number of pathways is more comparable to the
number of miRNAs. The concatenated features were then forward
propagated to produce the means μ and log-variances logσ2 for
the latent variables zjx�Nðμ;σ2Þ, where Nðμ;σ2Þ is the estimated
posterior distribution qϕðzjxÞ, ϕ is the set of learnable parameters
in the encoder15. To sample from the distribution estimate, we
applied the reparameterization trick:

ẑ ¼ μþ σε; ε � Nð0; IÞ (2)

which enables backpropagation for the VAE54. The decoder takes
the sampled latent variable values ẑ as input and reconstructs the
gene expression and miRNA expression data (i.e., x̂gene and x̂miRNA
respectively). The loss function for our VAE model is as follows:

LVAE ¼ BCE xgene;bxgene
� �þ BCE xmiRNA;bxmiRNAð Þ

þ βDKLðNðμ;σ2ÞkNð0; IÞÞ þ λ1kθ12
(3)

where BCEðx; x̂Þ is the binary cross-entropy between the input
expression data x and the reconstructed expression data x̂. The
term DKLðNðμ;σ2ÞjjNð0; IÞÞ is the KullbackLeibler (KL) divergence60

between the estimated posterior distribution Nðμ;σ2Þ and the
prior distribution Nð0; IÞ. The term kθ1k2 is the L2-norm of the
learnable parameters in KL-PMVAE and λ1 is the regularization

parameter that can be tuned to control the severity of the
penalization. The value of β controls how much emphasis should
be placed on the KL-divergence term of the loss function and is
set to 1 in conventional VAE but will be changed gradually from 0
to 1 in a KL-annealing learning scheme as described below. When
KL-divergence equals 0, the posterior equals an isotropic unit
Gaussian regardless of the input features x; therefore, the
minimization of the KL-divergence term implies a limitation on
the amount of information that can pass through the latent
bottleneck (Fig. 1c). According to ref. 56, this constraint, combined
with the pressure to minimize reconstruction loss, encourages the
model to learn a more efficient representation of the data.
For model implementation, we applied batch normalization for

all layers except for the latent bottleneck. Rectified linear units
(ReLU), linear, and sigmoid activation functions were used for
certain layers as illustrated in Fig. 1c.

Latent-feature-fed survival network for prognosis prediction
To conduct survival analysis, we built a fully connected (FC) DL
network as illustrated in Fig. 1d, which can be viewed as a
shallower version of DeepSurv20. The extracted latent features
from KL-PMVAE (i.e., means μ of the learned distribution estimate
of the latent variables z) were concatenated with the demo-
graphic/clinical variables (e.g., age, disease stage, race) and input
into the network. After forward propagation through one hidden
layer, the network outputs a prognostic index (PI)6 for each
patient, which is the estimate of the log-risk function in a CoxPH
model20. High PI indicates a poor prognosis and vice versa. Like
DeepSurv, the objective function of this FC network is the average
negative log-partial likelihood with L2 regularization:

l θ2ð Þ ¼ � 1
nE¼1

X

i:Ei¼1
ðPIi � log

X

j2R Tið Þ e
PIj Þ þ λ2kθ2k2 (4)

where nE¼1 is the number of uncensored patients, and R Tið Þ ¼
i : T i � tf g is the set of patients still at risk of failure at time t. The
term kθ2k2 is the L2-norm of the learnable parameters in LFSurv
and λ2 is the regularization parameter that can be tuned to control
the severity of the penalization6.
Dropout was applied to prevent overfitting. Hyperbolic tangent

(tanh) activation was applied to compute node values for the
hidden layer and linear activation was applied to compute the PI
value in the output layer. Because the linear combination of
predictors in CoxPH does not contain a constant term8, the linear
activation for the output layer has no bias term either.

Prediction performance evaluation
C-index was used to measure model performance in prognosis
prediction: It counts concordant pairs between the predicted risk
score (e.g., prognostic index in AUTOSurv, log-risk function in
CoxPH) and observed survival time6,61 and takes value between 0
and 1. C-index of 1 indicates perfect prediction and 0.5 is
equivalent to random guessing.

C� index ¼
P

i;j1 ηi<ηj
� �

1fT i>T jgδj
P

i;j1fTi>T jgδj (5)

Here ηi and Ti are the predicted risk score and overall follow-up
time for patient i, respectively. The terms 1 ¼f g and δj are both
indicators: 1 ¼f g takes value 1 if the argument in ¼f g is true
and 0 otherwise; δj takes value 1 if the death of patient j is
observed and 0 if patient j is censored.

DeepSHAP for result interpretation
DeepSHAP is an activation-based interpretation approach. Accord-
ing to ref. 25, it avoids the saturation problem that perturbation-
and gradient-based approaches fail to address. DeepSHAP shares
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the same key idea as DeepLIFT25,26. The core assumption of
DeepLIFT is the summation-to-delta property:

X

p0

k¼1

CΔxkΔt ¼ Δt (6)

Here t represents some output neuron of interest, and
x1; x2; ¼ ; xp0 represent some neurons in the input layer or an
intermediate layer that are necessary and sufficient to compute t.
4t is the difference in output from some “reference” output, and
4xk is the difference in input from some “reference” input for xk .
C4xk4t is the contribution score assigned to 4xk by DeepLIFT25.
The summation-to-delta property hence states that the sum of the
attributions over the input equals the difference-from-reference of
the output26. Patients in the tuning set were assigned to the low-
risk group if their predicted PI were smaller than or equal to the
median PI (PImed), and patients were assigned to the high-risk
group if their predicted PI were higher than PImed . During the
interpretation procedures, we treated the low-risk group as the
reference group. When backpropagating the predicted PI values in
the trained LFSurv model via DeepSHAP, we can compute SHAP
values (the contribution scores in this setting, a SHAP value
quantifies the average marginal impact of including an input
across all conceivable orderings in which inputs can be
included25) for the latent features and clinical variables and
identify the features that contribute most to the difference in PI
between the low- and high-risk groups. Similarly, if we back-
propagate the latent-feature values in the trained KL-PMVAE
model via DeepSHAP, we can identify which genes/miRNAs/
pathways contribute most to the difference in latent-feature
values between the low- and high-risk groups. The +/− signs of
the SHAP values imply the directions of the feature attributions,
and higher absolute SHAP values correspond to greater contribu-
tions24,26. Following the procedure proposed by26, for each
attempted DeepSHAP implementation, we randomly selected
100 samples from the low-risk group (which was our reference
group) and 100 samples from the high-risk group, and for each
feature its overall contribution was calculated by averaging its
absolute SHAP values over the 100 high-risk group samples.

Model training/tuning and KL-annealing
As mentioned earlier, for each dataset, 20% of the whole data
were kept as testing set that did not participate in any of the
model training/tuning process. The remaining 80% were denoted
as tuning set and randomly split into 80% training and 20%
validation sets (64% and 16% of the whole data, respectively). For
each of the TCGA datasets at the developmental stage of
AUTOSurv, random splitting of the tuning set was carried out 10
times, which gave us 10 different training/validation sets. For each
of the splits, we trained the DNNs on the training set and
conducted hyperparameter tuning using the validation set. The
set of hyperparameters that gave the best model performance
(i.e., lowest reconstruction loss for KL-PMVAE; or highest C-index
for LFSurv) in the validation set were used to train the model on
the whole tuning set. The trained model was then applied to the
testing set to obtain the testing reconstruction loss/C-index. Ten
different data splits yielded 10 testing C-indices, and their median,
mean, and standard deviation (SD) were calculated and summar-
ized in Supplementary Table 7. This scheme was applied on the
same tuning set splits and the testing set data when tuning/
testing other modeling strategies that we compared performance
with. We summarized in Supplementary Table 4 the lists of
hyperparameters that we tuned, and the strategies used to find
the best sets of hyperparameters (e.g., number of nodes in hidden
layer, learning rate, regularization parameter λ).
During framework evaluation, AUTOSurv was trained and tested

on two non-TCGA datasets: ICGC-OVAU and Caldas-BC, which

have smaller sample sizes (i.e., 93 subjects in the ICGC-OVAU
dataset and 133 subjects in the Caldas-BC dataset) compared to
the TCGA datasets. In order to mitigate the effect of randomness
in data splitting and obtain more reliable results, for each of these
two datasets the tuning/testing division (i.e., with an 80:20 ratio)
was carried out 5 times. For each of the tuning/testing divisions,
random splitting of the tuning set (i.e., into training/validation
sets) was carried out 5 times. This gave us 25 different training/
validation splits. Same as the procedure mentioned above, we
trained AUTOSurv and other machine learning models on the
training set and conducted hyperparameter tuning on the
validation set. We then trained the models on the whole tuning
set with the best sets of hyperparameters and reported the model
performance on the testing set. Median, mean, and SD of the
testing set C-indices are summarized in Supplementary Table 7.
During the external-cross-dataset validation, for each TCGA

dataset, a pre-filtering process was conducted to exclude omics
features whose min-max normalized expression data have low
variance (<0.02) across all patients. The common clinical variables
(age, clinical stage) and omics features between the pre-filtered
TCGA dataset and its corresponding external independent
validation dataset (i.e., between TCGA-OV and ICGC-OVAU;
between TCGA-BRCA and Caldas-BC) were then selected for
further analysis (see Supplementary Table 3 for a summary of the
omics features). For each cancer type, we divided the TCGA
dataset into internal training/validation sets with the ratio of 4:1
and repeated the data division process 10 times. For each division,
we performed hyperparameter tuning via grid search and selected
the set of hyperparameters that yielded the best performance on
the internal validation set. We then trained the model on the
entire TCGA dataset using the best hyperparameter set and tested
its performance on the external validation dataset. Summary
(median, mean, SD) of the highest C-index achieved by the models
on the internal validation sets and their C-index on the external
validation datasets (non-TCGA datasets) can be found in
Supplementary Table 8.
We applied KL-annealing when training KL-PMVAE. During

training, KL-annealing gradually increases β value from 0 to 1 in
the loss function (Eq. 3) and repeats this process for several cycles
(the number of cycles and the cutting ratio in each cycle,
illustrated in Supplementary Fig. 1, were also tuned as hyperpara-
meters)49. When β equals 0, the KL-divergence term has no
influence on the loss function. The model learning is like a
conventional autoencoder, which learns a point estimate for the
latent variables. By gradually increasing β to 1 at the first part of
each cycle and placing more weight on the KL-divergence term,
qϕðzjxÞ is regularized to change from learning a point estimate to
learning a distribution estimate. For the rest of each cycle, β is
fixed at value 1 to allow for optimizing the full VAE objective until
convergence49. Because the learning process starts with random
initialization, one key rationale behind KL-annealing is to prevent
the distribution estimate from collapsing to the prior distribution
(isotropic unit Gaussian Nð0; IÞ in our case). In addition, according
to the empirical results in ref. 49, KL-annealing has the potential to
increase reconstruction ability for VAE. By applying KL-annealing
we expect to increase the efficiency of KL-PMVAE in information
extraction.

Survival analysis
The survival outcomes of different predicted risk groups were
presented using Kaplan–Meier (KM) curves. Cox proportional
hazard (CoxPH) models were also used to study the association
between the survival outcome and one or more variables. We
used R (survival62, survminer63) and Python (lifelines64) packages to
implement the survival analysis approaches.
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Statistical analysis
Two-sided Wilcoxon signed-rank test (non-parametric statistical
hypothesis test for matched samples, since the C-indices are
derived from the same set of patients) was applied for the
pairwise comparison between testing set C-indices from
different models or same models but in different cases (null
hypothesis H0: the median difference between the two sets of
C-indices in comparison is equal to 0). A p-value <0.05 would
suggest significant difference in prediction performance. Log-
rank test was carried out to compare KM curves (null hypothesis
H0: there is no difference in the probability of an event at any
time point between groups), A p-value < 0.05 would suggest
significant difference in survival outcomes between the two
groups in comparison. For the univariate CoxPH analysis
regarding the identified key genes, hazard ratio (HR) with 95%
confidence interval (CI) for each gene and likelihood ratio test
(null hypothesis H0: there is no significant association between
the regressor and the survival outcome) p-value were reported,
and multiple testing was adjusted using Benjamini–Hochberg
(BH) method.

Reporting Summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

DATA AVAILABILITY
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Xena data portal (https://xenabrowser.net/datapages/) and International Cancer
Genome Consortium (ICGC) data portal (https://dcc.icgc.org/) for the Genomic Data
Commons (GDC) BRCA cohort (https://xenabrowser.net/datapages/?cohort=GDC%
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house.gi.ucsc.edu%3A443) and OV cohort (https://xenabrowser.net/datapages/?
cohort=GDC%20TCGA%20Ovarian%20Cancer%20 (OV)&removeHub=https%3A%2F
%2Fxena.treehouse.gi.ucsc.edu%3A443) of The Cancer Genome Atlas (TCGA)
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datapages/?cohort=Breast%20Cancer%20 (Caldas%202007)&removeHub=https%3A
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Australian (OVAU) cohort (https://dcc.icgc.org/releases/current/Projects/OV-AU). The
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Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/
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website (https://github.com/jianglindong93/AUTOSurv) with some preprocessed
data examples. More details on data collection including URL links to specific data
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