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Promoter swapping of truncated PDGFRB drives Ph-like acute
lymphoblastic leukemia
Bunpei Miyazaki1, Toshihide Ueno 2, Masanaka Sugiyama 1, Shinya Kojima2, Ayumu Arakawa1, Kayoko Tao1, Kazuki Tanimura 1,
Kouya Shiraishi3, Shigehiro Yagishita4, Shinji Kohsaka 2, Mamoru Kato 5, Nobutaka Kiyokawa 6, Yasushi Goto7, Yasushi Yatabe 8,
Akinobu Hamada4, Hiroyuki Mano 2, Chitose Ogawa1 and Yosuke Tanaka 2✉

Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a subset of ALL that demonstrated a high treatment
failure rate. One of the hallmarks of Ph-like ALL is PDGFRB gene fusion, with fusion partner proteins often harboring dimerization
domains and enhancing the kinase activity of PDGFRB. We determined a novel oncogenic PDGFRB fusion gene, NRIP1::PDGFRB,
from a pediatric patient with ALL, encoding a protein with the carboxy-terminal kinase domain of PDGFRB, without the partner
peptide. We confirmed the oncogenic potential of NRIP1::PDGFRB in vitro and the efficacy of all ABL1-specific inhibitor generations,
including imatinib, dasatinib, nilotinib, and ponatinib, in suppressing this potential. PDGFRB activation mechanism may include
juxtamembrane domain truncation in the predicted peptide. In conclusion, we determined a novel fusion gene pattern in Ph-
like ALL.
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INTRODUCTION
The development of a risk classification strategy based on
molecular subtyping has significantly improved the prognosis of
childhood acute lymphoblastic leukemia (ALL) in recent decades1.
Risk classification contributed to adapting appropriate treatment
options, such as intensified treatment and molecular targeting
agents for patients at adverse risk, or treatment with reduced
intensity for patients at favorable risk. Philadelphia chromosome
(Ph)-like ALL, demonstrates a gene expression profile similar to
BCR::ABL1-positive ALL2 and accounts for 15%–30% of B-cell
lineage ALL (B-ALL) in children and adults3. Ph-like ALL is
associated with high rates of treatment resistance and relapse4.
The 5-year event-free survival rates are ~60% and 80% in Ph-like
ALL and other childhood ALL subtypes, respectively5. Ph-like ALL
often carries oncogenic fusions of tyrosine kinases, including
PDGFRB fusions. Most PDGFRB fusions include amino (N)-terminal
partner protein with a dimerization motif, such as EBF1, and
carboxy (C)-terminal kinase domain of PDGFRB3. The dimerization
motif facilitates homodimer formation of the kinase domain,
causing autophosphorylation6. Herein, we report a novel trun-
cated form of PDGFRB without a partner protein in B-ALL and
confirm its oncogenicity and sensitivity to tyrosine kinase
inhibitors (TKIs).

RESULTS
A 4-year-old patient visited the National Cancer Center Hospital in
Japan with complaints of fever, malaise, and purpura. Peripheral
blood examination revealed 8.4 × 1010/L white blood cells with
81% blasts (Fig. 1a), 5.6 g/dL hemoglobin, and 1.6 × 1010/L
platelets. Bone marrow aspiration revealed 90% of
myeloperoxidase-negative blasts. Cell surface marker profiling

with flow cytometry demonstrated that the blasts were positive
for CD19, CD10, CD22, cyCD79a, cy-μ chain, CD27, CD44, and
CD66c and negative for T-cell and myeloid markers. The patient
was diagnosed with pre-B-ALL based on these results. Figure 1b
shows her clinical course. The patient was treated according to the
Japanese Pediatric Leukemia/Lymphoma Study Group B-19
protocol and refractory to the early phase of induction
chemotherapy, including prednisolone. Complete remission was
eventually achieved after the entire induction phase, but minimal
residual disease was detected after the early consolidation phase.
The patient was refractory to the salvage chemotherapy with
blinatumomab, a bispecific antibody against CD3 and CD19 that
induces anti-tumor T-cell responses. The patient was scheduled for
chimeric antigen receptor T-cell therapy followed by allogeneic
hematopoietic stem cell transplantation. The patient’s parents
provided informed consent for genetic analyses during induction
chemotherapy.
RNA sequencing (RNA-seq) of leukemia cells revealed the

presence of a novel NRIP1::PDGFRB fusion gene, where an
untranslated region of NRIP1 intron 3 was connected to exons
12–23 of PDGFRB (Fig. 1c). Cytogenetic analysis with fluorescence
in situ hybridization (FISH) revealed a split signal of PDGFRB in
88/100 leukemic cells analyzed (Fig. 1d). Whole exome sequen-
cing of leukemic blasts revealed no other genetic abnormalities.
Interestingly, the fusion gene breakpoint resides in the middle of
exon 12 of PDGFRB, followed by methionine for translation
initiation (Fig. 1e). Thus, the protein resulting from NRIP1::PDGFRB
has an amino acid sequence for C-terminus of PDGFRB, with a
conserved tyrosine kinase domain, while it lacks N-terminal
extracellular and juxtamembrane (JM) domains (Fig. 1f). The
coding sequence of NRIP1 is excluded from the fusion transcript;
thus, promoter swapping was considered a potential mechanism
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for the increased expression of truncated PDGFRB caused by this
translocation. The increase in the expression levels of PDGFRB
was detected between exons before and after the breakpoint,
indicating the result of promoter swapping in the translocated
allele (Fig. 1g). Considering the expression levels of

representative genes downstream of activated tyrosine kinases
in ALL7 from the data of our previous study8, our case belonged
to Ph-like/Ph-positive group (Fig. 1h). Additionally, PDGFRB
expression levels increased in PDGFRB rearranged cases, includ-
ing this one.
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We stably transduced a murine pro-B-cell line, Ba/F3, with
NRIP1::PDGFRB to validate the oncogenic potential of
NRIP1::PDGFRB. Wild-type (WT) PDGFRB cDNA was also transduced
as a positive control. Ba/F3 cells expressing NRIP1::PDGFRB and WT
PDGFRB cDNA survived upon IL-3 withdrawal for 1 week (Fig. 2a).
We detected NRIP1::PDGFRB-generated truncated form of PDGFRB
and its phosphorylation (Fig. 2b), as well as the excessive
phosphorylation of downstream targets of NRIP1::PDGFRB
(Fig. 2d). Next, we incubated these cells with different concentra-
tions of known ABL1 TKIs and one BRAF kinase inhibitor
(vemurafenib). As demonstrated in Fig. 2c, Ba/F3 cells that express
NRIP1::PDGFRB or WT PDGFRB were sensitive to all ABL1 TKI
generations (imatinib, dasatinib, nilotinib, and ponatinib), with a
trend toward a lower IC50 in cells expressing NRIP1::PDGFRB than
WT PDGFRB. Reduced phosphorylation of downstream targets of
NRIP1::PDGFRB was achieved by ABL1 TKI administration, but not
by other TKIs, supporting the results of the drug sensitivity assay
(Fig. 2d).

DISCUSSION
Patients with Ph-like ALL frequently show tyrosine kinase fusions,
and EBF1 is a major fusion partner of PDGFRB, found in 73% of
fusions3. To date, almost all fusion partners carry dimerization
motifs, such as the coiled-coil domain. Fusion to the protein with
dimerization motifs results in PDGFRB kinase domain homodimer-
ization, causing kinase autophosphorylation and activation. Such a
response potentiates RAS/MAPK and PI3K pathways and promotes
cell proliferation6.
In contrast, the encoded protein by NRIP1::PDGFRB lacks a

partner protein with a dimerization domain, although we
confirmed its growth-inducing ability through excessive autopho-
sphorylation. Although rare, hematological malignancies demon-
strated PDGFRB fusions without a dimerization protein9. The
partner proteins of PDGFRB in the fusion protein encoded by
DTD1::PDGFRB, MRC1::PDGFRB fusions10,11, and G3BP1::PDGFRB
demonstrated no dimerization domains while the oncogenic
ability has been experimentally confirmed12.
The characteristics of these fusion protein types are truncated

JM domain, detected in our case. JM domain in tyrosine kinase
receptors has been reported as an autoinhibitory domain that
suppresses kinase activity through conformational proximity13.
Additionally, some tyrosine kinase families, other than PDGFRB, are
activated by JM dysfunction. FLT3 and KIT have crystal structures
similar to PDGFRB. An internal tandem duplication (ITD) of JM
domain in FLT3 causes a structural alteration of JM domain,
resulting in constitutive activation of its enzymatic function and
cell proliferation14. FLT3-ITD alterations occur in acute myeloid
leukemia (AML), accounting for ~30% of AML cases15. Mutations in
JM domain of KIT in gastrointestinal stromal tumors (GIST)
demonstrated a similar activation mechanism16. TKIs are effective
and clinically used for FLT3-ITD-positive AML and KIT rearranged
GISTs17,18. FIP1L1::PDGFRA fusion, one of the major oncogenic
fusion genes of myeloproliferative disorders, is another example of

JM dysfunction. The translated protein contains truncated JM and
kinase domains of PDGFRA19. Similarly, proliferative ability20 and
response to TKI21 have been demonstrated.
Importantly, Stover et al. revealed an increase in enzymatic

ability with the absence of tryptophan-566 (W566) in JM region of
PDGFRB20, and Chen et al. reported the crucial role of W566 in
maintaining JM domain assembly22. The protein encoded by
NRIP1::PDGFRB, in our case, lacks JM domain (Fig. 2e); the fusion
transcript excluded the sequence encoding W566 (Fig. 1e). A
recent study reported a novel PDGFRB fusion gene, CD74::PDGFRB,
in Ph-like ALL in addition to the known patterns of PDGFRB fusions
(Fig. 2f)23. The sequence encoding W566 was conserved in the
transcript, but PDGFRB translation starts from the same translation
start site as NRIP1::PDGFRB, causing the same form of JM truncated
PDGFRB protein. Specifically, they experimentally revealed that the
truncated PDGFRB without W566 harbors a stronger kinase activity
than truncated PDGFRB retaining W566. Additionally, they
revealed that CD74::PDGFRB did not dimerize as strongly as
EBF1::PDGFRB, a representative PDGFRB fusion gene with partner
protein harboring dimerization domain. PDGFRB protein with
truncated JM results in excessive downstream phosphorylation as
shown in our case, but dimerization may not be necessary for
PDGFRB autophosphorylation in JM dysregulated cases. Alto-
gether, truncated JM is a novel oncogenic form of PDGFRB
aberration in Ph-like ALL.
The 5-year event-free survival of Ph-like ALL with PDGFRB

rearrangement was 50%24. Accumulating reports indicated the
efficacy of TKIs against Ph-like ALL, including those with PDGFRB
rearrangement25–27, although they remained prospectively not
validated. Currently, an ongoing prospective trial aims to confirm
the efficacy of dasatinib in patients with Ph-like ALL with specific
fusions (Children’s Oncology Group’s AALL1131, NCT02883049).
We and others23 confirmed the proliferative capacity and
response to TKIs in JM dysregulated PDGFRB; thus, our data will
be beneficial for future patient selection. In conclusion, our study
identified a novel truncated PDGFRB fusion in Ph-like ALL without
fusion partner peptides which can be targeted by TKIs.

METHODS
Sample
We used a bone marrow aspiration specimen for RNA sequencing
(RNA-seq). The patient’s parents signed a written informed
consent for genetic analyses and publication of the case report.
The National Cancer Center Research Ethics Review Board
approved this study (2015-059). We followed the ethical principles
of the Declaration of Helsinki.

RNA sequencing
We extracted total RNA from the bone marrow sample and
prepared and subjected RNA-seq libraries to next-generation
sequencing as previously described28. We used Arriba to detect
gene fusion29.

Fig. 1 Identification of the NRIP1::PDGFRB fusion gene in a Ph-like ALL patient. a Representative Giemsa staining of leukemic cells. b Clinical
timeline of patient’s treatment history from diagnosis; treatments at different time points are shown along the top. The blue and red lines indicate
the ratio of blasts and tumor cells detected by flow cytometry (FCM). The asterisk indicates the ratio of PDGFRB FISH-positive cells. PSL
prednisolone, VCR vincristine, DNR daunorubicin, L-ASP L-asparaginase, 6-MP mercaptopurine, CPM cyclophosphamide, Ara-C cytarabine, DEX
dexamethasone, VP-16 etoposide. Intrathecal chemotherapy was administered throughout each treatment phase. Minimal residual disease (MRD)
positivity was detected on Day 112. c Reads of NRIP1::PDGFRB fusion in each genomic locus; dashed line indicates the genomic breakpoint.
d PDGFRB break-apart FISH analysis is depicted; green and red dots indicate 5' and 3' ends of PDGFRB DNA probe. e Chimeric reads of
NRIP1::PDGFRB fusion in exon12 of PDGFRB; colored portions of the reads indicate mismatched bases. M methionine, W tryptophan. f Schematic
representation of NRIP1::PDGFRB fusion. g Reads in PDGFRB locus; dashed line indicates the genomic breakpoint, and bottom panel shows the ratio
of reads between exons before and after the breakpoint. h Expression levels of PDGFRB and the representative genes downstream of activated
tyrosine kinases in ALL in Ph-like and Ph ALL groups (left, n= 7) and ALLs of other subtypes (right, n= 7); red and blue dots indicate cases with
NRIP1::PDGFRB and EBF1::PDGFRB fusions. The box plots show medians (lines), interquartile ranges (IQRs; boxes), and ± 1.5 × IQRs (whiskers).
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Primers for NRIP1::PDGFRB fusion
We identified NRIP1::PDGFRB fusion transcript by cDNA PCR from
the patient sample using the following primer sets:
NRIP1 forward: TTGGATTGTGAGCTATTTCAGAAC
PDGFRB reverse: AGGGTTTGGGGCACAACACGTCAG

Cell culture
The wild-type PDGFRB cDNA and NRIP1::PDGFRB cDNA coding
regions were inserted into the pMXS plasmid. Ba/F3 cells
were infected with the generated retroviruses from each
plasmid.
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Drug sensitivity assay
Cells were seeded into 96-well plates at a 100 μL volume. After
overnight incubation, cells were treated with each drug, including
imatinib (Selleck), dasatinib (Selleck), nilotinib (Selleck), ponatinib
(Selleck), and vemurafenib (Selleck), at doses ranging from 0.1 nM
to 1 μM, incubated for 72 h. Subsequently, 10 μL of PrestoBlue
(Thermo Fisher Scientific) was added to the plates, and the
fluorescence was measured after 3 h of incubation.

Clinical sequence data
Sequencing data of Japan Adult Leukemia Study Group (JALSG)
B-ALL clinical samples were obtained from the Japanese
Genotype–Phenotype Archive (accession JGAS00000000047)8,
which is hosted by the DNA Databank of Japan.

Western blot
Standard protocols were used for protein detection by immuno-
blot analysis, using primary antibodies PDGFRβ (#3169, 1:1000
dilution), phospho-PDGFRβ (Tyr751) (#3161, 1:1000 dilution), Akt
(#4691, 1:1000 dilution), phospho-Akt (Ser473) (#4060, 1:1000
dilution), Erk1/2 (#4695, 1:1000 dilution), phospho-Erk1/2 (#4370,
1:1000 dilution), and β-Actin (#4970, 1:1000 dilution) purchased
from Cell Signaling Technology. Uncropped immunoblots blots of
each Figure are included in Supplementary Fig. 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Sequencing data is deposited at Gene Expression Omnibus (GEO) under the
accession number GSE242858.
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NRIP1::PDGFRB, treated with ponatinib (1 nM) and vemurafenib (1 nM); after 24 h of tyrosine kinase inhibitor exposure, lysates were prepared
and immunoblotted. e Structures of WT PDGFRB and NRIP1::PDGFRB predicted with AlphaFold2. TM transmembrane domain, JM
juxtamembrane domain. f Schematic representation of PDGFRB fusion pattern; TM transmembrane domain, JM juxtamembrane domain.
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