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Imaging and AI based chromatin biomarkers for diagnosis and
therapy evaluation from liquid biopsies
Kiran Challa1,6, Daniel Paysan 1,2,6, Dominic Leiser3, Nadia Sauder3, Damien C. Weber3,4,5✉ and G. V. Shivashankar1,2✉

Multiple genomic and proteomic studies have suggested that peripheral blood mononuclear cells (PBMCs) respond to tumor
secretomes and thus could provide possible avenues for tumor prognosis and treatment evaluation. We hypothesized that the
chromatin organization of PBMCs obtained from liquid biopsies, which integrates secretome signals with gene expression
programs, provides efficient biomarkers to characterize tumor signals and the efficacy of proton therapy in tumor patients. Here, we
show that chromatin imaging of PBMCs combined with machine learning methods provides such robust and predictive chromatin
biomarkers. We show that such chromatin biomarkers enable the classification of 10 healthy and 10 pan-tumor patients.
Furthermore, we extended our pipeline to assess the tumor types and states of 30 tumor patients undergoing (proton) radiation
therapy. We show that our pipeline can thereby accurately distinguish between three tumor groups with up to 89% accuracy and
enables the monitoring of the treatment effects. Collectively, we show the potential of chromatin biomarkers for cancer diagnostics
and therapy evaluation.
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INTRODUCTION
Tumors arise in the stromal microenvironment composed of
endothelial cells, blood vessels, immune cells alongside the
extracellular matrix and soluble factors1. Importantly, the tumor
cells secrete signals within the tumor microenvironment (TME) to
stimulate their growth and progression2,3. Since the TME also
consists of blood vessels, a variety of tumor factors and secreted
signals also eventually enters the bloodstream4. The composition
and concentration of the secretome signals depends strongly on
the stage of the disease, suggesting that the therapeutic options
such as e.g. chemotherapy, surgery or radiation therapy5–7 may
alter the signal profiles.
Recent approaches have exploited the resulting presence of

tumor signals in the bloodstream to develop a variety of cancer
biomarkers primarily used for cancer diagnosis and evaluation of
treatment efficacy8,9. For instance, cytokines, growth factors,
exosomes, tumor specific DNA and circulating tumor cells found
in the blood have been used as biomarkers10–12. Transcriptomic
and proteomic analyses of blood cells have also provided
additional biomarkers for cancer detection13–18 and disease
diagnostics19–24. Despite their success, these methods often rely
on resource-intensive sequencing and proteomic methods, are
limited to late-stage diagnosis and process-intensive. Thus, novel
patient-specific biomarkers for timely evaluation of tumor type
and stage are required.
Recent studies highlight the important role of epigenetic

chromatin remodeling in gene expression regulation25,26. Specific
chromosome conformations in PBMCs are diagnostic tools for
cancers27–31. PBMC activation involves extensive chromatin
remodeling and DNA methylation changes32–34. The secretome
signals sensed by CD8+ T cells exhibit dysfunctional states in
solid tumors, and the observed chromatin state dynamics are
reflected through surface protein-associated markers, leading to

chromatin accessibility differences in specific gene loci35. An
integrated framework combining single-cell RNA-sequencing,
epigenomic SNP maps, and genome-wide association study data
on immune cell types unveils how genetic variations influence
disease development and the activation of specific immune
populations36. In contrast to transcriptomic and proteomic
biomarkers, the cellular chromatin organization can be captured
via e.g. simple immunofluorescence imaging of PBMCs. Machine
learning approaches combined with such fluorescent imaging37–40

have recently provided novel possibilities to detect even subtle,
signal-induced chromatin structure alterations of PBMCs37,41.
In this study, we developed an imaging and AI-based pipeline

to characterize the 3D chromatin organization in PBMCs obtained
using liquid biopsies from patients undergoing proton therapy,
before, during and after this treatment modality. Our analyses
show that our pipeline provides a robust read-out of the
chromatin organization of PBMCs to discriminate between healthy
and cancer patients and also between different tumor groups. We
further show that our pipeline can also be applied to assess the
treatment efficacy of proton therapy administered for advanced
tumors, thus showing the potential of our developed chromatin
biomarkers for two closely linked clinical applications, namely
diagnosis and treatment evaluation.

RESULTS
An imaging and AI-based pipeline to quantify chromatin
features for cancer diagnostics using liquid biopsies
The pipeline uses cost-efficient single-cell fluorescent microscopy
images obtained from non-invasive liquid biopsies from 10 healthy
controls and 40 patients of various tumor groups that underwent
proton therapy. Our pipeline identifies chromatin biomarkers that (a)
enable accurate diagnostics of cancer and respective tumor subtypes
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and (b) allow for an immediate read-out of proton radiation-induced
effects. In particular, we collected blood samples of patients
undergoing proton therapy at three different time points during
the treatment procedure (Fig. 1a). The therapy is expected to reduce
the concentration and composition of the tumor secretome signals in
the blood. These changing signals are sensed by the PBMCs of the
patients and are thus reflected in their chromatin organization

(Fig. 1b). To study these changes, the PBMCs are labeled with DAPI to
stain chromatin, ɣH2AX (a DNA damage marker), Lamin A/C
(a nuclear structural protein) and cell surface markers (CD3, CD4
and CD8) (Fig. 1c, see Methods). The resulting imaging information is
used by our pipeline to identify chromatin alterations of PBMCs that
differentiate healthy and tumor patients, as well as capture the
proton therapy treatment effects (Fig. 1d, see Methods).
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Nuclear chromatin phenotypes of PBMCs distinguish control
and tumor populations
To establish the potential of using the 3D chromatin organization of
PBMCs as a read-out of the systemic health/disease state of an
individual/patient, we first obtained PBMCs from healthy controls
(n= 10) and patients with tumors (n= 10, see Supplementary Table
1). The chromatin state of the PBMCs, was characterized using the
chrometric features extracted from corresponding DNA images of
the PBMCs (Fig. 1C, see Methods). We selected a balanced subset of
PBMCs from the tumor patients (n= 2160) and the healthy donors
(n= 2160) and observed that the chromatin states of the PBMCs of
the healthy controls and the tumor patients showed prominent
differences (Fig. 2a). For instance the nuclei of the PBMCs were often
seen to be fragmented in the tumor population. The different
chromatin states of the PBMCs from the control and tumor
population were also captured by the extracted chrometric features
as shown in a t-distributed neighbor embedding (tSNE) plot (Fig.
2b). Importantly, the PBMCs were not seen to cluster by their
individual donors and thus no evidence for batch effects was
observed (Supplementary Fig. 2a).
We next quantified the dissimilarity of the chromatin states of

the PBMCs between the control and the tumor population by
evaluating a random forest classifier (RFC) using the chrometric
features as input trained to distinguish between PBMCs from the
two populations in a leave-one-patient-out cross-validation
scheme (see Methods). The RFC achieved an average classification
accuracy of 0.77 (+ /− 0.10) and an average specificity of 0.77
(+ /− 0.09) and a sensitivity of 0.78 (+ /− 0.11) (Fig. 2c). As
expected, an ablation study showed that the classification
accuracy degraded if fewer nuclei or fewer patients were used
to train the model (Supplementary Fig. 2d, e). However, even
when trained solely on PBMCs of as little as one randomly selected
control and tumor patient, the model was able to predict if a given
PBMC comes from a held-out patient with or without a tumor
(Supplementary Fig. 2d, see Methods) with an average accuracy of
0.72 (+ /− 0.03). Importantly, these metrics describe the
performance of the RFC on a single-cell level, i.e. to predict for a
single PBMC if it comes from a tumor or a control patient. When
aggregating the predictions for all PBMCs on a patient-level and
classifying each patient based on which condition was predicted
most frequently for PBMCs of the respective patient, the RFC was
seen to achieve perfect classification accuracy, i.e. for all patients
the majority of the corresponding PBMCs are classified correctly
(Supplementary Fig. 2f).
The classifier was seen to especially use chrometric features

measuring the nuclear volume, shape and heterochromatin content
of PBMCs to distinguish between the control and tumor populations
(Fig. 2d). A statistical screen validated that these features were most
differentially expressed (Supplementary Fig. 2e, see Methods).
Interestingly, the large-scale differences between the control and the
tumor population PBMCs was also well reflected using a linear
discriminant analysis (LDA) (Supplementary Fig. 2d). Previous studies
have implicated the connection between nuclear Lamin and DNA

damage for the chromatin organization of immune cells42,43. Using our
pipeline, we found that Lamin A/C is decreased in PBMCs of the tumor
population compared to the control population (Fig. 2F, see Methods).
We also observed significantly higher DNA damage contents in the
PBMCs of the tumor population (Fig. 2g), likely caused by their
exposure to the tumor secretome as previously reported44. Interest-
ingly, preceding chemotherapy was not seen to be significantly
reflected in the PBMCs of our study population (Supplementary
Fig. 2b, c).

Nuclear chromatin phenotypes of PBMCs identify different
tumor groups
The previous findings show that the chromatin organization of
PBMCs is altered when exposed to the tumor secretome. The
composition of the secretome signals depends on the tumor state
and tumor type8,45 and thus these differences should be reflected
in the chromatin states of PBMCs. To test this hypothesis, we
analyzed blood samples of 10 glioma, 10 meningioma and 10
head and neck tumor patients using our presented pipeline (Fig.
1a, Supplementary Table 2–4, see Methods). While visually the
PBMCs from the different tumor groups looked similar (Fig. 3a),
the chrometric features showed significant differences of the
chromatin states in the different tumor groups. This is highlighted
by a tSNE visualization where the PBMCs are clustered by tumor
group (Fig. 3b). No evidence for technical batch effects was
observed (Supplementary Fig. 3a).
We next quantitatively assessed the separability of the PBMCs of the

different tumor populations by their corresponding chromatin states.
To this end, we evaluated the performance of a RFC to distinguish
between PBMCs from the different tumor populations in a similar
leave-one-patient-out cross-validation scheme (see Methods). The
model achieved an average classification accuracy of 0.78 (+ /− 0.25)
and identified PBMCs from head and neck tumor patients with an
accuracy of 0.89. For Meningioma and glioma patients, 75%
respectively 69% of all PBMCs were correctly classified by the RFC.
Interestingly, the RFC was seen to frequently confuse PBMCs from
meningioma and glioma patients, suggesting similar chromatin states
of the PBMCs of these two brain tumor groups. This is further reflected
in the overlap of the respective PBMC distributions in a LDA plot (see
Supplementary Fig. 3b). Importantly, we find that for 28 of the 30
tumor patients (i.e. 93% of all patients) the majority of their
corresponding PBMCs are classified correctly by the RFC classifier, i.e.
our model achieves a classification accuracy of 93% on a patient-level.
We observed that the nuclear volume, heterochromatin content,

concavity and the curvature of the nuclear boundary differed
significantly between the PBMCs of the three tumor group
populations (Fig. 3d). In alignment with our previous results, we
observed PBMCs from head and neck tumor patients to be highly
dissimilar compared to PBMCs of the other two tumor groups. For
instance, their nuclear and heterochromatin volume in the former
group was seen to be significantly increased (Fig. 3e), as well as the
number of ɣH2AX foci. Interestingly, the Lamin A/C expression

Fig. 1 Overview of our platform to study the chromatin organization of peripheral blood mononuclear cells in a tumor and proton
therapy setting. a Overview of the different study populations whose blood samples are analyzed in the context of the present work. In
contrast to the pan-tumor and control population blood samples of meningioma, glioma and head and neck tumor patients undergoing
proton therapy are obtained at three different time points: prior, during and at the end of the on average 6 week long therapy process.
b Schematic representation of the effect of tumor signals on peripheral blood mononuclear cells (PBMCs). Secretome signals secreted by the
tumor enter the bloodstream via blood vessels in the tumor microenvironment. The signals are sensed by PBMCs whose response involves
chromatin reorganization. Successful therapy reduces the amount of viable tumor cells and the tumor signal concentration which eventually
is also reflected in the chromatin organization of PBMCs exposed to the signals. Adapted with permission from ref. 70. c Schematic
representation of the experimental sample processing. PBMCs are extracted from the obtained blood samples via density-gradient
centrifugation, fixed and immunofluorescently stained and imaged using a confocal microscope. Created with BioRender.com. d Overview of
our computational platform which first segments individual PBMCs from the input images to characterize the nuclear morphology and
chromatin organization and measure the expression of selected protein markers as well as to derive related cell type labels. This information is
used to study the chromatin organization of PBMCs in the selected tumor and therapy settings using statistical and machine learning-based
analyses.
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levels showed little differences between the different tumor group
populations (Fig. 3f).

Chromatin organization of PBMCs reflects treatment effects of
proton therapy
The previous results highlight the sensitivity of PBMCs to the
tumor secretome signals and validate that the presence of such

signals is reflected in the PBMCs’ chromatin states. During proton
therapy, it is expected that the signal concentration will reduce if
the therapy is effective against the tumor. To assess if the
treatment effect is also reflected in the chromatin states of the
PBMCs, we next used our pipeline to analyze blood samples of
the same 30 tumor patients as before; obtained not only prior to
but also during and at the end of proton therapy (Fig. 4a, see
Methods).
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The chromatin states of the PBMCs seemed to primarily differ
between treatment time points as seen in a tSNE visualization (Fig.
4b, Supplementary Fig. 4a). Concordantly, a RFC could accurately
distinguish between PBMCs of the different treatment time points
across all tumor groups, i.e. with classification accuracies of 0.82
(+ /− 0.09) for meningioma, 0.83 (+ /− 0.12) for glioma and 0.64
(+ /− 0.10) for head and neck tumor patients’ PBMCs (Fig. 4c).
However, the similarity of the PBMC populations from the
different treatment time points were observed to vary between
tumor groups. For instance, the RFC classifier was seen to
frequently confuse PBMCs from the meningioma and head and
neck tumor patients obtained prior for PBMCs obtained during the
proton therapy treatment implying a delayed reflection of the
treatment effect in the chromatin states of the PBMCs. In contrast,
the PBMCs of the glioma patients were accurately distinguished
by the classifier for all different treatment time points, which
indicates an immediate reflection of the treatment effect in their
chromatin states.
We found the nuclear volume, heterochromatin content and

the variability of the nuclear curvature to be most differential
between the individual treatment time points for the different
tumor populations (Supplementary Fig. 4b). Importantly, these
features were also found to be increased in PBMCs of the tumor
population when compared to the PBMCs of the healthy donors.
We observed a reduction of all those chrometric features towards
the end of the proton therapy across all tumor groups (Fig. 4d).
Additionally, we found a recovery of the nuclear Lamin expression
and a reduction of the DNA damage content over the course of
the treatments (Fig. 4e). Similar as for the chrometric features,
these changes were in opposite direction to the differences
between PBMCs of healthy and pan-tumor population (Fig. 2).We
further observed that the tumor-specific signature of the PBMCs is
sequentially lost during proton therapy. This was seen when
training a RFC to discriminate between the different tumor groups
on data from each treatment time point individually. The RFC
identified the corresponding tumor group for a given PBMC with
an accuracy of 77% for PBMCs obtained prior proton therapy, but
could no longer predict the different tumor groups significantly
better than by chance for PBMCs obtained during or at the end of
the proton therapy (Fig. 4f). Jointly, these findings suggest the
reflection of the treatment effect over the course of proton
therapy in the chromatin states of PBMCs in all assessed tumor
group populations.

Reflection of cell-type-specific effects of proton therapy in the
chromatin organization of PBMCs in different tumor groups
PBMCs consist of a variety of different lymphocytes with distinct
cellular functions46. We next assessed if our results could be due
to the changing abundances of these subpopulations. To this end,

we used our pipeline to assess the abundance of PBMCs positive/
negative for CD4, CD8 and CD3 in the blood samples from the 30
tumor patients over the course of proton therapy (see Methods).
We first observed a decreased abundance of CD4+ CD8- (CD4+
positive) cells in all tumor groups prior to the proton therapy
treatment. In contrast, the number of CD4-CD8+ (CD8+ )
cytotoxic cells was seen to be generally increased in the PBMCs
of the tumor patients compared to the PBMC population of the
healthy donors. Interestingly, the abundance of the CD8+ cells
was seen to further increase over the course of the proton therapy
treatment.
Moreover, CD4-CD8- cells were observed to be less and

CD4+ CD8+ cells more abundant in all tumor groups compared
to the control population. The abundance of the CD4+ CD8+
cells was seen to increase over the course of proton therapy. In
contrast, the abundance of the other subtypes, including CD3+ /
− cells, showed small variations across the different treatment
time points (Fig. 5a), potentially due to the large patient-specific
variability (Supplementary Fig. 5a).
To assess if the previously observed changes of the chromatin

states of the PBMCs during proton therapy were potentially
confounded by the reported changes of the abundance of
individual cell types, we validated that CD3+ /− cells showed
different chromatin states. To this end, we showed that a RFC
could discriminate between CD3+ /− PBMCs with an accuracy of
0.77 (+ /− 0.04), which is significantly better than random chance
(Fig. 5b, Supplementary Fig. 5b, c, see Methods). However, the
previously described treatment effects were similarly reflected in
the chromatin organization, their Lamin A/C and ɣH2AX profiles of
CD3+ and CD3− PBMCs (Fig. 5c, d). Furthermore, we found the
classifier trained to distinguish between the three different tumor
types to achieve a slightly lower balanced accuracy when being
trained only on CD3+ respectively CD3- cells achieving a balanced
accuracy of 0.74 (+ /− 0.24) and 0.73 (+ /− 0.23) respectively
(Supplementary Fig. 5b, c). Recalling the results of our ablation
study, this reduction is likely due to the reduced number of PBMCs
available to train the models when sub-setting them to CD3+ or
CD3- cells (Supplementary Fig. 3e). More importantly, the
previously described treatment effects were also similarly
reflected in the chromatin organization, their Lamin A/C and
ɣH2AX profiles of CD3+ and CD3- of CD3+ /− PBMCs (Fig. 5d, e).
Jointly these results suggest that, while there exist distinct
chromatin states of different cell types of PBMCs, the previously
identified alterations of the chromatin states of PBMCs are not
explained by such cell-type specific differences, but all PBMC
subsets show a similar reflection of changes of the concentration
and composition of tumor secretome signals in their chromatin
organization.

Fig. 2 PBMCs of control and pan-tumor patients show distinct nuclear chromatin phenotypes. a Visualization of 16 representative single-
nuclei images of the control (left) and the pan-tumor population (right). Maximum projections of the 3D single-nuclei are shown where the
coloring encodes the observed DNA intensity (warmer is higher). Each image corresponds to 13.5 × 13.5 microns. b T-distributed stochastic
neighbor embedding (tSNE) of the PBMCs of the control (green) and the pan-tumor population (red). The embedding is calculated using the
derived chrometric profiles for each PBMC (see Methods). c Boxplot showing the performance of a RandomForest classifier (RFC) (in light
green) against a random baseline (light yellow) for identifying PBMCs of the control and the pan-tumor population using their respective
chrometric features. The performance is evaluated using leave-one patient-out cross-validation and the random baseline is obtained by
permuting (10 times) the condition labels of the PBMCs (see Methods). P-values < 10-4, two-sided Wilcoxon rank-sum test. d Importance of the
chrometric features as determined by the RandomForest classifier to distinguish between PBMCs from the control and the pan-tumor
population. The chrometric features are colored by their corresponding category: Features related to the DNA intensity distribution are
colored in green, Image moment features in yellow, HC/EC related features in pink and features associated to the shape of the nuclear
boundary in red. The 15 features with the highest Gini importance are shown. e Violin plot showing the range-normalized expression of the
three most differentially expressed chrometric features of the control (green) and pan-tumor population (red). P-values < 10-74, two-sided
Welch’s t-test. f Bar plot showing the average expression of two protein-related features of PBMCs in the control (green) and the pan-tumor
(red) population. The expression was normalized by dividing it by the mean of the control condition. Error bars correspond to one standard
deviation. P-values < 10-43, two-sided Welch’s t-test.
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DISCUSSION
The development of reliable prognostic biomarkers for patients
with tumors is critical for personalized therapy, enhanced
diagnostics and monitoring treatment effects. Primary tumors
secrete a range of signaling molecules into their tumor micro-
environment. While the exact composition of the secretome is

largely unknown, related research has identified of insulin-like and
opioid growth factors or proteins such as ADAM9, cathepsin B and
neuropilin-1 as key components of the secretome of head and
neck tumor or glioblastoma cells47,48. Circulating PBMCs respond
to such tumor secretome signals with functional and phenotypic
changes, either mounting an immune response or providing aid

Fig. 3 Nuclear chromatin organization separates tumor group populations. a Visualization of 16 representative single-nuclei images of
PBMCs of meningioma, glioma and head and neck tumor patients (left to right) obtained from the study population prior to proton therapy.
Maximum projections of the 3D single-nuclei are shown where the coloring encodes the observed DNA intensity (warmer is higher). Each
image corresponds to 13.5 × 13.5 microns. b Visualization of the chrometric profiles of different PBMC populations represented by their
chrometric profiles using a tSNE plot. Points representing individual PBMCs (n= 7200) are colored according to the tumor group of the
patients (n= 30) they originate from. c Average of the row-normalized confusion matrices for a RFC evaluated in a leave-one-patient-out
cross-validation scheme on the task of classifying the respective tumor group label of PBMCs given their chrometric profiles (see Methods).
The classifier achieves an average accuracy of 0.7765 (+ /− 0.2466). d Violin plot showing the range-normalized expression of the three most
differentially expressed chrometric features between the meningioma (blue), glioma (orange) and head and neck tumor group population
(pink). P-values < 10-21, two-sided Welch’s t-test. e Bar plots showing the average expression of two protein-related features of PBMCs in the
three tumor group PBMC populations. Error bar corresponds to one standard deviation. P-values are coded as follows: p-value > 0.05 (ns),
p-value < 0.05 (*), p-value < 0.01(**), p-value < 0.001 (***), p-value < 0.0001(****), two-sided Welch’s t-test.

K Challa et al.

6

npj Precision Oncology (2023)   135 Published in partnership with The Hormel Institute, University of Minnesota



Fig. 4 Chromatin organization of PBMCs reflects treatment effect of proton therapy. a Visualization of 16 representative single-nuclei
images of PBMCs of meningioma, glioma and head and neck tumor patients (top to bottom) obtained from the study population prior to,
during and at the end of proton therapy (left to right). Maximum projections of the 3D single-nuclei are shown where the coloring encodes
the observed DNA intensity (warmer is higher). Each image corresponds to 13.5 × 13.5 microns. b Visualization of the chrometric profiles of
the PBMCs (n= 7200) of the meningioma (top), glioma (center) and head and neck tumor population (bottom) using a tSNE plot. Each point
represents a single PBMC which is colored accordingly to separate PBMCs from samples obtained prior to, during and at the end of proton
therapy. c Average of the row-normalized confusion matrices corresponding to the performance of a RFC trained on the task to distinguish
between PBMCs of the different treatment timepoints given their chrometric profiles and evaluated in a leave-one-patient-out cross-validation
scheme. Confusion matrices are given for each tumor group; meningioma (top), glioma (center) and head and neck tumors (bottom). d Violin
plots showing the expression of three chrometric features that are most differentially expressed in the PBMC populations corresponding to
the different treatment time points. P-values are coded as defined in Fig. 3e, two-sided Welch’s t-test. e Bar plots showing the average
expression of two protein-related features of PBMCs of the different tumor group and treatment time point populations. Error bar
corresponds to one standard deviation. P-values are coded as defined in Fig. 3e, two-sided Welch’s t-test. f Bar plot visualizing the average
leave-one-patient-out cross-validated classification accuracy of a RFC used to distinguish between the PBMC populations of the different
tumor groups given their respective chrometric profiles. The RFC is trained and evaluated individually for the PBMC populations of the same
patients for each treatment time point and compared to a random baseline, which is established via permuting (10 times) the tumor group
labels. P-values are coded as defined in Fig. 3e, two-sided Wilcoxon rank-sum test.
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for cancer progression and metastasis49,50. Consequently, liquid
biopsies assessing the DNA methylation, miRNA, transcriptional
and proteomic profiles of blood cells (e.g. PBMCs), as well as
alterations of their specific subpopulations, have become an active

area of research13,20,35,36. Since the chromatin integrates the
functional outputs of PBMCs, we hypothesized that the alterations
of the chromatin as a response to the tumor secretome could
serve as novel prognostic biomarkers. Towards this, we developed

Fig. 5 Reflection of cell type-specific effects of proton therapy in the chromatin organization of PBMCs. a Bar plots showing the relative
abundance of different PBMC subsets in the control and the three tumor group populations over the course of proton therapy. The average
across the 10 patient samples per condition and treatment time point are shown and the error bar corresponds to one standard deviation. P-
values are coded as defined in Fig. 3e, two-sided Welch’s t-test. b Average of the row-normalized confusion matrices reflecting the
performance of a RFC evaluated in a leave-one-patient out cross-validation scheme and trained to distinguish between CD3+ (T) cells and
CD3- (Non-T) cells given their chrometric features across all disease/health and treatment time point conditions. c Violin plots showing the
expression of the three chrometric markers from Fig. 4d separately for CD3+ /− PBMCs in the PBMC populations of the different tumor
groups and across the different treatment time points. P-values are coded as defined in Fig. 3e., two-sided Welch’s t-test. d Bar plots showing
the average expression of two protein-related features of PBMCs separately for CD3+ /− PBMCs of the different tumor group and treatment
time point PBMC populations. Error bar corresponds to one standard deviation. P-values are coded as defined in Fig. 3e, two-sided Welch’s
t-test.
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a chromatin imaging and AI-based pipeline that identifies
chromatin biomarkers, which characterize the differences
between healthy individuals and patients with tumors and provide
read-outs for advanced anti-tumor therapy settings. In contrast to
single molecular biomarkers or sequencing-based methods, our
approach offers a streamlined and resource-efficient means of
biomarker detection, catering to the distinct molecular marker
expression profiles exhibited by various cancer types for
diagnostic purposes51–53. The comprehensive high-dimensional
representation of chromatin, encompassing its integrative func-
tionality, furnishes a read-out that goes beyond mere identifica-
tion of cancer presence. This capacity extends to the identification
of diverse cancer types and the capture of tumor characteristic
alterations during the course of treatment.
Our pipeline robustly detected alterations of the chromatin

organization of PBMCs from healthy donors and tumor patients
treated with proton therapy. We found significant differences of
chrometric features such as the nuclear volume, concavity and
curvature which have been previously linked to activation of
PBMCs54–56. In further agreement, previous studies revealed
MAPK, NK-kB dependent changes of chromatin structure and
the accompanying gene expression as response to tumor
secretome signals33,57,58.
We validated that these chromatin biomarkers could discrimi-

nate between PBMCs of meningioma, glioma patients and head
and neck tumor patients with an average accuracy of 78%.
Importantly, the results of the ablation study imply that the
performance of our RFC to distinguish between PBMCs of control
and patients with different tumor types could further increase by
expanding the study population to a larger set of patients
(Supplementary Figs. 2d and 3d) and/or increasing the number of
PBMCs sampled for each patient (Supplementary Fig. 2e and 3e).
Our analyses further showed that PBMCs from glioma and
meningioma patients show similar chromatin states which are
highly dissimilar from head and neck tumor patients. This aligns
with previous research which showed dissimilar secretome
compositions of brain tumors such as meningioma and glioma
compared to head and neck tumors59,60.
To assess the efficacy of proton therapy outcomes, we applied

our pipeline to assess differences of the chrometric features of
PBMCs obtained at different treatment time points during proton
therapy of meningioma, glioma and head and neck tumor
patients. The treatment effects were differently reflected in the
PBMC populations of the three different tumor groups, suggesting
tumor-specific treatment responses. These should be further
assessed in a large clinical trial due to their potential implications
for proton therapy administered to patients with tumors. Overall,
our results show that over the course of proton therapy, PBMCs of
tumor patients showed a partial recovery of important chrometric
features, such as the nuclear volume, HC/EC ratio, and concavity,
approaching the levels of the healthy donor population.
Concordantly, we observed a sequential loss of the tumor-
specific signature in the chromatin states of the PBMCs over the
course of the treatments. This loss of separability could be due to
the reduced tumor secretome signals sensed by the PBMCs as a
result of proton therapy.
To complement our analyses of the chromatin alterations, we

studied nuclear organization (Lamin A/C levels) and DNA damage
content (ɣH2AX levels) in PBMCs over the course of proton
therapy. The Lamin A/C levels were found to be decreased in
PBMCs of patients with tumors compared to PBMCs from healthy
donors, suggesting that the nuclear architecture may be disrupted
in patients in the former group. Interestingly, Lamin A/C levels
were significantly increased over the course of proton therapy,
suggesting an interplay between immune response and proton
therapy effects. Furthermore, we observed the DNA damage
content to be significantly increased in PBMCs of patients with
tumors, suggesting that the tumor secretome leads to an

impairment of the DNA repair mechanisms. At the end of proton
therapy, PBMCs showed reduced DNA damage, suggesting the
efficacy of proton therapy treatments. In agreement with previous
studies61–63, we found the CD4+ population to be reduced,
whereas the CD8+ PBMC population was seen to be increased in
the tumor population. Interestingly, the CD8+ PBMC population
was also observed to be increased during proton therapy. This
highlights the effects of proton therapy on cytotoxic T cell
responses, which is consistent with previous chemotherapy
results64. These findings also indicate the potential of our imaging
and AI pipeline to further benefit from separation of the PBMCs by
cell type using e.g. cell sorting approaches and study the cell-type
specific alterations of the chromatin organization of PBMCs in
response to the tumor signal, potentially yielding a better
accuracy for diagnoses. While our preliminary analyses using
fluorescent markers to subset the PBMCs into CD3+ and CD3-
cells did not show an improvement of the classification accuracy
of our models, we hypothesize that a more fine-grained
distinction between different PBMC subsets might prove useful
for tumor type diagnoses and should be addressed in future work.
In summary, we have developed an imaging and AI-based

approach to identify chromatin biomarkers in PBMCs using liquid
biopsies. The identified chromatin biomarkers can accurately
discriminate between PBMCs of healthy donors and patients with
various tumors, as well as from different proton therapy treatment
time points. Chromatin organization features and nuclear
morphology features, such as the nuclear volume and concavity,
were found to accurately distinguish PBMCs from healthy donors
and patients as well as to separate different tumor groups. We
believe that the presented approach using simple imaging
techniques and machine learning to identify chromatin biomar-
kers has wide-ranging applications in disease diagnostics and
therapy evaluation.

METHODS
Study population
A total of 10 healthy and 10 patients with tumors were used to
first assess the sensitivity of chromatin biomarkers to discriminate
between healthy and tumor patients (see Supplementary Table 1).
We then used a total of 30 tumor patients, i.e. glioma,
meningioma and head and neck tumor patients (n= 10 each),
to study the reflection tumor-specific differences and the proton
therapy treatment effects in the chromatin organization of PBMCs
(see Fig. 1a, Supplementary Table 2).

Study protocol
Blood samples of patients undergoing proton therapy were
collected at three different time points, i.e. the first sample before
proton therapy, the second sample in the middle of the therapy
and the final sample within the last week of the proton therapy.
Control blood samples were obtained from the donors who
experienced no relevant previous medical history of tumors or
chronic disorders. 10 ml of blood from both adult healthy donors
and the tumor patients as well as 3–10ml of blood from pediatric
patients were collected in EDTA coated tubes. The detailed study
protocol was approved by the Ethics Committee of Switzerland
with the approval number EKNZ 2021-00481 and the Center of
Proton Therapy of the Paul Scherrer Institute. The protocol is in
compliance with all relevant ethical regulations including those
defined in the Declaration of Helsinki. As described in the detailed
study protocol, which is available from the aforementioned
approval number, all samples from healthy donors and patients
were collected with informed written consent.
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Peripheral Blood Mononuclear Cell (PBMC) isolation
PBMCs were isolated by following the established protocol for
density gradient centrifugation. In brief, phosphate-buffered saline
(PBS)+ 2% fetal bovine serum (FBS) was used to dilute the blood
samples at 1:1 ratio, and then the mixture was added to the
Lymphoprep density gradient medium (STEMCELL Technologies,
catalog no. 07811) in a SepMate tube from STEMCELL Technol-
ogies (SepMateTM-50). The tubes were centrifuged at 1200 g for
20min at room temperature to segregate the PBMCs, which were
then enriched in the top layer. The PBMCs were decanted into
new tubes, washed two times with cold PBS+ 2% FBS. 3 × 106

cells were fixed with ice cold 4% Paraformaldehyde (PFA) for
15min and used for immunostaining and microscopy. Finally,
remaining PBMCs were stored at liquid nitrogen (-135 °C) for
future use.

Immunostaining and microscopy
To prepare PBMCs for fluorescence microscopy, glass coverslips are
coated with charged poly-L-lysine for 3 to 4 hr at room temperature
to induce cellular attachment. After PFA fixation, 1 ×106 cells were
plated onto the coated coverslips for 3 hr and washed with PBS for 3
times. Cells were permeabilized with 0.1% (w/v) Triton- X100 for
10min and washed once again with PBS for 5min. Further, cells
were blocked with 1% BSA for 30min and washed one more time
with PBS. Next, antibodies were used for immunostaining of PBMCs:
monoclonal rabbit anti-γ-H2AX from Cell Signaling Technologies
(catalog no. 2577 S), monoclonal mouse anti-Lamin A/C from
Abcam (catalog no. ab8980), monoclonal rat anti-CD3 from Abcam
(catalog no. ab11089), recombinant Alexa Fluor 647 anti-CD8 alpha
antibody from Abcam (catalog no. ab196193), monoclonal mouse
anti-CD4 from R & D systems (catalog no. MAB379), recombinant
rabbit anti-CD16 from Abcam (catalog no. ab246222). The following
secondary antibodies were used: Alexa Fluor 488 anti-mouse Ab
(catalog no. A32723), Alexa Fluor 555 anti-rabbit Ab (catalog no.
A32794) and Alexa Fluor 647 anti-rat (catalog no. 32728). Confocal
microscopy was carried out on a Leica Stellaris (inverted DMI8)
running the LAS X software. PBMCs slides were imaged with 63X
/1.4 NA oil immersion objective.

Image processing and feature extraction
Image data preprocessing. Raw multi-channel images of PBMCs
fluorescently labeled with DAPI, the functional (γH2AX, Lamin A/C)
and cell-type markers (CD3, CD4, CD8) with a resolution of 0.09 µm
in the x-y plane and 0.5 µm in z-direction were converted into TIFF
images using ImageJ (version 1.53c)65. The DAPI images were
range-normalized to account for the observed variability of the
explored ranges of the intensity spectra of the individual images.

Nuclei segmentation. Single-nuclei masks and cellular masks of
the PBMCs were identified in a multi-step procedure. First, we
obtained nuclear masks in 2D. To this end, we computed 2D
projections of the DAPI images via max-z projection. Noise was
removed from the max-z projected images using a median filter.
To enhance the contrast of the DAPI images, the intensities were
gamma-adjusted with γ= 0.7. 2D Nuclei masks were then
obtained via automatic thresholding using Otsu’s method65 and
identifying connected components in the resulting binary images.
Segmentation artifacts were removed using a size filter that only
kept segmented objects with an area of at least 800px (6.48µm2)
and at most 5000px (40.5 µm2). Note that this step also removed
all nuclei that were touching other nuclei in 2D. Objects touching
the boundary of the images were also excluded.
Next, we used the resulting 2D segmentation masks to guide

the 3D nuclear segmentation. In particular, we expanded the
bounding boxes of the 2D nuclear masks by roughly 1 micron
(12px) and obtained 3D crops of the z-stack (3D) multi-channel

images. To this end, we cropped the z-stacks at the location of the
expanded bounding boxes in the x-y plane. The expansion of
the bounding boxes was done to account for the fact that most of
the proteins we have stained for are only expressed on the nuclear
and cellular periphery. Background signal was removed from the
resulting 3D multi-channel nuclear crops by setting the back-
ground intensities to 0. Thereby, the background was identified as
the region outside of the convex hulls of the 2D nuclear masks
after dilating the masks 12 times with a cross-shaped structuring
element of 3×3 dimensions. As before the dilation was done to
obtain an approximate mask that contains not only the nucleus
but the complete cell.
We perform a similar approach to remove additional back-

ground signals from the DAPI channel of the crop images. In
particular, we identify an approximate single-nuclei mask in 2D for
the resulting crop images. To this end, we again apply a median
filter to a 2D max-z projection of the DAPI image of the 3D crops.
We then obtain a 2D nuclear mask via thresholding the image
using Otsu’s method66. Any holes in the obtained binary masks are
filled. We then set all regions outside of the 2D nuclear masks to 0
of the 3D DAPI crop images. Nuclear masks in 3D are obtained
using the Chan-Vese algorithm67 applied to the 3D DAPI crop
images. The algorithm is run for a maximum of 300 epochs with
the hyper parameters (λ1, λ2)= (1, 2). Finally, 3D segmentation
artifacts were removed by filtering out objects with a size of <400
voxels (1.62µm3). Finally, we removed cut off or overlapping nuclei
in 3D by only keeping nuclei with a height of 2.5-10 µm which was
measured along the z-axis. Supplementary Figure 1b provides a
visual representation of the 3D nuclear segmentation quality.

Cell segmentation. Approximate cellular masks are obtained in
2D and 3D by expanding the boundaries of the respective nuclear
masks by 12 pixels in x-y and 2 pixels in z-direction which
corresponds to approximately one micron in each direction. This
follows an approach recently proposed in ref. 40 and exploits the
approximate ball-like shapes of the PBMCs.

Cell feature extraction. Using the 2D and 3D nuclear masks we
obtain a number of features from the DAPI images that describe
the nuclear morphology and chromatin organization of the cells
using an adaptation of the chrometric python package40. Those
features include i.e. the volume of the nucleus, its concavity or
various texture features. Additionally, the expression of the
functional and cell-type marker proteins were quantified by
descriptive statistics of the intensity distribution of the corre-
sponding images immunofluorescently stained for these markers.
A complete list of all features is available in our publicly available
Github repository (see Data and Code availability section) Note
that the features are sensitive to PBMC storage, sample prepara-
tion conditions and different microscopy imaging settings and
therefore appropriate experimental conditions have to be used for
reproducible feature extraction.

Detection of γH2AX foci. γH2AX foci were identified for each cell
from the microscopy images using the 3D nuclear masks. In
particular, the single-cell images and the corresponding nuclear
masks were projected to 2D using max-z projection. Next, images
were range- normalized. We obtained a binary mask for the γH2AX
foci by identifying the regions of the image with an intensity at
least 2.5 standard deviations above the average intensity. False
positive foci were removed by imposing a size filter of 4 pixels, i.e.
0.032μm2. To separate overlapping foci, we used the Watershed
algorithm with the seeds set to the local intensity maxima of the
single-nuclei image. Finally, segmentation artifacts were removed
by once again removing objects <4 pixels. Supplementary Figure
1C provides a visual representation of the quality of the described
pipeline to detect γH2AX foci.
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Cell type identification. Cells that stained positive for a specific
cell-type marker were identified using the corresponding single-
cell images showing the immunofluorescent labeling for a given
cell type marker. In particular, we computed the sum of the
intensity of the corresponding images within the nuclear mask as
a proxy of the expression of the corresponding cell type marker in
the given cell. Thereby, we used the max-z projected 2D instances
of the 3D nuclear images and the corresponding 2D nuclear mask.
The computed sum of the intensities were then normalized by the
projected cell area computed from the nuclear masks to account
for the heterogeneity in the sizes of the cells. Using a two-
component Gaussian Mixture model, we identified a threshold for
each patient blood sample that distinguishes cells that are positive
for a given marker from those that are negative for the marker.
Thus, the pipeline finally outputs the cell type labels of the
assessed PBMCs. Supplementary Figure 1D shows an example
image highlighting the quality of the described cell type detection
pipeline for two of the three cell-type markers.

Analyses of the chromatin states
Data set preprocessing. To analyze the chrometric states of
PBMCs in the context of the different health, disease and
treatment conditions of the donors, we used the previously
described the features extracted from the single-cell chromatin
images describing the nuclear morphology and chromatin
organization of the PBMCs, i.e. the chrometric features described
before. Many of the chrometric features are highly correlated with
other chrometric features by their definition. For instance, due to
the regular shape of PBMCs the nuclear volume and the projected
area are highly correlated. For all analyses presented in the paper,
we first removed highly correlated chrometric features, i.e.
chrometric features correlated with any other feature with an
absolute Pearson correlation coefficient of >0.8 were removed.
Additionally, the data was randomly subset such that we had an
equal number of PBMCs from the control respectively the different
treatment and treatment time point conditions. Additionally, the
PBMCs of tumor patients were randomly selected such that an
equal number of PBMCs was used from each patient. This was
done in order to ensure that individual patient effects cannot
dominate the analyses.

Data sampling. To ensure an equal representation of each tumor
patient sample in our conducted analyses, we randomly selected
equally sized random subsets of all PBMCs from all patient samples and
treatment time points. This ensured that no patient-specific chromatin
organizational characteristics dominated our analyses. In particular, we
randomly selected 216 PBMCs for each of the 10 patients of the pan-
tumor patient population and an equal number of PBMCs from the
healthy donors (n= 2160 in total) to assess the differences of the
chromatin states of PBMCs in the tumor population compared to the
healthy control setting. Similarly, we randomly selected 240 PBMCs
from each of the 30 tumor patients of the three tumor groups that
underwent proton therapy to study the differences of the chromatin
states between the tumor groups. Finally, we randomly selected 240
PBMCs from each of the 10 meningioma patients, the 10 glioma and
the 10 head and neck tumor patients at each treatment time point
(n= 21600 in total) to study the reflection of the treatment effects of
proton therapy in the chromatin organization of PBMCs. Thereby, we
ensured that within a given tumor group each patient was equally
represented at each treatment time point in our analyses. Finally, to
assess the chrometric differences between CD3+ and CD3- we
randomly sampled 240 nuclei from each of the same 30 tumor patients
at each treatment time point. Next we obtained a random subsample
of those nuclei of 7821 CD3+ and 7821 CD3- cells to assess the
chrometric differences of these populations. The sizes of all random
samples were generally chosen as large as possible while maintaining
the equal representation of each tumor patient sample.

Batch effect control. We validated that no evidence for batch
effect was found by visually assessing the clustering of PBMCs
using t-Distributed Stochastic Neighbor Embedding (tSNE) plots.
For none of the reported analyses PBMCs were seen to cluster by
patient sample (i.e. patient and treatment time point combination)
where each patient sample was processed within one batch
(Supplementary Figs. 2a, 3a and 4a-c). Thus, no evidence was
found suggesting that the potential technical variations con-
founded our analyses.

Random forest classification to assess chrometric differences. To
quantitatively assess the separability of the PBMCs with respect to
different healthy and disease conditions, or treatment time points,
we evaluated the classification accuracy of a random forest
classifier68 to distinguish between nuclei of the different condi-
tions. The samples that were input to the classification algorithm
were the individual PBMCs represented by the chrometric
features.
The performance of the random forest classifiers quantifies how

different the chromatin states of the PBMCs that were described
by the chrometric features are in the respective conditions. We
measured the performance using the balanced classification
accuracy69 evaluated in a stratified leave-one-patient-out cross-
validation approach. Briefly, all PBMCs from the considered
conditions are separated by the patient sample they come from.
The random forest classifier is then trained on the PBMC data of all
but one patient and evaluated on the PBMC data of the patient
held out during the training. We repeat this procedure such that
the PBMCs from each patient were held out exactly once during
training of the RFC and then used to evaluate the balanced
classification accuracy of the classifier. Finally, we computed the
average of the balanced classification accuracy measures obtained
from each iteration to derive an estimate of the overall separability
of the compared conditions/classes using the chrometric features
of the PBMCs.
Using this setup, during training the classifier has no access to

any PBMCs of the patient it is later evaluated on and thus cannot
use patient-specific characteristics in the chromatin states of
PBMCs for prediction. Hence, the setup enables the evaluation of
the classification approach to identify the health condition,
disease type or treatment time point of an unseen patient based
on the chrometric features of corresponding PBMCs, which mimics
a realistic diagnostic settings

Ablation study. To assess the influence of the number of patients
used to train our classifiers that distinguish (a) between PBMCs of
control and tumor patients or (b) between PBMCs of patients with
three different tumor types, we performed a systematic ablation
study. In particular, we evaluated the performance of the RFC
classifier on these two classification tasks using the described
leave-one-patient-out cross-validation approach. In each iteration
of the cross-validation approach the training set consists of PBMCs
of all but one patient whose PBMCs are held-out and used as the
test set to evaluate the performance of the classifier (see
Methods). In our ablation study, we further randomly subsampled
the training set such that only PBMCs of k ϵ {1, 2, …, 9} patients
from (a) the healthy and control respectively (b) each of the three
different tumor types were used to train the model. Once trained
on that subset of patients, we again evaluated the performance of
the classifier on the PBMCs of the one patient in the held-out test
set. Since the performance of the classifier also depended on
which patients were randomly sampled for training, we repeated
the above procedure 10 times; each time obtaining a random
subsample of training patients. For each of these 10 repetitions we
computed the average leave-one-patient-out cross-validated
accuracy measure for our classifier trained on the PBMCs of the
k sampled training patients and evaluated on the held-out test
patient.
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A similar procedure was adopted to evaluate the influence of
the number of PBMCs used to represent each patient and to train
our classifiers. The classifiers were again evaluated using the leave-
one-patient-out cross-validation procedure. At each iteration we
randomly subsampled p ϵ {10%, 20%, …, 100%} of the PBMCs
used to represent each patient in the training set and then
evaluated the performance of the trained classifier on the PBMCs
of the held-out test patient. The procedure was repeated 10 times
to obtain 10 measurements of the average.

Random baseline via label permutation. To establish a baseline
equivalent to random chance, the condition labels (e.g. the tumor
group or the time point labels) of PBMCs were randomly
permuted in the data set. The permutation of the labels destroys
any correlation between the chrometric feature and the condition
label. The performance of the classifier trained to predict the
condition label of the permuted data set thus provided a robust
baseline equivalent to random chance.

Biomarker identification. Chromatin biomarkers for various con-
ditions are identified using two methods. First, we identified
chrometric features that best distinguished between the different
conditions, e.g. PBMCs from healthy donors and tumor patients,
by assessing their Gini importance68. The Gini importance was
output by the RFC trained to distinguish the different conditions.
Second, we run a large-scale statistical screen by testing for
differences of the means of the chrometric features in the
different conditions using Welch’s test. As expected both
strategies highlighted the same chrometric features.

Statistical testing
All statistical tests are explicitly mentioned, whenever p-values are
reported, i.e. either in the main text as part of the figure legends.
All reported p-values were adjusted for multiple testing using the
Benjamini-Hochberg method and adjusted p-values < 0.05 were
assessed as statistically significant.
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