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A breast cancer classification and immune landscape analysis
based on cancer stem-cell-related risk panel
Haihong Hu1,2,3,10, Mingxiang Zou 4,10, Hongjuan Hu5,6, Zecheng Hu7, Lingxiang Jiang8, David Escobar9, Hongxia Zhu1,2,
Wendi Zhan1,2, Ting Yan7 and Taolan Zhang 1,2,3✉

This study sought to identify molecular subtypes of breast cancer (BC) and develop a breast cancer stem cells (BCSCs)-related gene
risk score for predicting prognosis and assessing the potential for immunotherapy. Unsupervised clustering based on prognostic
BCSC genes was used to determine BC molecular subtypes. Core genes of BC subtypes identified by non-negative matrix
factorization algorithm (NMF) were screened using weighted gene co-expression network analysis (WGCNA). A risk model based on
prognostic BCSC genes was constructed using machine learning as well as LASSO regression and multivariate Cox regression. The
tumor microenvironment and immune infiltration were analyzed using ESTIMATE and CIBERSORT, respectively. A
CD79A+CD24-PANCK+-BCSC subpopulation was identified and its spatial relationship with microenvironmental immune response
state was evaluated by multiplexed quantitative immunofluorescence (QIF) and TissueFAXS Cytometry. We identified two distinct
molecular subtypes, with Cluster 1 displaying better prognosis and enhanced immune response. The constructed risk model
involving ten BCSC genes could effectively stratify patients into subgroups with different survival, immune cell abundance, and
response to immunotherapy. In subsequent QIF validation involving 267 patients, we demonstrated the existence of
CD79A+CD24-PANCK+-BCSC in BC tissues and revealed that this BCSC subtype located close to exhausted CD8+FOXP3+ T cells.
Furthermore, both the densities of CD79A+CD24-PANCK+-BCSCs and CD8+FOXP3+T cells were positively correlated with poor
survival. These findings highlight the importance of BCSCs in prognosis and reshaping the immune microenvironment, which may
provide an option to improve outcomes for patients.
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INTRODUCTION
Breast cancer (BC) has become the most common cancer in
women with a highly heterogeneous malignancy occurring in
breast tissue. According to statistics released by the International
Agency for Research on Cancer (IARC) of the World Health
Organization (WHO), there were approximately 2.3 million new
cases of breast cancer worldwide in 2020 and the mortality rate
was highly reached to 15.5% in women1. The heterogeneity
nature of BC poses challenges for precise treatment, including
surgery, chemotherapy, radiotherapy, and emerging immunother-
apy, leading to clinical issues such as recurrence, metastasis, and
drug resistance2,3. Current clinical, pathological, and hormonal
staging systems fall short of providing a comprehensive under-
standing of BC heterogeneity. Therefore, exploration and identi-
fication of molecular classifications are crucial to address this
complexity.
Mounting evidence suggests that breast cancer stem cells

(BCSCs), possessing potent tumorigenic properties, self-renewal
capabilities, and multi-differentiation potential, may underlie the
origin of diverse tumor subsets within BC4–6. In addition, BCSCs
contribute significantly to metastasis, recurrence, and resistance to
conventional therapies, including surgery, radiotherapy,

chemotherapy, and targeted therapy7,8. Previous studies have
revealed that BCSCs could interact with tumor-infiltrating immune
cells such as CD8 T cells, influencing the tumor microenvironment
and immunotherapy outcomes9. Accordingly, analysis of the
characteristics related to cancer stem cells holds promise for
precise breast cancer typing and provides insights into the
immune landscape, potentially enhancing the diagnosis and
treatment of BC patients.
In this study, we employed unsupervised clustering analysis based

on the expression of cancer stem cell-related genes to identify two
distinct molecular subtypes of BC. Subsequent investigations
revealed that Cluster 1 exhibited better survival outcomes, likely
attributable to its enhanced immune response. Weighted gene co-
expression network analysis (WGCNA) and differential analysis were
employed to identify core genes within Cluster 1 and explore the
associated biological processes, indicating significant enrichment in
T-cell and B-cell activation signaling pathways. Using machine
learning, we constructed breast cancer stem-cell-related risk scores
(BCSCRS) based on the prognosis-related stem cell genes. We then
analyzed the molecular characterization and immune landscape of
BCSCRS, validating their accuracy and applicability for predicting BC
prognosis. Furthermore, our study revealed a stem cell population
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named CD79A+CD24-PANCK+-BCSCs subpopulation with poor
prognosis. The strong interaction between CD79A+CD24-PANCK+-
BCSCs subpopulation and exhausted CD8+ T cells with FOXP3+,
suggesting that CD79A+CD24-PANCK+-BCSCs subpopulation may
play an important role in the immunosuppressive microenvironment
by exhausting CD8+T cells.
In conclusion, we revealed breast cancer subtypes based on

BCSCs-related genes and developed the BCSCs-related risk panel
for predicting prognosis and analyzing immune landscape.
Furthermore, the complex interplay identified between the
CD79A+CD24-PANCK+-BCSCs subpopulation and exhausted
CD8+ T cells not only offered an avenue for improving prognosis
in breast cancer but also emphasized the importance of breast
cancer stem cells in the immunosuppressive microenvironment.

RESULTS
Identification of two breast cancer stem-cell-related subtypes
and their immune characteristics
The flow chart depicting the methodology for this study is
presented in Fig. 1. To perform patient clustering in breast cancer,
we employed the NMF algorithm, an unsupervised machine
learning method. Through this analysis of BCSC-related gene
expression in the TCGA cohort, we identified two distinct
subtypes. Cluster 1 comprised 476 cases, while Cluster 2 included
599 cases (Fig. 2a). The robustness of clustering results was
performed principal component analysis (PCA), which further
confirmed the separation of the two clusters, even in the presence
of some overlapping data points (Fig. 2b). Subsequent survival
analysis showed that patients in Cluster 1 exhibited a higher
overall survival (OS) rate compared to those in Cluster 2 (Fig. 2c).
Additionally, Cluster 1 had higher TMB values and higher mutation
frequency (Supplementary Fig. 1). Interestingly, the proportion of
higher TMB was notably more in Cluster 1 than in Cluster 2 (Fig. 2d),
suggesting a potential association between BCSCs-related sub-
types and TMB. This observation could have significant implica-
tions for the efficacy of immunotherapy, as higher TMB is known
to correlate with a heightened response to immunotherapy10. To
gain insights into the biological differences between two
subtypes, gene set variation analysis (GSVA) was conducted,
revealing significantly distinct functional regulation modes
(Fig. 2e). Notably, Cluster 1 exhibited significant enrichment in
immune-related signaling pathways, including the T-cell receptor
signaling pathway, B-cell receptor signaling pathway, and primary
immunodeficiency. Furthermore, we also assessed the differences
in the TME between the two subtypes by calculating TME scores
including ESTIMATE score, Immune score, Stromal score, and
tumor purity, using the expression matrix from TCGA. The scores
of samples in Cluster 1 were significantly higher than Cluster 2,
except for tumor purity (Supplementary Fig. 2). Infiltration analysis
using the MCPcounter package showed that Cluster 1 was
associated with abundant infiltration of B lineage, CD8 T-cell,
cytotoxic lymphocytes, myeloid dendritic cells, NK (natural killer)
cells, and T cells (Fig. 2f), indicating a closer association with
immune activity. Taken together, these findings suggest the
existence of distinct subtypes of breast cancer characterized by
variations in immune-related signaling pathways, TME, and
survival outcomes.

Recognition of core modules and genes in BCSC-related
Cluster 1 and Cluster 2
To identify critical gene modules within the BCSC-related clusters,
we performed WGCNA on the expression matrix from the TCGA
cohort, resulting in six co-expression modules (Fig. 3a). Among
these modules, the ME turquoise module exhibited the strongest
correlation with Cluster 1, as evident from the heat map depicting
the module-trait relationship, while Cluster 2 showed a weaker

correlation (Fig. 3b). Furthermore, the ME turquoise module
demonstrated the highest values for the important index and
correlation coefficient. From this module, we identified 62 hub
genes for further investigation. To gain deeper insights, we
performed differential analysis using the limma package to
identify genes highly expressed in Cluster 1. As a result, we
obtained 63 differential genes, with only four genes highly
expressed in Cluster 2, while 59 genes were upregulated in Cluster
1 (Fig. 3c). Using these core and differential genes, we performed
biological function verification and identified 24 survival-related
genes for GO and KEGG enrichment analysis (Fig. 3d). The GO
analysis demonstrated significant enrichment of the identified
gene sets in the activation and differentiation of T cells (Fig. 3e).
Furthermore, the KEGG results indicated their involvement in
processes related to primary immunodeficiency, Th1 and Th2 cell
differentiation, and T-cell receptor signaling pathways (Fig. 3f).
These findings strongly suggest a pronounced correlation
between BCSCs-related genes and immune activity, particularly
in biological processes related to T cells.

Development and validation of breast cancer stem-cell-related
risk panel for predicting prognosis
In previous investigation, we successfully identified two subtypes
of breast cancer that were associated with breast cancer stem cells
and thoroughly explored the biological functions of their core
genes. Our subsequent objective was to develop a BCSCs-related
model for predicting the prognosis of breast cancer patients. To
achieve this, a cohort of 1069 breast cancer patients, with
information on survival state and overall survival time, was
obtained from the TCGA database, and was randomly split into a
training cohort and an internal validation cohort at a ratio of 7:3.
From the training cohort of 749 patients, we identified 45 BCSCs-
related genes that were associated with survival. Next, we
performed LASSO regression analysis, which led to the selection
of 17 BCSC-related genes for further multivariate Cox regression
(Fig. 4a, b). With these findings, we then constructed a prognosis
model based on multivariate Cox regression analysis, which
revealed ten genes forming the BCSC-related risk pane (Fig. 4c).
The BCSCRS was calculated using the following formula, as
depicted in Fig. 4d and Table 1: BCSCRS=
(−0.53045 × BRD4)+ (− 0.26259 × RPS24)+ (− 0.31334×SERPIN-
A3)+ (0.434039 × SKP1)+ (− 0.53742×NTRK3)+ (− 0.23344 × C-
D79A)+ (− 0.40628 × JAK1)+ (0.192005×NT5E)+ (0.152866 × N-
DRG1)+ (0.194872 × CD24). All patients were divided into high-
and low-risk groups based on the median BCSCRS. Notably, in the
training cohort (N= 749), the low-risk group (N= 374) exhibited
significantly better overall survival compared to the high-risk
group (N= 375). To assess the predictive performance of BCSCRS,
time-dependent ROC curve analysis was conducted, yielding
encouraging results with AUCs of 0.733 (1-year), 0.742 (3-year),
and 0.741 (5-year) (Fig. 4e). These favorable outcomes were
consistently observed in the TCGA test cohort, with AUCs of 0.808,
0.689, and 0.646 at 1-year, 3-year, and 5-year (Fig. 4f). Furthermore,
these results were confirmed in the entire TCGA cohort and the
GSE20685 cohort, demonstrating the high accuracy of BCSCRS in
predicting survival (Fig. 4g, h).

BCSCRS can serve as an independent prognostic factor
To investigate the potential independence of the BCSCRS as a
prognostic factor, we performed both univariate and multivariate
Cox regression analysis (Table 2). The results significantly indicated
correlation between the risk score, age, stage, and TNM stage with
the prognosis of breast cancer patients (Fig. 5a, p < 0.001).
Furthermore, the multivariate Cox regression analysis showed
that both the risk score and age could serve as independent
prognostic factors for breast cancer patients (Fig. 5b, p < 0.001). To
explore the potential associations between BCSCRS and various
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Fig. 1 The flow chart for this article. a Identification of different molecular subtypes of breast cancer. b Identification of core genes of
different subtypes and exploration of their biological functions. c Construction and validation of prognostic model. d Evaluation of the
immunotherapy response and sensitivity of chemotherapy drugs. e Spatial proximity analysis of CD79A+CD24-PANCK+-BCSCs subpopulation
in the tumor microenvironment.
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Fig. 2 Breast cancer stem-cell-related subtypes and their characteristics. a Unsupervised clustering algorithm identified two distinct
subtypes in the TCGA breast cancer cohort. b Principal component analysis of breast cancer stem-cell-related subtypes in the TCGA cohort
(“Dim1” signifies the primary component that maximizes the variance and captures the most substantial differences between the samples.
“Dim2” corresponds to the second most prominent component). c Kaplan–Meier curves of various breast cancer stem-cell-related subtypes in
the TCGA cohort. d Alluvial diagram shows changes in breast cancer stem-cell-related subtypes, TMB (tumor mutation burden), and OS
(overall survival). e GSVA analyzed the biological pathways of two breast cancer stem-cell-related subtypes. Red denotes the biological
processes that are activated, while blue denotes the biological processes that are inhibited. f Immune infiltration analysis between two breast
cancer stem-cell-related subtypes.
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Fig. 3 Identification and functional verification of critical gene modules. a WGCNA analysis based on breast cancer stem cells-related gene
expression data identified gene modules with high covariance. b Heat map of module-trait relationships. c Differential expression analysis of
genes in Cluster 1 (C1) and Cluster 2 (C2). d Venn diagram shows the intersection of the differential gene of Cluster 1 (C1) and Cluster 2 (C2),
the hub genes in the core module and prognosis genes. e GO (Gene Ontology) enrichment analysis of intersection genes. f KEGG (Kyoto
Encyclopedia of Genes and Genomes) enrichment analysis of intersection genes.
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Fig. 4 Development and validation of a BCSC-related prognostic signature. a, b Least absolute shrinkage and selection operator (LASSO)
further screen for genes associated with prognosis. c The forest plot displays the results of survival analysis for different genes. Each horizontal
line represents a gene, with the line’s length indicating its Hazard Ratio (HR), and the arrows representing the 95% confidence interval for the
HR. HR values greater than 1 indicate an increased risk, while HR values less than 1 indicate a decreased risk. d Coefficient of the prognostic
model was used to calculate the risk score. Survival scatter plot, Kaplan–Meier analyses, time-dependent ROC (receiver operating characteristic)
curve analyses at 1, 3, and 5 years in the TCGA training cohort (e), TCGA test cohort (f), TCGA all cohort (g), GSE20685 test cohort (h).
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clinical variables, we conducted Wilcoxon and Kruskal–Wallis tests.
Our analysis revealed that BCSCRS increased with tumor stage in
the TCGA cohort, displaying significant differences between
stages (Supplementary Fig. 3a). Notably, the risk score of T and
N stages showed an upward trend, with significant distinctions
between each group, while the opposite was found for N3 stages.
Furthermore, BCSCRS was substantially higher in patients with
advanced M stage and those over 65 years old. However, there
was no statistically significant difference in risk score between
various genders, likely due to the considerable difference in the
number of cases. Similar results were obtained in the in the
GSE20685 cohort, where the risk score was significantly higher in
the advanced TNM stage (Supplementary Fig. 3b). These findings
highlight the substantial variation of BCSCRS among different
clinical variable groups, with higher risk scores indicating poorer
pathological status in breast cancer patients. To incorporate the
clinical factors related to survival, we constructed a nomogram as
a quantitative method to predict the survival rate of breast cancer
patients (Fig. 5c). The overall score of each patient was calculated
by combining the BCSCRS and clinical variables, including gender,
TNM stage, and age. Patients with lower total points were
associated with a higher probability of survival. The accuracy of
the nomogram was assessed by calibration curves (Fig. 5d) and
the area under the ROC curve. The nomogram demonstrated
improved predictive accuracy compared to other clinical features
and the original risk score. The 1-year, 3-year, and 5-year AUCs of
the nomogram in the TCGA cohort were 0.805, 0.746, and 0.758,
respectively (Fig. 5e–g). Moreover, the results of DCA confirmed
the better prediction accuracy of the nomogram compared to
other prediction indexes (Fig. 5h–j).

Benefits of BCSCRS in comparison with other breast cancer
prognostic signatures
While we have demonstrated the accuracy of BCSCRS from various
perspectives, the most important aspect of clinical prognostic
models is their usefulness in clinical practice. To highlight the
advantages of the BCSCRS developed in this study, we compared
it with other breast cancer signatures. To minimize data
dimensionality and avoid data conflicts in the same direction,
we selected three distinct research directions from recently
published articles and analyzed and compared their signatures
in the entire TCGA cohort. In order to avoid genes involved in the
same biological process that might be linked or even screened for
duplicate genes, we deliberately chose three models in different
directions. The three signatures we selected were associated with
breast cancer prognosis; these were a macrophage marker gene
signature (Li et al.)11, a lactate metabolism-related gene signature
(Zhang et al.)12, and a ferroptosis-related gene signature (Wang
et al.)13. The risk score for each breast cancer patient was
calculated as per the original method, and all patients in TCGA
were divided into high- and low-risk groups according to the
median for further survival analysis. The survival curves showed
that the low-risk group had better survival (Fig. 6a–d). Except for
the Zhang et al. signature (AUC= 0.502, 0.522, 0.568), the other
signatures exhibited good potential in predicting breast cancer
survival in 1-, 3-, and 5-year intervals based on the area under the
receiver operating characteristics curve (Fig. 6e–h). The BCSCRS
(AUC= 0.694) and nomograms (AUC= 0.758) developed in this
study showed higher accuracy than other signatures (Fig. 6i). The
nomograms optimized by clinical variables were not included in
the signature comparison but were only used for auxiliary
validation. The results of C-index, RMS, and DCA analysis further
confirmed the superior accuracy of BCSCRS in predicting the
survival of breast cancer (Fig. 6j–l). Collectively, the comparison
results highlight the outstanding predictive capabilities of BCSCRS
in relation to breast cancer survival, underscoring its potential as a
valuable tool in clinical practice. The higher accuracy and
robustness of BCSCRS, as supported by multiple evaluation
metrics, signify its significant contribution to breast cancer
prognosis prediction.

Analysis of immune landscape in breast cancer based
on BCSCRS
Given that a significant correlation between the BCSC core genes
and immune activity was observed in our analysis, to further
explore this association, we conducted GSVA and GSEA analyses
and found marked differences in biological processes between
high- and low-risk groups. In the high-risk group, signaling
pathways were significantly enriched, including steroid biosynth-
esis, fructose and mannose metabolism, protein export, protea-
some, and citrate cycle TCA cycle. In contrast, the low-risk group
was characterized by primary immunodeficiency and T-cell
receptor signaling pathway (Fig. 7a), suggesting a stronger
connection between the low-risk group and immunity. To further
examine this relationship, we investigated the characteristics
including TME and immune infiltration related to the immune
landscape (Fig. 7b). Results revealed that the ESTIMATE score,
immune score, and stromal score of the low-risk group were
significantly higher than those of the high-risk group, while tumor
purity results were reversed (Fig. 7c). These findings suggest that
stromal and immune cell content was higher than that of tumor
cells in the TME. Our ssGSEA analysis on immune infiltration
showed that the expression levels of cells in the TME in the low-
risk group were higher, except for macrophages (Fig. 7b). Using
the CIBERSORT algorithm, we analyzed the differences in 22 types
of immune cells in the high- and low-risk groups and observed
that naive B cells, plasma cells, CD4 memory-activated T cells, CD8
T cells, and gamma delta T cells were more infiltrated in the low-

Table 1. Coefficients of the 10 prognostic molecules in the Cox
regression model.

id coefficient HR HR.95 L HR.95H p-value

BRD4 −0.53045 0.588341 0.346529 0.998894 0.049523

RPS24 −0.26259 0.769056 0.564995 1.046818 0.095092

SERPINA3 −0.31334 0.731003 0.577071 0.925996 0.009397

SKP1 0.434039 1.543479 1.041318 2.287802 0.030649

NTRK3 −0.53742 0.584253 0.395529 0.863025 0.006932

CD79A −0.23344 0.791808 0.687276 0.912239 0.001231

JAK1 −0.40628 0.666123 0.469321 0.94545 0.022971

NT5E 0.192005 1.211677 0.935775 1.568924 0.14527

NDRG1 0.152866 1.165169 0.986407 1.376328 0.072034

CD24 0.194872 1.215156 1.070033 1.379961 0.002672

Table 2. Univariate Cox regression and multivariate Cox regression of
risk score and Clinical features.

Univariate Cox
regression

Multivariate Cox regression

HR p-value HR p-value

Age* 1.034190404 2.88E-06 1.02914032 0.000121193

M 5.986194821 4.38E-09 1.677082391 0.213669472

N 1.652706164 5.63E-08 1.228363384 0.175110837

T 1.569486311 3.34E-05 1.006175755 0.967753232

Stage 2.082913144 7.17E-10 1.498060951 0.120448476

Risk score* 1.474573151 3.69E-17 1.403825677 5.01E-12

*Independent prognostic factors.
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Fig. 5 Development and validation of a prognostic nomogram. a Forest plot of univariate Cox regression analysis. b Forest plot of
multivariate Cox regression analysis. c Nomogram predicting the probability of 1-, 3-, and 5-year survival for breast cancer patients based on
risk score and clinical factors. d Calibration curves for the nomogram. e–g Receiver operating characteristic curves at 1, 3, and 5 years of the
nomogram, BCSCRS, and clinical factors. h–j Decision curve analysis (DCA) of nomogram, BCSCRS, and clinical factors at 1, 3, and 5 years.
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Fig. 6 Comparison of the prognostic value of various gene signatures in breast cancer. a–d Kaplan–Meier survival curves of high- and low-
risk patients stratified by BCSCRS, Li et al. signature, Wang et al. signature, and Zhang et al. signature, respectively. e–h Area under the ROC
curve (AUC) of various signatures in predicting 1-, 3-, and 5-year overall survival in breast cancer. i Comparison of the AUC of various
signatures in predicting overall survival in breast cancer. j–l C-index (concordance index), RMS, and DCA (Decision Curve Analysis) analysis of
various signatures in breast cancer.
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risk group, whereas higher infiltration of immunosuppressive
immune cells such as M0 and M2 macrophages was found in the
high-risk group (Fig. 7d). Furthermore, the infiltration levels of
naive B cells, plasma cells, CD4 memory-activated T cells, CD8
T cells, and gamma delta T cells were negatively correlated with
risk score (Fig. 7e). These results suggest a close relationship
between BCSCRS and immune cells, with lower risk scores
indicating higher expression of stromal cells and immune cells
in the TME.

Evaluation of the immunotherapy response based on BCSCRS
To further examine the association between BCSCRS and
immunotherapy response, we assessed several indicators. First,
we analyzed the expression of immune checkpoint molecules and
found that the low-risk group had significantly higher expression
of 27 immune checkpoints, suggesting that these patients might
be more responsive to immune checkpoint inhibitors (Fig. 8a). We
also used IPS scores of PD1 and CTLA4 as quantitative indicators
to further assess the effectiveness of immune checkpoint

Fig. 7 Immune landscape analysis of tumor microenvironment and immune infiltration. a GSEA enrichment analysis in high- and low-risk
groups. b Heat map showing the overall immune landscape in the risk group. c Differential analysis of tumor microenvironment between two
risk groups. d Differential analysis of immune infiltration cells between two risk groups. e Correlation analysis between BCSCRS and immune
infiltration cells.
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Fig. 8 Therapeutic response analysis of immune checkpoint inhibitors. a Expression of 27 immune checkpoint molecules. b Analysis of IPS
(Immunophenotype Score) between two risk groups. c The box plot shows the distribution of IC50 values at two risk groups for six common
chemotherapy drugs for breast cancer. A lower IC50 value indicates greater drug sensitivity. The upper and lower bounds of the box signify
the third and first quartiles, respectively, while the center line within the box represents the median. The whiskers represent the data points,
which range within 1.5 times the interquartile distance.
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inhibitors. Our results showed that the IPS-CTLA4, IPS-PD1, and
IPS-PD1-CTLA4 scores were significantly higher in the low-risk
group, indicating that these patients might have better effective-
ness when treated with PD1 and CTLA4 inhibitors (Fig. 8b). We
also analyzed the association between BCSCRS and the IC50 value
of chemotherapy drugs commonly used in breast cancer
treatment. Our results showed that the low-risk group was more
sensitive to chemotherapy drugs such as Cisplatin, Doxorubicin,
Gemcitabine, Methotrexate, Paclitaxel, and Vinorelbine, which
suggests that these patients may experience better efficacy and
be less likely to develop drug resistance (Fig. 8c). It is worth noting
that BCSCs have been shown to be involved in the drug resistance
process of breast cancer14. Therefore, our findings imply that the
low-risk group may have better responses to both immunother-
apy and chemotherapy, which could have noteworthy clinical
implications.

The spatial domestication of CD79A+CD24-PANCK+-BCSCs
subpopulation cells and exhausted CD8+T cells in the tumor
microenvironment
Among the ten genes used to construct a risk score model,
Pearson correlation analysis revealed that CD24 and CD79A is the
most positively and negatively correlated with BCSCRS (Supple-
mentary Fig. 4a). The results of Protein-protein interaction (PPI)
analysis showed that CD79A and CD24 has a potential interaction
(Supplementary Fig. 4b). Previous studies revealed that CD79A+

plays an important role in maintaining cells pluripotency and
promoting malignant cells infiltration with poor clinical prognos-
tic15,16. Additionally, CD79A gene was searched out in the
Genecards database as keywords “breast cancer stem cells” and
our subsequent data analysis also revealed that it is indeed an
important gene involved in breast cancer cell stemness. Addition-
ally, CD24- is a well-known BCSCs marker17. Based on above
evidences, we had a strong desire to investigate the effects of the
BCSC population with CD79A+ and CD24- on tumor immune
microenvironment. All we know that CD8+T cells are an important
component of tumor immune microenvironment, and its
exhausted or not play pivotal roles in tumor immunotherapy
response18,19. Studies revealed that CD8+T-cell exhausting is a
dynamic process and only completely exhausted CD8+T cells
totally lose its function of killing tumor cells20,21. The most recent
studies showed that FOXP3+ is a marker of CD8+ T-cell
completely exhausted and it is entirely induced by the tumor
immune microenvironment which can strongly indicate that the
immunosuppressive domestication of CD8+T cells by a certain
tumor cell subpopulation22. Therefore, we would like to explore the
spatial relationship between CD79A+CD24-PANCK+-BCSCs subpo-
pulation and CD8+ T cells with FOXP3+ or not to reveal the
influence of CD79A+CD24-PANCK+-BCSCs subpopulation on
CD8+T cells and tumor microenvironment. After eliminating the
poorly stained samples, we used multiplex immunofluorescence
staining and TissueFAXS Cytometry Panoramic Tissue Quantifica-
tion assays for follow-up analysis (Fig. 9a, b). Finally, we found that
CD79A+CD24-PANCK+-BCSCs subpopulation was present in 59 of
the samples (Table 3) detected with CD24-PANCK+ (Supplementary
Fig. 4c), which accounted for 1.09% of all breast cancer cells and
setting them as the center, within 100 μm (Define strong
interactions between cells), completely exhausted CD8+FOXP3+

T cells accounted for the majority of the total CD8+ T cells (Fig. 9c),
the proportions are respectively 65.7% (0–25 μm), 67.2%
(25–50 μm) and 65.6% (50–100 μm), strongly suggesting the
immunosuppressive domestication effect of CD79A+CD24-PANCK+

on CD8+ T cells (Fig. 9d). We also evaluated the effects of
CD79A+CD24-PANCK+-BCSCs subpopulation and CD8+FOXP3+

T cells on breast cancer patients survive status, finding that both
CD79A+CD24-PANCK+-BCSCs cells-High and CD8+FOXP3+ cells-
High (within 50 μm to CD79A+CD24-PANCK+-BCSCs

subpopulation) had poorer survival probability (Fig. 9e, f), further
indicating that these two groups of cells contribute to poor
prognosis may due to the tumor immunosuppressive microenvir-
onment they shaped.

DISCUSSION
Breast cancer is a highly heterogeneous malignancy occurring
in breast tissue23. Although surgery, chemotherapy, radio-
therapy, and emerging immunotherapy approaches have
significantly improved prognosis, the heterogeneity of breast
cancer resulting in breast cancer recurrence, metastasis, drug
resistance, and immune escape still significantly reduces the
survival rate of breast cancer patients24,25. Thus, fully under-
standing the heterogeneity of breast cancer and using its
characteristics in clinical diagnosis and treatment will help
further improve the clinical benefits of breast cancer patients.
Recent studies have revealed that breast cancer stem cells are
the origin of heterogeneity26,27. However, few studies have
been performed to explore the potential impact of tumor stem-
cell-related characteristics on breast cancer typing and immune
landscape2. In this study, we demonstrate that cancer stem-cell-
related genes can be used for classifying breast cancer and
develop and identify a breast cancer stem-cells-related risk
panel that sheds light on the immune landscape of breast
cancer for personalized immunotherapy. In addition, the
accuracy and robustness of BCSCRS constructed in this study
were superior to the other three breast cancer prognosis
models used for comparison, which has important reference
value for its clinical application.
In present research, breast cancer patients can be divided into

two subtypes. The results show that Cluster 1 is significantly
enriched in the signaling pathways associated with immune
activity, such as the T-cell receptor signaling pathway and the
B-cell receptor signaling pathway, suggesting that Cluster 1 may
have higher immune activity. The strength of the T-cell receptor
(TCR) signal is a key determinant of T-cell response, and the
affinity of the interaction between the T-cell receptor and the
peptide-bound MHC directly determines the frequency and rate of
activation of naive T cells28,29. Additionally, the immune infiltration
of B lineage, CD8 T-cell, Cytotoxic lymphocytes, Myeloid dendritic
cells, NK cells, and T cells are more abundant in Cluster 1.
Interestingly, the above immune cells with anti-tumor effects also
had a greater abundance of infiltration in the low-risk group. It has
been reported that B cells not only play an important role in CRT-T
immunotherapy, but also serve as antigen-presenting cells to
initiate CD4+ and CD8+ T cells30. The activity of tumor-infiltrating
CD8+ T cells and natural killer (NK) cells, which are important
effector cells against tumor cells, is significantly inhibited by
immunosuppressive cytokines and tumor-associated macro-
phages (TAMs) in the tumor microenvironment31,32. Currently,
some dendritic cell-based vaccines can effectively improve the
survival rate of patients by specifically increasing the secretion of
cytokines in CD8+ effector T cells and NK cells33,34. Dendritic cells
have been demonstrated to be the most important professional
antigen-presenting cells (APCs), which can specifically stimulate
the maturation of B cells and T cells to initiate an acquired
immune response35. The primary function of myeloid dendritic
cells is to process the captured antigen and then present it to the
antigen surface via a major histocompatibility complex36. In
addition to the immune cells with anti-tumor activity mentioned
above, there is also a class of immunosuppressive cells in the
tumor microenvironment that deserve attention. Specifically, M0
and M2 macrophages were found to have significantly high
expression of infiltration abundance in the high-risk group and
were significantly positively correlated with BCSCRS in this study.
As a very important immune cell in normal human body,
macrophages are believed to transmit immune signals,
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phagocytose antigens, and clear abnormal cells in the body.
Recent studies have confirmed that M2 macrophages, which exist
in large numbers in the tumor microenvironment, can evade T-
cell-mediated immune surveillance by inducing the upregulation
of PD-L1 and promote the progression of breast cancer by

promoting angiogenesis, immune escape, and immunosuppres-
sion37,38, while M0 macrophages are closely associated with distal
metastasis of tumor cells and poor prognosis39. These results
suggest that immunoactivity is higher in the low-risk group, and
therefore a better response may be achieved when receiving
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immunotherapy. The synergy between the risk score model and
the complex immune landscape provides clinicians with a
comprehensive framework for improved decision-making and
improved prognostic accuracy, and this study has important
clinical implications for the development of personalized immu-
notherapy strategies for breast cancer patients.
Furthermore, a breast cancer stem cell subpopulation strongly

associated with poor prognosis has been identified, which has been
defined as CD79A+CD24-PANCK+-BCSCs subpopulation. Moreover, a
stronger interaction was found between the tumor stem cell
subpopulation and exhausted CD8+ T cells with FOXP3+ using
multiple immunofluorescence techniques. CD8+FOXP3+ T cells are a
class of exhausted CD8+ T cells with Treg-like and cytolytic
properties40, in the process of exhaustion of tumor-infiltrating
CD8+T cells induced by the tumor microenvironment22. Although
the current study shows that CD8+FOXP3+ T cells are a special class
of exhausted CD8+ T cells, the specific mechanism of action of
tumor microenvironment inducing CD8+ T-cell exhaustion is not
clear. The TME is a complex dynamic ecosystem composed of
various cell types, extracellular matrix (ECM), blood vessels, and
signaling molecules that play a critical role in tumor initiation,
progression, and therapeutic response41. Although the specific
regulatory mechanism between cancer stem cells and immune cells
has not been fully clarified, current studies have confirmed that
cancer stem cells promote the recruitment of immunosuppressive

cells such as Tregs to TME by producing immunosuppressive factors
in the tumor microenvironment42. Tregs play a critical role in
maintaining immune tolerance and preventing autoimmune reac-
tions, and in TME, their presence can shape the tumor suppressor
microenvironment by inhibiting the activity of effector T cells (such
as cytotoxic T cells) and other immune cells. However, it is clear that
the CD79A+CD24-PANCK+-BCSCs subpopulation identified in this
study does not recruit exhausted CD8+ T cells with FOXP3+ in this
manner, as CD8+FOXP3+T cells are a specific class of exhausted
CD8+ T cells that are difficult to detect in both blood and normal
tissues22. This suggests that CD79A+CD24-PANCK+-BCSCs subpopu-
lation may secrete some chemokines or cytokines to induce the
exhaustion of CD8+ T cells to overexpress FOXP3. This similar
domestication relationship between breast cancer stem cells and
exhausted CD8+ T cells allows us to understand the role of breast
cancer stem cells in shaping the immunosuppressive microenviron-
ment. However, the specific mechanism remains to be further
explored.
Despite the noteworthy findings and contributions of our

study, there are several limitations that need to be acknowl-
edged. First, the data used in our study came from multiple
databases with varying sequencing methods and depths, which
may have affected the level of gene detection and introduced
bias. Second, the heterogeneity of tumors among various
patients is an inherent limitation of our study. Although we
found evidence of a relationship between breast cancer stem
cells and exhausted CD8+ T cells, further biological experiments
are needed to elucidate the specific mechanisms involved.
Finally, the selection of datasets was limited by the availability
of clinical data, which may have resulted in selection bias.
Further studies with larger and more diverse datasets, and more
rigorous experimental designs, are needed to validate our
findings and advance the understanding of the relationship
between breast cancer stem cells and the immune
microenvironment.
In conclusion, our study indicates that BCSCs-related subtypes

and BCSCRS could be useful biomarkers for exploring the
heterogeneity of breast tumors and predicting their immunother-
apy reactivity. Notably, the CD79A+CD24-PANCK+-BCSCs subpo-
pulation with poor breast cancer prognosis in this study was
strongly associated with CD8+ T-cell exhaustion and the formation
of an immunosuppressive tumor microenvironment. In the process
of immunotherapy, the tumor microenvironment can be remo-
deled by targeting elimination of CD79A+CD24-PANCK+-BCSCs
subpopulation or reversing the exhaustion of CD8+ T-cell, so as to
restore the anti-tumor effect of effector T-cell. However, further
investigations are necessary to fully understand the underlying
mechanisms.

METHODS
Public datasets for breast cancer stem cell analysis
Gene expression data, somatic mutation data, gene mapping
file, and clinical phenotypic data of breast cancer were sourced

Fig. 9 TissueFAXS Cytometry panoramic tissue quantitative analysis described the spatial distribution of CD79A+CD24-PANCK+-BCSCs
subpopulation and different subtypes of CD8+T cells in the TME. a Representative multi-label staining in samples from breast cancer
patients: DAPI (Bluish violet), CD3 (green), CD8 (blue), FOXP3 (purple), PANCK (yellow), CD24 (orange), CD79A (red). b Schematic diagram of
spatial proximity analysis of representative areas (Left: Original image of spatial proximity analysis. Right: Simulation picture of spatial
proximity analysis). c Representation of the spatial distribution of CD3+CD8+FOXP3+ and CD3+CD8+FOXP3- T cells within the distance
gradients of CD79A+CD24-PANCK+-BCSCs subpopulation (0–25 μm, 25–50 μm, 50–100 μm). d Box plot of differences between
CD3+CD8+FOXP3+T cells and CD3+CD8+FOXP3-T cells within the distance gradients of CD79A+CD24-PANCK+ cell subsets (0–25 μm,
25–50 μm, 50–100 μm) in total TMA (The horizontal coordinate represents the distance gradient, the ordinate indicates the proportion of such
cells). The upper and lower bounds of the box signify the third and first quartiles, respectively, while the center line within the box represents
the median. The whiskers represent the data points, which range within 1.5 times the interquartile distance. e Survival curve based on the
number of CD79A+CD24-PANCK+-BCSCs subpopulation (cutoff= 34.5). f Survival curve based on the number of CD3+CD8+FOXP3+ T cells
within 50 μm (cutoff= 103). *p < 0.05; **p < 0.01; ***p < 0.001.

Table 3. Detailed clinical information of the spatial proximity analysis
cohort.

Variables 59 samples in TMA

Age

≥65 years 16

<65 years 43

Survival state

alive 44

dead 15

M classification

M0 59

M1 NA

N classification

N0 28

N1 10

N2 17

N3 4

T classification

T1 11

T2 43

T3 5
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from the GDC-TCGA-BRCA project in the UCSC (University of
California Santa Cruz) Genome Browser database (https://
xenabrowser.net/datapages/) and Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/)43–45. After
excluding normal tissue samples and samples from the same
patient, complete information for 1069 patients in The Cancer
Genome Atlas (TCGA) database was obtained. Subsequently,
the TCGA patients were randomly divided into a training cohort
(N= 749) and a test cohort (N= 320) to construct the model
using the createDataPartition function in the caret package
with a 7:3 ratio, which was additionally validated with an
external cohort of 327 patients from GSE20685 to verify
accuracy and robustness of the model. Detailed description of
all cohorts can be found in Table 4. Finally, breast cancer stem-
cells-related genes (BCSCGs) were collected from the Gene-
Cards database (https://www.genecards.org/) and the results
filtered by setting a relevance score higher than 3046.

Identifying breast cancer stem cell subtypes through
unsupervised clustering analysis of BCSCs
The non-negative matrix factorization (NMF) algorithm was
used to identify BCSC-related subtypes and their prognosis47,48.
Initially, the expression data underwent dimensionality reduc-
tion through univariate Cox analysis. Subsequently, patients
were categorized into distinct clusters based on the gene
expression using the NMF package. The distribution of various
breast cancer stem-cells-related subtypes was visualized using
principal component analysis (PCA), and a Sankey diagram was
utilized to illustrate the relationship between different clusters,
tumor mutation burden (TMB), and survival status. Survival
analysis was conducted using Kaplan–Meier method and the
findings were visually represented using the Survminer R
package. The tumor microenvironment (TME) and immune
infiltration in various clusters were quantified by ESTIMATE and
MCPcounter packages49,50, respectively. The GSVA package was
used to obtain the gene sets of “c2.cp.kegg.v7.4.symbols.gmt”
from the MSigDB database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) for the normalized enrichment score
(NES) of KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways among TCGA patients51,52.

Differential expression analysis of breast cancer stem-cell-
related subtypes
To identify differential and core genes of distinct BCSCs-related
clusters, we conducted differential expression analysis and
WGCNA after unsupervised clustering of all TCGA breast cancer
samples. Differential genes among BCSCs-related subtypes were
analyzed using the limma package with a logFC filter of 1 and a p-
value cutoff of 0.0553 and visualized using pheatmap and ggplot2
packages. The WGCNA package was used to explore hub genes for
weighted gene co-expression network analysis54. Differential and
core genes were subjected to Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
using the clusterProfiler R package55,56.

Development and validation of a BCSC-related prognostic
signature
Least absolute shrinkage selection operator (LASSO) Cox regres-
sion was used to select BCSCGs for predicting the survival and
prognosis of breast cancer57, and BCSCGs associated with
prognosis with minimized lambda were selected. A prognostic
model based on these BCSCGs was constructed through multi-
variate Cox regression analysis in the TCGA training cohort
(N= 749). To validate the prognostic model, the TCGA test cohort
(N= 320) and GSE20685 cohort (N= 327) were used as internal
and external validation cohorts, respectively. The accuracy of the

prognosis model was evaluated by calculating the risk formula, as
shown below:

Risk score BCSCRSð Þ ¼
Xn

i¼1

ðExpressioni ´ coefiÞ

Then, the risk score for each sample was calculated by the
predict function in the survival package, based on the expression
of genes and their corresponding regression coefficients in the
model formula. Patients were divided into high-risk and low-risk
groups according to the median risk score. The accuracy of the
Cox regression model was assessed by generating receiver
operating characteristic (ROC) curves and calculating the area
under the curve (AUC) values, using the timeROC package58. The
pheatmap package was used to plot the risk curves for all cohorts
and survival status maps for all patients. The overall survival (OS)
status between high-risk and low-risk groups was compared using
Kaplan–Meier analysis, which was performed using the survminer
R package.

Correlation analysis between BCSCRS and clinical variables
Correlation analysis was performed between the BCSCRS and
clinical variables such as age, gender, stage, and TNM stage. Age
was dichotomized into two groups based on the standard of 65
years old, while M stage was classified as M0 and M1. Gender was
categorized as male or female. However, stage, N, and T were
divided into four groups as per the requirements. The differences
in clinical variables were analyzed using the limma package, and
the results were visualized using the ggpubr package.

Table 4. The clinical characteristics of breast cancer in TCGA cohort
and GSE20685.

Variables TCGA train cohort
(N= 749)

TCGA test cohort
(N= 320)

GSE cohort
(N= 327)

Incomplete N= 126 N= 51 0

Age

≥65 years 169 78 22

<65 years 454 191 305

Sex

Female 614 268 327

Male 9 1 0

M classification

M0 615 261 244

M1 8 8 83

N classification

N0 306 132 122

N1 211 87 102

N2 70 33 63

N3 36 17 40

T classification

T1 160 75 101

T2 373 155 188

T3 68 30 30

T4 22 9 8

Stage classification

Stage I 113 46 NA

Stage II 363 158 NA

Stage III 139 57 NA

Stage IV 8 8 NA
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Building a nomogram for prognostic risk assessment
To improve the precision of the prognostic model, a nomogram
was developed that incorporated the risk score and clinical
variables such as age and tumor stage. Initially, univariate, and
multivariate Cox regression analyses were conducted to assess
whether the risk scores and clinical variables could serve as
independent prognostic factors. Next, the rms package was used
to construct the nomogram and calibration curve, which included
patient age, gender, TNM stage, and risk score59. To compare the
predictive accuracy of the nomogram with other prognostic
factors, Receiver Operating Characteristic (ROC) and Decision
Curve Analysis (DCA) were performed using the timeROC and
ggDCA package, respectively.

Evaluating the prognostic accuracy of BCSCRS against
established models
To validate the proposed prognostic model for breast cancer, a
comparative analysis was conducted against three distinct
prognostic models. The first model was a ferroptosis-related
signature developed by Wang et al.13, the second was a
macrophage marker genes signature in breast cancer constructed
by Li et al.11, and the third was a lactate metabolism-related
prognostic model proposed by Zhang et al.12. To maintain
consistency with the literature and reduce data dimensionality,
gene expression levels were extracted for each model and
multivariate Cox regression was performed to obtain the
regression coefficients of each gene. Subsequently, risk scores
were calculated for each sample, and the predictive power and
clinical utility of each model were assessed using the concordance
index (C-index) and DCA, as well as the ROC curves and survival
analysis. All analyses were performed using the timeROC and
survival packages in R software.

Estimating BCSCRS on tumor microenvironment
Gene set enrichment analysis (GSEA) was conducted to explore
the biological functions of different risk groups60. Considering the
pivotal role of the TME in tumor immunotherapy61,62, the
ESTIMATE package was used to analyze the composition of the
tumor microenvironment49. The CIBERSORT algorithm was utilized
to analyze transcriptome data and obtain the expression levels of
22 types of immune cells in each sample63,64. In addition to the
differences in immune checkpoint expression, immune score, and
immune cell infiltration among various risk groups, the correlation
between immune cells and risk score was also analyzed.

Assessment of immunotherapy and chemotherapy response
In addition to analyzing the immune characteristic, we also
investigated the responsiveness of various risk groups to immune
checkpoint inhibitor therapy and commonly used chemotherapy
drugs for breast cancer. The Immunophenotype Score (IPS), a
good predictor of CTLA4 (Cytotoxic T Lymphocyte-Associated
Antigen-4) and PD1 (Programmed Death 1) responsiveness, was
obtained from the TCIA database (https://tcia.at/) and utilized to
predict the responsiveness of high- and low-risk groups during
immune checkpoint inhibitor therapy65. To predict chemosensi-
tivity, the 50% maximal inhibitory concentration (IC50) for each
sample was calculated using the R package “pRRophetic”66, which
offers a comprehensive set of pre-trained predictive models that
harness gene expression data to make accurate projections of
drug responses. Specifically, the drug code corresponding to the
target compound within the database was selected, and the gene
expression matrix of breast cancer from the TCGA dataset was
employed as the designated input file. The prediction of IC50
values for the identified drug was achieved through the utilization
of the predictProfileIC50 function.

Patients and tissue samples
In this study, a total of 267 patients with breast cancer were
included. The tissue microarray comprising 267 tumor samples
from these patients, along with patient clinical data, was directly
retrieved from Shanghai Outdo Biotech Company in accordance
with relevant regulations. The study was conducted in compliance
with the Declaration of Helsinki. We confirm that written informed
consent was obtained from all patients involved in the study,
ensuring their voluntary participation, and the use of human
tumor tissue was approved by the Ethics Committee of Shanghai
Outdo Biotech Company (approval No.YBM-05-01 and YBM-05-02).

Immunofluorescence staining and image acquisition
A total of 267 samples of TMAs without drug treatment were
selected for TissueFAXS panoramic tissue quantitative assay,
which Multiplex immunofluorescence staining of tissues was
conducted using the Alpha TSA 7-color fluorescence staining kit
(Alpha TSA Multiplex IHC Kit) sourced from Beijing, China.
Specifically, XTSA 480 (Cat: ZA0508), XTSA 520 (Cat: ZA0293),
XTSA 570 (Cat: HA720082), XTSA 620 (0804-3), XTSA 690
(ab20034), and XTSA 780 (ZM0069) were employed for the
labeling of CD8, CD79A, CD3, CD24, FOXP3, and PANCK,
respectively. Briefly, tissue microarray (TMA) removes residual
paraffin with xylene and anhydrous ethanol and rehydrates it with
ethanol of different concentration gradients. Following this, the
sample underwent two rounds of 5-minute rinses with distilled
water, followed by microwave repair using the antigen repair
solution provided in the kit. After cooling, the sample was rinsed
thrice with PBST and immersed in sealing liquid at room
temperature for 15min. Subsequent steps included the incubation
of diluted primary antibodies at 37 °C for 1 h, followed by a wash
with PBST three times. TMA and corresponding secondary
antibodies were then incubated at 37 °C for 10 min, washed
thrice with PBST, and treated with fluorescent dye for 5 min at
room temperature. This dyeing process was repeated to ensure
complete labeling of all relevant markers. Finally, nuclear dye
(DAPI) was applied for 8 min at room temperature. After rinsing
with PBST, the slide was sealed for subsequent image scanning.
The ZEISS Axioscan7 full-slice imaging system was employed for
image acquisition, with ZEN 3.3 software used for image analysis.
For quantitative analysis, Strata Quest software (TissueGnostics)
was used to calculate parameters such as nuclear area,
fluorescence intensity, and cell density per cell area for identifying
positive cells. This software was also used to quantitatively count
CD3+CD8+FOXP3+ T and CD3+CD8+FOXP3- T cells based on a
distance gradient ranging from 0–25 μm, 25–50 μm, and
50–100 μm from CD79A+CD24-PANCK+ cells67.

Statistical analysis
Statistical analyses in this study were performed using R software
(version 4.0.3 and 4.1.3) and relevant R packages sourced from
Bioconductor and CRAN. The Wilcoxon test was used to compare
differences between two groups, while Kruskal–Wallis test was
utilized for comparisons involving more than two groups.
Correlation analyses were conducted using Pearson test. Median
values were used for all truncation values relating to grouping.
Statistical significance was determined as a P-value < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All raw data used in this work can be acquired from GDC-TCGA-BRCA project in the
UCSC Genome Browser database (https://xenabrowser.net/datapages/) and the Gene
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Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) with accession
number GSE20685. Additional data and materials are available from the University
of California, Santa Cruz (UCSC) Xenabrowser (https://xenabrowser.net/). These data
are currently publicly available.

CODE AVAILABILITY
Data analysis was performed by R software (version 4.0.3 and 4.1.3) and specific code,
and the corresponding parameter settings were set in the code. The code used for
analysis can be accessed by the corresponding author on reasonable request, and the
corresponding code for this article is stored in the below link (https://
www.jianguoyun.com/p/DX9xHisQ5rKeCxivxPwEIAA).
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