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A deep learning model, NAFNet, predicts adverse pathology
and recurrence in prostate cancer using MRIs
Wei-jie Gu1,2,3,7, Zheng Liu1,2,3,7, Yun-jie Yang1,2,3,7, Xuan-zhi Zhang1,2,3, Liang-yu Chen4, Fang-ning Wan1,2,3, Xiao-hang Liu2,5,
Zhang-zhe Chen2,5, Yun-yi Kong2,6 and Bo Dai 1,2,3✉

We aimed to apply a potent deep learning network, NAFNet, to predict adverse pathology events and biochemical recurrence-free
survival (bRFS) based on pre-treatment MRI imaging. 514 prostate cancer patients from six tertiary hospitals throughout China from
2017 and 2021 were included. A total of 367 patients from Fudan University Shanghai Cancer Center with whole-mount
histopathology of radical prostatectomy specimens were assigned to the internal set, and cancer lesions were delineated with
whole-mount pathology as the reference. The external test set included 147 patients with BCR data from five other institutes. The
prediction model (NAFNet-classifier) and integrated nomogram (DL-nomogram) were constructed based on NAFNet. We then
compared DL-nomogram with radiology score (PI-RADS), and clinical score (Cancer of the Prostate Risk Assessment score (CAPRA)).
After training and validation in the internal set, ROC curves in the external test set showed that NAFNet-classifier alone
outperformed ResNet50 in predicting adverse pathology. The DL-nomogram, including the NAFNet-classifier, clinical T stage and
biopsy results, showed the highest AUC (0.915, 95% CI: 0.871–0.959) and accuracy (0.850) compared with the PI-RADS and CAPRA
scores. Additionally, the DL-nomogram outperformed the CAPRA score with a higher C-index (0.732, P < 0.001) in predicting bRFS.
Based on this newly-developed deep learning network, NAFNet, our DL-nomogram could accurately predict adverse pathology and
poor prognosis, providing a potential AI tools in medical imaging risk stratification.
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INTRODUCTION
Prostate cancer was the second most frequently diagnosed cancer
and the fifth leading cause of cancer-specific death among men in
2020. With an estimated 1.4 million new cases diagnosed
worldwide and over 375,000 deaths attributed to this disease
annually1. Notably, approximately 29% of patients encounter
Gleason grade upgrading, and 25% experience adverse pathology
following radical prostatectomy, potentially leading to biochem-
ical recurrence or the development of metastasis2,3. Addressing
the challenges associated with adverse pathology (AP) and
biochemical recurrence survival (BCR) prediction is vital for
enhancing the precision and efficacy of prostate cancer manage-
ment strategies.
Multiparametric magnetic resonance imaging (mpMRI) plays

important roles in diagnosing high-grade or clinically significant
prostate cancer (csPCa), planning for definitive treatment and
predicting the presence of AP, such as seminal invasion4,5.
Integrating mpMRI with clinicopathologic parameters may allow
for better risk classification of prostate cancer before radical
surgery or radiation6.
AP is known as an important predictor of BCR and metastasis7.

Recently, several studies have indicated that radiomic features
derived from biparametric MRI, which evaluates subvisual texture
patterns for the quantitative characterization of tumour pheno-
types, might aid in prostate cancer risk stratification8–11. However,
these systems require considerable effort in carefully ruling out
the features before training a machine learning classifier, and
suffering limitation of relatively low efficiency. Therefore, there is a
high medical need for faster procedures.

One possible solution could be the use of pretreatment
parameters including clinical characteristics and MRI images to
predict AP after radical prostatectomy (RP). Convolutional neural
networks have successfully been used to analyse urological
medical images in the fields of cystoscopy, ultrasound, pathology,
and radiology12,13. One of the most widely used algorithms in
computer vision, ResNet50, has been shown its potent potential in
medical imaging. However, with 50 convolutional layers, ResNet50
needs substantial resource for further analyses14. The interpreta-
tion and classification of MRI rely on the understanding of each
pixel in the MRI image. Since the lesion area occupies a small
proportion in the image, these pixels must be fully utilized by the
model to make accurate diagnoses. We here introduce NAFNet, a
nonlinear activation-free network that simplifies the architecture
and replacing the complex nonlinear activation functions.
Although simplified, NAFNet still achieved state-of-the-art results
with lower computational costs15,16. Moreover, the pixelwise
feature segmentation capability of NAFNet enables it to extract
and identify subtle differences in medical imaging, thus making it
promising in medical imaging classification, especially in MRI.
In summary, within the present study, we aimed to explore the

use of a deep learning algorithm (NAFNet) to identify AP on MRI
image, and compare its performance with ResNet50. We next
developed a customed nomogram by integrating this classifier
and pretreatment clinical variables to predict AP and BCR events.
We then clinically validated its performance in external cohorts by
comparing it to current benchmark models such as preoperative
Cancer of the Prostate Risk Assessment (CAPRA) nomograms and
PI-RADS score.
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RESULTS
Patients characteristics
We retrospectively enrolled 618 patients with prostate cancer
from six institutes throughout China. As depicted in Fig. 1a, after
screening, 367 eligible patients from Fudan University Shanghai
Cancer Center were allocated to the internal set. The external test
set consisted of 147 patients from other five external institutes.
Patient characteristics were listed in Table 1, and there were no
statistically significant differences between clinicopathological
variables of the internal and external set. The NAFNet network
was trained to use the labelled images from the internal set to
predict the AP probability of each patient (Fig. 1b). After training
and validation, we applied the best model to the external test set
to compare NAFNet with ResNet50 for predicting AP, to construct
DL-nomogram, and to evaluate its AP and bRFS prediction ability
(Fig. 1c). Of note, patients in the external test set did not have
whole-mount histopathology, and tumour lesions were identified
by radiologists who were blinded to the clinical and pathological
information.

NAFNet is superior to ResNet50 in predicting AP based on
MRI imaging
To explore the algorithmic advantages of NAFNet, we compared
the NAFNet with ResNet50, a most widely-used network in
computer vision and medical imaging deep learning. Both
NAFNet-classifier and ResNet50-classifier prediction visualized
results on the MRI image were illustrated in Fig. 2a. The blue
area indicates the lowest probability of AP events, while the red

area represents the highest risk of AP events. The left panels were
from a patient without AP events, and the right panels were from
a patient with confirmed AP events. The visualization results of
NAFNet-classifier and ResNet50-classifier are quite different,
especially in predicting patients with AP event (Fig. 2a, right
panel). We then analysed the ROC curves between these two
models on the external test set. As shown in Fig. 2b, compared
with ResNet50-classifier (AUC: 0.703, 95%CI:0.618-0.787), NAFNet-
classifier had a significant higher AUC value (0.799, 95%
CI:0.724−0.873; P= 0.013). Further DCA analyses also indicated
that NAFNet-classifier could provide greater benefits than
ResNet50-classifier (Fig. 2c), indicating NAFNet surpassed
ResNet50 in predicting AP from MRI images. Detailed performance
comparison metrics were also listed in Supplementary Table 1,
NAFNet-classifier had better accuracy, sensitivity and specificity
than ResNet-50 classifier.
Furthermore, to compared NAFNet-classifier with ResNet50-

classifier on the binary classification setting, we also created
confusion matrices of these two models. The optimal threshold of
dichotomous classification was listed in Supplementary Table 1. As
illustrated in Supplementary Fig. 1, even when picking a threshold
to create the classes, the NAFNet-classifier still outperformed the
ResNet50-classifier with higher accuracy, positive prediction value,
and negative prediction value (Supplementary Table 2).

Construction of the deep-learning based nomogram
To further establish the deep learning-based nomogram, we
sought to combine the NAFNet-classifier with other

Fig. 1 Overall flowchart and workflow of this study. a Flowchart of study population selection showing the inclusion and exclusion criteria
for six hospitals. b Work pipeline of this study illustrating the construction of the deep-learning model based on three input MRI channels
using internal set data. c After training, we used external dataset to compare the ability of the NAFNet-classifier and the ResNet50-classifier to
predict adverse pathology (top panel); we also evaluated the predictive ability of the integrated DL-nomogram for adverse pathology (middle
panel) and for BCR-free survival (bottom panel). Abbreviations: RP radical prostatectomy, mpMRI multiparametric magnetic resonance
imaging, T2WI T2-weighted magnetic resonance imaging, DWI diffusion-weighted imaging, ADC apparent diffusion coefficient, AP adverse
pathology, DL deep learning, BCR biochemical recurrence.
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clinicopathological variables. We then performed multivariate
logistic regression analyses to determine which clinical variables
should be integrated with NAFNet-classifier. As shown in Fig. 3a,
the NAFNet-classifier (as continuous variable), clinical T stage and
biopsy ISUP were significant predictors for AP events, while the PI-
RADS score and PSA value did not show adequate predictive
ability. Thus, we constructed our integrated clinical variables
nomogram (DL-nomogram) based on the NAFNet-classifier,
clinical T stage and biopsy ISUP. The DL-nomogram was illustrated
in Fig. 3b, indicating a high weight of the NAFNet-classifier in the
DL-nomogram, and a further calibration plot showed good
performance of the DL-nomogram (Supplementary Fig. 2).
In addition, we performed another logistic regression analysis

considering the NAFNet-classifier as dichotomous factor using the
optimal threshold as the cut-off point. As illustrated in Supple-
mentary Fig. 3, ROC analyses results suggested that continuous
NAFNet-classifier has advantages in AUC than dichotomous
NAFNet-classifier. Thus, we treated NAFNet-classifier as a contin-
uous variable in further analyses.
Although the PSA value and the PI-RADS score did not have

statistical significance in logistic regression model (Fig. 3a), they
did serve as important variables to guide treatment and follow-up
in prostate cancer. As a supplement to nomogram construction,
we also built nomograms including PSA and PI-RADS (Supple-
mentary Fig. 4a–c). Nevertheless, we found that adding PSA and/
or PI-RADS to DL-nomogram did not further improve the
efficiency of DL-nomogram in both ROC and DCA analyses
(Supplementary Fig. 4d, e and Supplementary Table 2).

Performance comparisons of deep learning-based models to
predict AP events
To validate the performance of the deep learning-based models,
we evaluated the AP prediction ability of the NAFNet-classifier, DL-
nomogram, clinical score (CAPRA), radiology score (PI-RADS) and
ResNet50-classifier on the external test set. As shown in Fig. 4a and
Supplementary Table 1, while the AUC differences between the
clinical score (CAPRA) and NAFNet-classifier did not reach statistical
significance (P= 0.334), DL-nomogram had a significantly higher
AUC value than the clinical score (CAPRA) (P < 0.001). Besides, DL-
nomogram had the highest AUC value (0.915, 95% CI: 0.871-0.959)
among these five models, and also had the highest accuracy value
of 0.850. DCA further showed an improved net benefit brought by
DL-nomogram compared with other models (Fig. 4b).
According to the calculated threshold values listed in Supple-

mentary Table 1, we visualized the prediction results of the five
models in Fig. 4c. The heatmap clearly showed that DL-nomogram
prediction results had the best accordance with the gold standard
(top panel), followed by NAFNet-classifier, and then radiology
score (PI-RADS), clinical score (CAPRA) and ResNet50-classifier.

Comparisons of our NAFNet-classifier and DL-nomogram with
other predicting models for predicting bRFS
To fully explore the predictive potential of the NAFNet-classifier-
based model, we assessed NAFNet-classifier in BCR-free survival
prediction. In the external test set, we performed Kaplan‒Meier
analyses of bRFS according to the NAFNet-classifier, radiology score
(PI-RADS), DL-nomogram and clinical score (CAPRA) score. The cut-
off value of each model was determined by its optimal threshold in
ROC curves. As illustrated in Fig. 5, all four models could stratify BCR-
free survival for the external test set patients. The DL-nomogram
even increased the C-index value from 0.643 (95%CI: 0.586-0.700)
(CAPRA score) to 0.732 (95%CI: 0.671-0.793), showing prognostic
prediction potential in BCR-free survival (Supplementary Table 3).

Table 1. Patient baseline characteristics.

Factor Internal Set
(n= 367)

External
Test Set
(n= 147)

P-
valuea

No. % No. %

Age at surgery (year), median (IQR) 67 (62–72) 67 (63–72) 0.771b

PSA at diagnosis (ng/ml), median (IQR) 12.08
(7.21–22.80)

13.00
(8.48–25.67)

0.261b

PSA at diagnosis (ng/ml) 0.873

≤20 252 68.7 102 69.4

>20 115 31.3 45 30.6

Clinical T stage 0.370

cT2 319 86.9 132 89.8

≥cT3 48 13.1 15 10.2

Biopsy ISUP 0.652

1 79 21.5 27 18.4

2 64 17.4 20 13.6

3 60 16.3 26 17.7

4 102 27.8 44 29.9

5 62 16.9 30 20.4

PI-RADS v2 score 0.655

3 60 16.3 29 19.7

4 87 23.7 34 23.1

5 220 60.0 84 57.1

Post-surgery ISUP 0.407

1 31 8.4 13 8.8

2 115 31.3 35 23.8

3 97 26.4 48 32.7

4 49 13.4 23 15.6

5 75 20.4 28 19.0

Extra-prostatic extension 0.105

Present 122 33.2 60 40.8

Absence 245 66.8 87 59.2

Surgical margin status 0.362

Positive 44 12.0 22 15.0

Negative 323 88.0 125 85.0

Seminal vesicle invasion 0.280

Present 67 18.3 21 14.3

Absence 300 81.7 126 85.7

Lymph node metastasis 0.603c

Present 10 2.7 6 4.1

Absence 357 97.3 141 95.9

Adverse pathologic events 0.159

Present 177 48.2 81 55.1

Absence 190 51.8 66 44.9

CAPRA score 0.349

1–2 34 9.3 11 7.5

3–5 154 41.9 54 36.7

6–10 179 48.8 82 55.8

Biochemical recurrence events <0.001

Present 19 5.2 56 38.1

Absence 348 94.8 91 61.9

aChi-square test was applied unless otherwise stated.
bMann–Whitney U-test.
cContinuity Correction.
IQR interquartile range, PSA Prostate specific antigen, PI-RADS Prostate
Imaging–Reporting and Data System, ISUP International Society of
Urological Pathology, CAPRA Prostate Cancer Risk Assessment.
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Our NAFNet-classifier and DL-nomogram could also identify
clinically significant prostate cancer prebiopsy
Since an ISUP score over 4 is one of the criteria of AP, we aimed to
extend the NAFNet-classifier in predicting clinically significant
prostate cancer before biopsy. Multivariate logistic regression
analyses confirmed that the NAFNet-classifier, clinical T stage and
PSA value had the ability to predict the post-surgical ISUP high-

risk group (Supplementary Table 4). The DLPT-nomogram
(NAFNet-classifier integrated with PSA and cT stage) was then
established and had a higher post-surgical ISUP high-risk
predicting performance than the clinical score (PBCG)
(P= 0.003). Additionally, NAFNet-classifier alone also outper-
formed the PBCG score in both ROC analysis and DCA
(Supplementary Fig. 5 and Supplementary Table 5).

Fig. 2 Comparison of the predictive ability for adverse pathology between the NAFNet-classifier and the ResNet50-classifier. a NAFNet-
classifier and ResNet50-classifier prediction visualized results on the MRI image depicting the probability of adverse pathology in identified
regions. The left panels show MRI images from a patient who did not experience any adverse pathology events. The NAFNet-classifier
predicted an AP probability of 0.126, while the ResNet50-classifier predicted a probability of 0.151. While the right panels depict MRI images
from a patient with an adverse pathology event. The NAFNet-classifier gave a 0.632 AP probability, and the ResNet50-classifier had a
probability of 0.264. The colour scale on the right represents the probability of adverse pathology events in each pixel within the identified
region, with red showing a higher probability; and blue showing a lower probability. b Receiver operating characteristics curves and (c)
decision curve analyses of NAFNet-classifier and ResNet50-classifier in predicting adverse pathology events based on external test set.
Abbreviations: AP adverse pathology, ADC apparent diffusion coefficient T2WI, DWI diffusion-weighted imaging, T2-weighted magnetic
resonance imaging, AUC area under the receiver operating characteristic curve, CI confidence interval.
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DISCUSSION
In this study, we aimed to evaluate the capabilities of a deep
learning model, NAFNet, to the pre-treatment mpMRI imaging.
Because of its pixelwise segmentation capability, NAFNet-classifier
had a better performance than traditional deep learning models,
such as ResNet50 in predicting AP events. NAFNet-classifier not
only showed good performance in predicting AP by itself, but also
greatly improve the prediction ability when adding other
important clinical variables, such as clinical T stage and ISUP
group. Although the DL-nomogram was designed to predict AP,
our multicentre results also suggest that our nomogram can triage
patients with early BCR, since it has better performance than the
CAPRA risk calculator. Our results thus indicated the promising
potential for the DL-nomogram, as a noninvasive, fast, low-cost
and accurate artificial intelligence tool, in predicting poor
prognosis. The ability to accurately predict adverse prognosis in
prostate cancer patients can facilitate the precise identification of
individuals unsuitable for active surveillance and those who may
benefit from adjuvant treatment.
As far as we know, our nomogram represents the pioneering

effort in utilizing deep learning predictions to identify post-
surgical AP on mpMRI images. Most previous studies used deep
learning methods to automatically distinguish between clinically
significant and clinically insignificant prostate cancer17. However,
these studies used low-quality radiology images with low b-values,
with the labels derived from pathology results from biopsy, which
are not actually as accurate as surgical specimens.

Hiremath et al. trained deep learning-based biomarkers using
AlexNet and constructed an integrated nomogram using PSA,
prostate volume, lesion volume, PI-RADS score, and deep learning
predictions to predict clinically significant prostate cancer lesions,
as well as bRFS17. Li et al. screened radiomic features and
developed a nomogram, including radiomics-based imaging
biomarkers, Gleason score, and PSA, to predict biochemical
recurrence9. Sometimes deep learning-based approaches even
surpass the performance metrics of human-rated PI-RADS
scores18. Compared with previous studies, the present study had
several strengths. First, our study used a new deep learning
framework, NAFNet, as the base architecture. NAFNet is a
nonlinear activation-free network that simplifies the conventional
architecture by replacing the complex nonlinear activation
functions. Although simplified, its performance is equal to or
better than the baseline with lower computational costs. Second,
we used whole-mount histopathology of RP as the ground truth in
the internal set instead of routine pathology slides used in other
studies9. With a whole post-surgical prostate specimen provided
by WSI, our radiologists could delineate the lesion more accurately
on mpMRI images. Third, we independently validated our
nomogram using data from other five external institutes. Results
from these external testing data suggested that our model is
robust and resilient to different MR scanners.
Risk stratification plays an import role in tailoring the treatment

for patients with prostate cancer19, and artificial intelligence risk
classifiers are emerging for its rapid, low-cost, and automated

Fig. 3 Establishment of the DL-nomogram, a nomogram integrating NAFNet-classifier and clinical variables. a Forest plot shows the
multivariate logistic regression analyses constructed based on internal set for predicting adverse pathology events. NAFNet-classifier was
treated as continuous variable. b A nomogram combining the NAFNet-classifier, biopsy ISUP and clinical T stage. Abbreviations: DL deep
learning, PI-RADS Prostate Imaging–Reporting and Data System, ISUP International Society of Urological Pathology, PSA prostate specific
antigen, OR odds ratio, CI confidence interval, AP adverse pathology.
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features20,21. However, while the artificial intelligence tools are
evolving rapidly, the application of AI tools in medical imaging are
relatively lagged due to its complexity. Various AI tools present
technical problems when facing complicated clinical routine
works22. Prostate MRI imaging is critical for prostate cancer
diagnosis and follow-up, however, reading prostate MRI requires
long-term experience and clinical practise for radiologist to achieve
optimal results23. As showed in our study, the NAFNet-based
integrated nomogram exhibits superior performance compared to
the PI-RADS score evaluated by experienced radiologists, not only
in assessing clinically significant prostate cancer but also in
predicting AP and bRFS prebiopsy. This integrated nomogram
holds significant promise for clinical implementation, offering the
potential to alleviate the burden on radiologists. The comprehen-
sive comparisons to CAPRA score carried out in this research
emphasize the robustness and accuracy of the NAFNet-based
nomogram in predicting AP and bRFS post-biopsy, highlighting the
comprehensive utility and potential impact of the integrated
nomogram in prostate cancer diagnosis as well as cancer
management. Moreover, since the DL-nomogram demonstrated
a higher net benefit in DCA curves for AP prediction, clinicians
might involve patients in the decision-making process regarding
aggressive treatment options by referring our DL-nomogram.
Our study had several limitations. First, we acknowledge the

possibility of inter-reader variability because the ground truth in
the external test set was the pathology examination from each of
the institutions separately. Moreover, H2, H3, H4, H5, and H6 used
ground truth data from routine pathology section images. Second,
the index lesion was manually delineated in specialized software
by experienced radiologists, ROI delineation at present was
unavoidable. Third, BCR was used in our study as a surrogate

endpoint for metastasis because of insufficient follow-up time
after RP. Finally, compared to previous studies, more patients with
advanced prostate cancer were included in our study to construct
the deep learning model as well as the nomogram. Prior to clinical
deployment, the approach needs additional external validation in
the future to further confirm the generalizability in more risk
groups. Currently, the interpretability of features extracted by
deep learning networks is relatively weak compared with
traditional machine learning based on radiomics. Therefore,
NAFNet cannot extract corresponding interpretable and specific
radiological features for radiologist. The interpretable deep
learning networks may strike a balance between model complex-
ity and interpretability, making them more suitable for biomedical
applications. We can expect the great advancements in the field of
MRI reading. The interpretable deep learning networks develop-
ment is also included in our future research plan.
Despite these limitations, our study trained a robust model on a

large dataset to construct a nomogram (DL-nomogram) based on a
more powerful algorithm, NAFNet, integrating biopsy ISUP group,
and clinical T stage to predict AP and bRFS in prostate cancer
patients. With additional independent multi-site validation, the
remarkable performance of DL-nomogram surpasses traditional
models. This advancement holds the potential to revolutionize the
pretreatment risk stratification of localized prostate cancer patients.

METHODS
Patient cohorts
All the enrolled patients met the following criteria: patients who had
(1) undergone RP after mpMRI; (2) no history of neoadjuvant,

Fig. 4 Performance analysis of various models in predicting adverse pathology events. a Receiver operating characteristics curves and (b)
decision curve analyses of the DL-nomogram, NAFNet-classifier, radiology score (PI-RADS), clinical score (CAPRA) and ResNet50-classifier in
predicting adverse pathology events. c Heatmap visualizing the prediction outcome of DL-nomogram, NAFNet-classifier, radiology score (PI-
RADS), clinical score (CAPRA) and ResNet50-classifier in predicting adverse pathology events. Abbreviations: AUC area under the receiver
operating characteristic curve, CI confidence interval, DL deep learning, CAPRA Prostate Cancer Risk Assessment, PI-RADS Prostate
Imaging–Reporting and Data System.
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adjuvant or other additional therapy; (3) preoperative 3 Tesla (3 T)
prostate MRI images of high quality; and (4) visible lesions in images.
The internal set consisted of 367 patients diagnosed between

2019 and 2021 at the Fudan University Shanghai Cancer Center
(H1). All the patients in this set had whole-mount histopathology
slide images (WSIs) of RP specimens, and the median follow-up
time was 10 months. A second cohort of 147 patients was used as
an independent external test set. These patients were diagnosed
between 2017 and 2019 and were from five other tertiary
hospitals: Shanghai Proton and Heavy Ion Center (H2, located in
Shanghai), Ningbo No.2 Hospital (H3, outside of Shanghai),
Yunnan Cancer Hospital (H4, outside of Shanghai), Jiangsu Cancer
Hospital (H5, outside of Shanghai) and Henan Cancer Hospital (H6,
outside of Shanghai). Patients in the external test set did not have
WSIs, but they had comparatively longer follow-up period, and the
median follow-up time was 32 months.
BCR was defined as at least two consecutive serum PSA levels

>0.2 ng/mL after surgery24; biochemical recurrence-free survival
(bRFS) was defined as the interval between the date of RP and the
date of BCR. Patients who were still alive without BCR at the last
reported follow-up were labelled as censored9. AP was defined as
the presence of high ISUP group (ISUP ≥ 4) tumours, extensive
positive surgical margin (large tumour area contacting the
specimen ink)25, extra-prostatic extension (EPE), seminal vesicle
invasion (SVI), or pelvic lymph node metastasis on the radical
prostatectomy (RP) specimen as previously described26.
This study protocol was approved by the ethical review board of

Fudan University Shanghai Cancer Center (No. 2108241-3) and was

conducted in accordance with the Declaration of Helsinki. Written
consent was obtained from each patient. This study was also
registered in the Chinese Clinical Trial Registry (ChiCTR2000036123).
The TRIPOD and STARD guidelines were also followed (Supple-
mentary Table 6 and Supplementary Table 7).

MRI pre-processing and lesion delineation
All patients were imaged on 3T MRI scanners with a phased-array
coil, they also had axial turbo spin‒echo T2WI and axial DWI with
ADC maps; detailed parameters of MRI scanners in this study are
listed in Supplementary Table 8.
The MRI images were reviewed by experienced radiologists

(XH.L. with 15 years of experience and ZZ.C. with 7 years of
experience). PI-RADS version 2.1 (PI-RADS v2.1) scores were
reassessed (if the b value was not higher than 1400, PI-RADS
v2.0 was applied), and the regions of interest (ROIs) were
delineated on T2WI, DWI and ADC maps using ITK-SNAP software.
In order to ensure the accuracy of delineating the lesions from MRI
imaging, we used whole-mount histopathology of RP specimens’
images to delineate the extent of lesions on MRI images, and used
them as ROIs. Besides, the pathology results from whole-mount
histopathology of RP specimens were treated as the gold standard
of AP. To construct the deep learning model more precisely, a
senior urological pathologist (YY.K.) was invited to label the slides
with AP and mark the index lesion (defined as the largest lesion,
the highest suspicion based on images, or the tumour with the
highest grade) on the whole-mount histopathology RP specimens
for each patient27,28; then, a senior radiologist (XH.L.) identified

Fig. 5 Kaplan–Meier analyses of different models in predicting biochemical recurrence-free survival. Kaplan–Meier survival curves for
biochemical recurrence-free survival according to the DL-nomogram (a) NAFNet-classifier (b) radiology score (PI-RADS) (c) and clinical score
(CAPRA) (d). The cut-off points of various models were determined from the optimal threshold points on the corresponding receiver operating
characteristic curves of each model. Abbreviations: DL deep learning, PI-RADS Prostate Imaging–Reporting and Data System, CAPRA Prostate
Cancer Risk Assessment.
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tumour index lesion regions on T2WI, ADC and DWI MRI imaging
using the marked slides as a reference in the training set. In the
external test set, the suspicious lesion was determined by study
radiologists who were blinded to the pathology report.
After MRI image input, we then normalized MRI images, which

involved scaling the image values to the range of 0 to 1 by
dividing them by the maximum value of the image. Of all three
channels, 2D MRI images were used. Next, we resized the images
to the same dimensions for ease of model processing, and applied
data augmentation techniques including flipping and rotating to
increase the diversity of samples. All of these steps were taken to
enhance the performance and robustness of the model.

Construction of NAFNet classifier and comparison to ResNet50
in predicting AP
Nonlinear Activation Free Network, NAFNet, is a newly developed
deep learning network originally proposed by the co-author of our
study, LY.C. in 202215. NAFNet achieved state-of-the-art results in
the field of image restoration, e.g., denoising, deblurring, and
stereo super-resolution29. The original intention behind the design
of NAFNet is to address pixel-level issues. Firstly, NAFNet avoids
the pixel accuracy problems caused by batch normalization and
instead uses pixel-level layer normalization. Additionally, the
U-Net structure and skip connections in NAFNet allow for better
information transfer from input to output, thus avoiding accuracy
degradation due to information loss. Thus, the dense prediction
(pixelwise prediction) of NAFNet allows it to cut the features in the
ROI more precisely, offering promising potential in MRI classifica-
tion. The original Python codes of NAFNet are available on https://
github.com/megvii-research/NAFNet. Compared to NAFNet,
ResNet50, a widely-used residual networks developed by He at
in 201514, has a deep architecture with 50 convolutional layers,
divided into several modules, each containing residual blocks of
different depths. This design allows ResNet50 to better propagate
gradients, improve network convergence, and accuracy, and
suffered from more complicated network design.
NAFNet comprised three distinct input channels: T2WI, ADC and

DWI maps. The image augmentation strategies and optimized
configuration were as follows: we adopted random flipping/
rotation and resized the maps to a spatial size of 384×384 by
bilinear interpolation. The network was optimized using an
AdamW optimizer, with a weight decay of 0.05 and a learning
rate of 0.00001.
We labelled AP events as 1 and no AP events as 0. Training and

validation on the internal set were performed patient-wise using
threefold repeated validation with an 80% (training) to 20%
(validation) stratified, random split for each fold. The results
derived from the highest value of the cross-validation area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve from the validation set were chosen to evaluate perfor-
mance on the external test set. A binary entropy loss function was
used in the deep learning network.
Firstly, we classified each pixel within the ROI region of the

input image. Then, we aggregated the scores of all pixels in the
ROI region to obtain the overall classification result of the entire
image. Specifically, the input image and ROI region are fed into
the network, which outputs features with the same size as the
image. Then, these features are passed through a fully connected
layer to obtain a single-channel value, which is further trans-
formed into a binary probability using the Sigmoid function. In
this way, we obtain pixel-level probability. The final probability is
determined by the pixel-level probabilities in the ROI region. After
averaging the probability values of each patient’s three channels’
images, the final probability for that patient is obtained.
All deep learning experiments were performed in the Python

framework (Python 3.9.5, PyTorch 1.11.0 and CUDA 11.3). All
models were trained with the same hardware configuration (CPU

with 16 cores and 64 GB RAM; one GPU of Nvidia A100 with 40 GB
of memory), supported by the Medical Science Data Center of
Fudan University.

Construction of deep-learning nomogram
Multivariable logistic regression models were fitted with a deep
learning-based image classifier (NAFNet-classifier) and various
clinicopathologic parameters, including preoperative PSA, biopsy
ISUP, Prostate Imaging Reporting and Data System (PI-RADS) score,
and clinical stage (cT), to evaluate the prediction of AP after RP. We
treated NAFNet-classifier as a continuous variable and included it
in the multivariable logistic regression model along with other
clinicopathological factors, such as PI-RADS score, biopsy ISUP, cT
stage and PSA value. We use the enter method for regression
model. After calculation, factors with statistically significant P-
values were selected for further nomogram construction.

Clinical validation of DL-nomogram to predict AP, bRFS and
clinically significant prostate cancer prebiopsy
The CAPRA score (including age, PSA, Gleason score of the biopsy,
clinical T stage and percent of biopsy cores involved with cancer) is
one of the most widely used model to predict AP, risk of BCR and
metastasis, and prostate cancer-specific survival30. The Prostate Biopsy
Collaborative Group (PBCG) risk score (including race, age, PSA, digital
rectal examination, prior biopsy and family history of prostate cancer)
is used to predict the risk of high-grade prostate cancer before
prostate biopsy31. We used CAPRA score and PBCG score as the
clinical score and the PI-RADS score as the radiology score when
performing comparisons. In summary, we performed three further
analyses to clinically validate the performance of NAFNet-classifier
and DL-nomogram: (1) comparison of DL-nomogram with the
radiology score (PI-RADS) and the clinical score (CAPRA) in the
prediction of AP; (2) a head-to-head comparison between NAFNet-
classifier, DL-nomogram, the radiology score (PI-RADS) and the clinical
score (CAPRA) for bRFS prediction in terms of the concordance index
(C-index) and Kaplan‒Meier curves; and (3) comparison of NAFNet-
classifier and DL-nomogram with the clinical score (PBCG) in the
prediction of clinically significant prostate cancer prebiopsy.

Statistical analysis
Significant differences in areas under the curve (AUCs) between
the models were tested using DeLong’s test32. We report the AUCs
with 95% CIs and other performance metrics (including accuracy,
sensitivity and specificity) in the external test set. The 95% CI was
calculated based on the R package “pROC” with “delong”
methods32 to obtain the 95%CI of AUC following the documenta-
tion of “pROC” package33. Multivariable analyses were used to
develop the nomograms. Decision curve analyses (DCAs) were
used to illustrate the overall net benefit of using one model versus
another. Kaplan‒Meier survival curves were used for bRFS analysis.
In order to achieve the best performance of the binary
classification, we obtained the optimal cut-off points by maximiz-
ing the accuracy in the ROC curves of each model as previously
described17. The log-rank test was used in bRFS to determine
statistically significant differences. All tests were two-sided, and
statistical significance was defined as P < 0.05. Statistical analyses
were performed using R software version 4.2.1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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