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Intraoperative margin assessment for basal cell carcinoma with
deep learning and histologic tumor mapping to surgical site
Joshua J Levy 1,2,3,4,5,6✉, Matthew J Davis3, Rachael S Chacko7, Michael J Davis3, Lucy J Fu7, Tarushii Goel8,9, Akash Pamal 8,10,
Irfan Nafi 8,11, Abhinav Angirekula8,12, Anish Suvarna8, Ram Vempati8, Brock C Christensen 3,13,14, Matthew S Hayden3,
Louis J Vaickus4 and Matthew R LeBoeuf3

Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before
adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to
incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with
complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and
deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing /
assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and
histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical
specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory
efficiency bottlenecks for rapid and complete intraoperative margin assessment.
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INTRODUCTION
Complete surgical resection is first line treatment for many solid
tumors, which typically requires excision of the clinically evident
tumor and the rim of surrounding normal tissue followed by
closure with subsequent post-operative histologic analysis of
tissue margins (POMA). In the pathology laboratory, the specimen
is commonly grossed in a breadloafed or radial fashion,
embedded, sectioned, stained, and examined by the pathologist.
While POMA of breadloafed sections is the current standard,
removal and histologic analysis of the margin in this manner has
three major pitfalls: (1) post-operative identification of positive
margins (tumor identified at the tissue edge), necessitating a
repeat procedure, (2) false negative or “missed” margins, where
the tumor is present at a portion of the margin not evaluated due
to sampling error, and (3) excessive tissue is removed to limit the
possibility of pitfalls 1 and 2 as above, which can result in the
removal of critical structures. Standard excisions and POMA for the
treatment of skin cancer reveals a combined positive margin or
tumor recurrence rate of at least 20%1–4. Either of these outcomes
(i.e., post-operative positive margins or false negative margins)
requires additional surgery, radiation, chemotherapy, or some
combination thereof, resulting in patient morbidity, mortality, and
a significant cost to our healthcare system5–10. These pitfalls have
been addressed in some settings through the use of intraopera-
tive frozen sections or analyzing a larger percentage of tissue
margins, which, in comparison to standard excisions and POMA,
can reduce positive margin or recurrence rates to less than 1-2%
in certain surgical subspecialties3,11–13.

Successful intraoperative treatment of solid tumors requires the
combined efforts of multiple highly trained individuals. Tumor
removal is performed by the surgeon; cryofreezing and sectioning
of the tissue and then staining by the histotechnologist; and
histologic analysis by the pathologist. In the current surgical
workflow, the surgeon, histotechnologist, and pathologist are
often separated by time and space. For example, communication
of histological findings between pathologist and surgeon may
occur over the phone. This separation presents an obstacle to
evaluating intraoperative frozen sections (Fig. 1). Prior studies
have shown that breadloaf grossing of tissue sections results in
analysis of approximately 1–2% of the margin6. Increasing the
percentage of tissue margins analyzed requires either: (1) more
tissue blocks and sections, or (2) an alternative grossing method.
These approaches require more time and/or expertise on the part
of both the histotechnician and pathologist.
Mohs Micrographic Surgery (MMS) is used for the treatment of

skin cancers of the head, neck, and special sites14,15. Tumor
removal is performed under local anesthesia with real-time margin
assessment using frozen tissue sections that are cut by a
histotechnician in an on-site laboratory. Tissue is grossed in a
manner that allows the peripheral and deep margin to sit in the
same plane, allowing analysis of 100% of tissue margins. The Mohs
Micrographic Surgeon performs tumor removal, histologic analy-
sis, and the creation of a surgical tumor map to inform additional
tumor removal if necessary. As compared to standard excisions
and POMA (≥20% recurrence, as aforementioned), MMS results in
a significantly lower tumor recurrence rate (less than 1–2%, as
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aforementioned) while minimizing the size of the surgical defect
and sparing normal surrounding tissue. The advantages conferred
by MMS are largely possible due to the size and location of the
tumors being excised. These characteristics facilitate the use of
local anesthesia and allow the entire margin to be efficiently
processed and analyzed. There are numerous obstacles to the
application of real-time 100% margin analysis in other surgical
practices, including: (1) time under general anesthesia, (2) tissue
specimens of prohibitive size and complexity, (3) availability of
expert pathologists, and (4) clear mapping of histological findings
back to the resection site. Additionally, suboptimal preparation of
frozen sections can impact the location of positive margins and is
often cited as precluding real-time margin assessment in higher
risk settings. Highly trained histotechnicians are required to create
quality tissue sections but are in short supply16. Thus, investing in
methods that can improve the speed of specimen preparation,
ensure high-quality tissue sections, and promote rapid and
accurate histological assessment of tissue margins are of
paramount importance.
Emerging artificial intelligence (AI) technologies have demon-

strated the capacity to model complex medical processes and may
soon fundamentally transform healthcare delivery through
incorporation of non-autonomous diagnostic decision making.
These technological advancements have been propelled through
the advent of artificial neural networks (ANN) including deep
learning methodologies17. ANN are inspired by central nervous
system processes and represent data input to the algorithm
through a collection of nodes, where, given the appropriate
activation energy, the signal from these nodes may be passed or
shared to a hidden set of nodes organized into multiple
processing layers which represent an object through multiple
layers of abstraction. For instance, ANN have been widely applied
to tasks in digital pathology18–26, from simulating application of
chemical staining reagents27–34, to predicting prognostic mole-
cular information from digitized representations of tissue slides
(Whole Slide Images; WSI), and predicting the origin of tumors
with unknown primary site35. Recent ANN methods have been
proposed for margin assessment across multiple surgical sub-
specialties though have only focused on identifying tumor36–39

while ignoring other issues that are critical to MMS, including: (1)
assessing 100% tissue margins intraoperatively, (2) tissue prepara-
tion, (3) tissue section quality, (4) mapping findings to surgical
tumor site, and (5) operational efficiency.
To address these crucial concerns, a better comprehension of

the margin in three dimensions with respect to the surgical site’s

position and orientation needs to be developed. Three-
dimensional (3D) reconstructive histopathological platforms have
been developed to understand the spatial arrangement of
structural and functional elements in processed tissue40–45. Such
tools have already been developed for visualization of physiologic
and pathologic liver and prostate tissue. Applications in derma-
topathology include iso-surface plot construction of histological
BCC sections to understand invasion and growth patterns as well
as epidermal inclusion cyst visualization to assess anatomical
relationship to surrounding structures. While existing 3D recon-
struction approaches (e.g., CODA and VALIS) enable comprehen-
sive tissue characterization at single-cell resolution, the compute
time to co-register serial sections far exceeds what is allowable to
complete a rapid, intraoperative margin assessment. Furthermore,
mapping these results back to correct anatomic position and
orientation at the surgical site is non-trivial, as it requires
leveraging inking patterns identifiable on the gross tissue/
histological sections to establish common coordinate system that
is also drawn by the surgeon at the surgical site. The mapping of
histological findings at every serial section to a common
coordinate system, established by identifying and utilizing inking
patterns, can facilitate rapid co-registration and orientation of
serial sections. This can further enable the mapping of these
histological findings to the surgical site (Supplementary Fig. 1).
The techniques developed for 3D histology can only evaluate

tissue after it has been sectioned, not the gross specimen that is
measured, inked, and sectioned to prepare the tissue for
histological examination. Although recent studies have examined
3D reconstruction of the gross specimen, none have focused on its
applications in the intraoperative surgical context46–51. Real-time
guidance on optimal inking and sectioning patterns, as well as
reporting of tissue dimensions, could speed up tissue preparation
before histological analysis. However, existing methods provide
inadequate reconstructions of tissue at a slow pace, making them
unsuitable for practical use. To the best of our knowledge, there
are no available platforms that offer 3D reconstruction of the gross
BCC specimen, which can aid in tissue grossing and inking to
expedite histopathological analysis (Supplementary Fig. 1).
We have designed and developed a non-autonomous digital

assessment tool, ArcticAI, that can expedite tissue preparation,
histological inspection, and tumor mapping to improve solid
tumor removal (Fig. 2) using MMS for removal of basal cell
carcinoma as a model system. This computational workflow places
the surgeon, histotechnician, and pathologist in the same virtual
space to: (1) reduce the amount of time a histotechnician takes to

Fig. 1 Visual description of intraoperative surgical excision setting demonstrates potential use cases for integrating artificial
intelligence. a Surgeon removes tumor in the operating room, tissue is prepared in the gross room, margins are assessed by pathologist in
slide room for margin assessment and findings are mapped back to orientation of surgical site. b 3D modeling for automated tissue grossing,
computer vision and graph neural networks for margin assessment, and morphing techniques orient histological findings to a surgical tumor
map to inform surgeon where to cut additional tumor.
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process tissue and generate pathology reports through 3D
modeling techniques and smart grossing recommendations (e.g.,
reporting of tissue size and where to ink), (2) improve the
efficiency of pathologic analysis through a collection of sophisti-
cated graph neural networks to map tumor and artifacts on whole
slide images (WSI) acquired from serial tissue sections, and (3)
automatically generate a descriptive and visual pathology report
easily interpreted by the surgeon either in real-time or post-
operatively. A web application demonstrating 3D specimen
grossing recommendations, histological examination, and map-
ping of histological results back to the surgical site for a few select
cases can be accessed at the following URL: https://
arcticai.demo.levylab.host.dartmouth.edu.

RESULTS
Data collection and study population
After Institutional Review Board approval (see Methods section
“Study Design”), we assessed specimens from 194 patients
undergoing tumor excision in the Mohs Micrographic Surgery
(MMS) setting for the treatment basal cell carcinoma (BCC). Tissue
from 16 patients (17 specimens) were used for tissue grossing
algorithms, while tissue from the remaining 178 patients were
used for histological assessment and tumor mapping algorithms.
All specimens first underwent accessioning and gross measure-
ment. For the tissue grossing algorithm, the gross specimen was
placed on a turntable and imaged using low resolution video
capture. The remaining cases underwent grossing, inking, proces-
sing, cryoembedding (frozen section), sectioning, and staining
with hematoxylin and eosin (H&E). From these 178 cases, 351 slides
corresponding to 1065 serial sections and 1537 tissue pieces
were scanned at 20X resolution using the Leica Aperio
AT2 scanner and stored as Whole Slide Images (WSI) in either
SVS or TIFF file format. A total of 3,754,730 image patches
(256×256 pixels) were extracted from the WSI for further analysis.
Using the ASAP annotation software (https://
computationalpathologygroup.github.io/ASAP/, v1.9), all cases
were annotated for tumor (BCC), benign structures, inflammatory
aggregates, holes/tears, ink color and location, and major
compartments (epithelium, dermis, fat, etc.). The data was then
divided into training/validation sets (65% of cases) responsible for

algorithm training and finetuning and a held-out test set (35% of
cases) (Supplementary Table 1). Follicles and individual nuclei
were annotated in a subset of the training/validation slides as
annotation of these smaller structures on all training/validation
slides was intractable.

Results overview
In the following subsections, the impact of a digital assessment on
the surgical workflow will be demonstrated through description of
the accuracy and execution time of: (1) tumor removal and
specimen preparation, (2) histological assessment, and (3) tumor
mapping.

Tissue preparation results
Following tumor removal, a specimen is sent to the pathology
laboratory for accessioning, grossing, inking, sectioning, and
staining. Tissue grossing and inking decisions are made by the
histotechnician depending on the size and shape of the tissue
specimen. These decisions are not standardized and require a high
level of training and rigorous documentation. To determine if
tissue characteristics could be autogenerated, seventeen surgical
specimens were collected, and the superior pole was delineated
by either tissue ink or placement of a suture. Three-dimensional
reconstructions of excised tissue combined multiple views of the
tissue through captured smartphone videos for one revolution
around a turn table setup (Fig. 3a, b; Supplementary Video 1).

Tissue size measurements. The 3D tissue model was used to
measure the tissue proportions (length, width and height),
compared to manual measurements52 (Fig. 3c). Representing the
tissue specimen as a 3D point cloud, automated tissue measure-
ments of the reconstructed tissue varied by 0.29 cm on average as
compared to manual measurements for each tissue dimension
(Table 1, Supplementary Table 2; Supplementary Video 1). Our
results improved further when using a neural network modeling-
based approach (neural radiance fields, NeRF)53—automated
measurements of reconstructed tissue varied by 0.22 cm from
manual measurements and took less than 30 s per specimen to
render as compared to rendering the 3D point cloud, which took
over one and a half minutes per specimen (Table 1, Supplemen-
tary Tables 2, 3; Supplementary Video 2).

Fig. 2 The margin assessment tool features three panes for modeling the gross specimen, histological assessment of tumor of tumor and
mapping histological findings back to the surgical site. Workflow overview: a gross tissue measurements and inking recommendations are
made using the 3D Model Pane, which reconstructs 3D models of tissue from video of tissue rotating around a turntable set up, b rapid margin
assessment is accomplished through the Histology Pane, which localizes holes/tears (completeness), tumor, and calculates spatial statistics on
ink for orientation (blue is 12 o’clock, red is 6 o’clock), and c Mapping Pane maps margin assessment results to surgical specimen through
morphing to user defined surgical tumor map and by leveraging the orientation calculated in the Histology Pane to reorient the results to a
format understandable by the surgeon.
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Inking recommendations. Taking into account: (1) autogenerated
tissue size, (2) preferred grossing approach (MMS versus radial) as
dictated by surgeon/pathologist, and (3) size of a glass slide,
automated grossing and inking measurements/recommendations
were generated to maximize the amount of margin assessed per
tissue block/slide. This resulted in lines being placed through the 3D
model recapitulating expert domain knowledge, using suture/ink
locations for guidance. For MMS specimens, the algorithm placed 3D
black lines, which identified the location of grossing cuts, and blue
and red lines, denoting 12 and 6 o’clock ink placement, respectively
(Fig. 3c). Figure 3d demonstrates tissue grossing and ink recom-
mendations for radial sectioning of a wide local excision specimen.
Grossing cuts are identified by black lines through the body and two
tips of the specimen based on tissue size. Inking recommendations
include unique color combinations for each tissue piece allowing
multiple pieces to be put into a single cassette, resulting in fewer
tissue blocks for the histotechnician to section.

Histological assessment results
Tissue completeness assessment. Effective histologic analysis of
tumor margins relies on high-quality tissue sections that are
devoid of holes or tears. In the absence of a complete tissue
section, it is not possible to definitively declare a margin free of
tumor. To address this, a ‘Tissue Completeness’ algorithm was
developed using a combination of convolutional and graph
convolutional neural networks (CNN-GNN)54. The algorithm was
trained and validated on 381 annotated tissue sections using
PyTorch to segment holes/tears (tissue artifacts) in the tissue54,55.
The tissue completeness algorithm was trained to delineate
between the following macro-architectural features: (1) holes/
tears, (2) epidermis, (3) dermis, and (4) subcutaneous fat. The GNN
algorithm successfully identified tissue defects in our test set with
an AUC of 0.84 (Table 1). Interestingly, the CNN model initially
trained to identify holes and tears demonstrated better perfor-
mance than the GNN in identifying incomplete tissue sections
(test-set AUC= 0.92 vs. 0.84). An example output of the
‘Completeness’ algorithm is shown in Fig. 4a, b, where sporadically
placed holes/tears are highlighted by the algorithm, while regions
of fat or significant gaps introduced by hair follicles or less
structured dermis are ignored (Supplementary Fig. 2).

Tumor localization. To evaluate for the presence or absence of
tumor, a CNN-GNN was trained and validated on 1065 tissue

sections containing a variety of BCC histologic subtypes
reflective of clinical practice, including the following subtypes:
nodular, superficial, infiltrative, micronodular, and sclerodermi-
form (Supplementary Table 1). Annotation subgroups included:
tumor, benign skin structures (e.g., hair follicles), and cell
populations that may be confused with or a harbinger of tumor
(e.g., inflammation). With the aim of enhancing tumor classifica-
tion specificity, a comparative analysis involving two CNN-GNN
models was conducted within an internal validation set for
model selection—one focused on distinguishing tumor from
benign tissue (two-class), and the other incorporating inflam-
mation as a distinct class (three-class). The exclusion of
inflammation from the model elevated the risk of misclassifying
inflamed regions as tumor, thereby diminishing specificity.
Inclusion of inflammation modeling, however, not only bol-
stered accuracy (AUC= 0.98 versus 0.96 for three and two
classes respectively) but also significantly curtailed tumor
misclassification within inflamed regions (4% versus 38%
misclassification of inflamed regions as tumor). This approach
reinforces the critical role of modeling inflammation in refining
tumor classification outcomes (Supplementary Table 4). An
image detection model removed hair follicles from conflated
tumor-predicted regions (Table 1, Supplementary Fig. 3). On a
test set on 121 held out slides, the CNN-GNN obtained an AUC of
0.97 for the task of tumor localization across sections (Table 1;
Supplementary Video 2). These results varied by histological
subtype (Supplementary Table 5)– for instance, achieving an
AUC of 0.96 for superficial BCC and 0.98 for squamatized and
nodular BCC tumors. Across all subtypes, results reveal that the
GNN exhibited superior performance (AUC= 0.97) compared to
the CNN (AUC= 0.90) in detecting tumors at a 50-micron
resolution. Example displays of the tumor detection output
across serial sections of two test set cases is shown in Fig. 4a, b.
We have included example displays of hair follicle and
inflammation-predicted regions on held-out slides in the
supplementary information file (Supplementary Figs. 3, 4), which
further demonstrate how exclusion of these regions can inform
tumor localization.

Nuclei detection and classification. To rule out rare tumor cells in
regions predicted to be inflammatory aggregates, a cell detection
neural network and graph neural network were trained and
validated on 32,763 cell annotations to provide high-resolution
tumor maps designating precisely which cells correspond to the

Fig. 3 Tissue preparation workflow enables precise 3D modeling of a gross specimen for accurate tissue measurements and tailored
grossing recommendations. Tissue Grossing Measurement and Recommendations via the 3D Model Pane: a image of turntable setup, where
phone camera is placed on mount to record gross specimen revolve around table; b still frame from phone video of rotating tissue specimen;
also depicted on the bottom are automated segmentations of the tissue and suture using the 3D Model preprocessing subroutine, images
were selected from a representative set of still frames to demonstrate multiple object viewpoints; c these viewpoints are integrated together
for 3D reconstruction of the gross specimen, pictured here are screenshots while using the interactive 3D Model Pane to rotate the specimen
to various orientations; inking recommendations are deposited via the addition of red/blue and black lines, which denote inking of 12 o’clock
(blue) near the suture (which has been removed) and 6 o’clock (red) after bisecting the tissue (black); length, width and height measurements
are automatically reported on the scale of centimeters while operating the display; d tissue grossing and ink recommendations for radial
sectioning of a wide local excision specimen.
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BCC annotation subgroup56,57. The cell detection neural network
was used to locate nuclei in the slide, recording their positional
coordinates. Based on their positional coordinates, a k-nearest
neighbors graph was constructed. Individual cells were repre-
sented as nodes in the graph– numerical information extracted
using a CNN represents their nodal attributes and cells are
connected (i.e., edges) by their k-nearest neighbors. Cell graph
neural networks pass messages between adjacent cells to provide
contextual information, capturing the relationships between

different cell populations in the tissue, including tumor cells and
surrounding inflammation, which can be used to improve the
accuracy of our predictions. Annotation subgroups to train the cell
detection algorithm included: “BCC”, “hair follicle”, “inflammatory”,
“fibroblast”, and “epidermal keratinocyte”. Results demonstrate
the ability to accurately localize cells (Dice=0.85) in an internal test
set, while predicting with high accuracy the corresponding cell
type (F1-Score=0.86) (Supplementary Table 6; Supplementary
Fig. 5).

Table 1. Model performance and concordance with pathologist/surgeon annotations for the gross measurements, tissue orientation/mapping,
completeness, and margin assessment tasks.

Task Evaluation metric Subtask Estimate 2.5% CI 97.5% CI

Gross Measurements 3D Point Cloud: MADa (cm) L 0.36 0.21 0.53

W 0.23 0.12 0.52

H 0.29 0.19 0.50

Overall 0.29 0.2 0.47

NeRF: MAD (cm) L 0.21 0.11 0.53

W 0.19 0.17 0.22

H 0.27 0.17 0.36

Overall 0.22 0.18 0.33

3D Point Cloud: MPCb (%) L 12.4 7.9 17.7

W 13.0 8.3 32.0

H 31.7 20.0 58.0

Overall 19.0 12.6 33.2

NeRF: MPC (%) L 11.3 4.5 14.3

W 11.3 8.3 16.9

H 34 6.5 58.3

Overall 18.9 8.2 28.5

3D Point Cloud: Correlation L 0.848 0.544 0.973

W 0.833 0.467 0.971

H 0.812 0.456 0.955

Overall 0.831 0.602 0.937

NeRF: Correlation L 0.946 0.814 0.988

W 0.875 0.576 0.976

H 0.893 0.646 0.984

Overall 0.905 0.782 0.96

Tissue orientation MAD (°) 4.883 4.04 5.451

Proportion Correct Orientation ≤45° 94.7% 92.3% 96.6%

≤15° 86.0% 82.6% 88.9%

≤5° 51.3% 46.7% 55.7%

GNN: Tissue completeness AUC 0.839 0.825 0.855

Macro-AUC 0.851 0.839 0.863

GNN: Margin assessment AUC Original Slides 0.967 0.960 0.979

Follicle Removal 0.965 0.959 0.975

Macro-AUC Original Slides 0.962 0.954 0.970

Follicle Removal 0.957 0.949 0.964

CNN: Tissue completeness AUC 0.923 0.917 0.930

Macro-AUC 0.916 0.907 0.925

CNN: Margin assessment AUC 0.900 0.887 0.912

Macro-AUC 0.877 0.859 0.893

Tumor Mapping Accuracy 0.992 0.915 0.999

Macro-AUC represents reporting of AUC statistic on slide level and averaging across slides, giving each slide equal weight, while normal AUC statistic is
calculated for subimages across all slides. 95% confidence intervals were acquired using 1000-sample non-parametric bootstrap, where bootstrapping was
done on the WSI level to account for variation in concordance across the cases.
aMedian Absolute Deviation.
bMedian Proportion Change.
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Mapping histological findings to surgical tumor site
Tissue orientation. Histologic ink location is critical to tissue
orientation and subsequent tumor mapping. In this study, MMS
specimens were inked blue (12 o’clock), and red (6 o’clock)
which was reflected in the surgeon’s hand-drawn diagrams.
These terms (e.g., 12 o’clock, 6 o’clock) are commonly used in
histopathology to indicate the position of the tissue section on
the slide in relation its anatomic positioning and orientation. For
instance, the surgeon will indicate the anatomic position of the
examined tissue. After histological sections are examined, this
information needs to be mapped back to the original location of
the tumor and rotated correctly (using inks to denote the
tissue’s orientation on the tumor map). This step is important to
enable the surgeon to utilize the histological information during
excision without having to rely on constant communication with
the pathologist (typically over phone). Ink detection was
automated through segmentation of tissue edges through
filters, color thresholding, and connected component analyses
to remove spurious applications (i.e., where ink is erroneously
applied / seeps)58. Subsequently, a line was plotted between
detected blue and red ink on tissue sections and stored for use
later to calculate the relative orientation to lines drawn either
with surgeon annotated inks on histological slides as compar-
ison or to inks drawn in the surgical tumor map for mapping
histological results back to the specimen (Figs. 4, 5). On a subset
of held out test slides, the relative angular difference between
predicted and surgeon-annotated blue-red ink lines were
measured and compared. Findings indicate that 95% of tissue
sections were oriented with less than 45° difference between
annotated/predicted lines with an average relative angular
difference of 4° (Table 1, Supplementary Fig. 6a, c, Supplemen-
tary Table 7). More than 85% of sections were oriented correctly
with less than a 15° angular difference, deemed an acceptable
amount of variation for accurate tissue orientation. Complete
performance characteristics can be found in Supplementary
Table 7. Sections without correct orientation demonstrated
relative lack or spurious applications of ink, highlighting the
importance of proper tissue inking (Supplementary Fig. 6b)59.

Tumor mapping. Accurate tumor mapping is critical to inform
additional tumor removal if needed. Tumor mapping relies on
anatomic identification of surgical site, accurate tissue size
measurement, tissue orientation, and tumor identification. To
build a tumor map, a template is selected by the surgeon based
on the anatomical surgical site with blue and red lines used to
indicate 12 o’clock and 6 o’clock, respectively (Supplementary Fig.
7). The tissue sections are then fit to the tumor map through an
algorithm that morphs and rotates the WSI histologic tissue
sections into the shape and orientation (i.e., aligned blue-red ink
line) at the anatomic site as drawn on the templated map (Fig.
5a–c illustrates mapping at arbitrary orientations, Supplementary
Videos 2, 3 demonstrates concordance between hand-drawn and
digital tumor maps)60–62. To determine the accuracy of automated
tumor mapping, 28 test set cases (selected at random from cases
with known positive margins) were used to compare platform
generated tumor maps to the surgeon hand drawn maps. This
showed 99.2% (95% CI: 91.5–99.9%) correspondence between the
surgeon and algorithm generated maps, respectively (Supple-
mentary Figs. 8–12, Table 1, Supplementary Video 3, Supplemen-
tary Data 1).

Margin assessment speed
For broad applicability of this approach for tumors in patients
where anesthesia is required, the platform must perform with
efficiency and speed63. This was accomplished by parallelizing the
histological processing workflow across all tissue sections and WSI
for each case (Supplementary Fig. 13a; Supplementary Table 8).
Overall, margin assessment using this platform across the entire
test set (n= 41 cases, 121 slides) had an average execution time of
72 s per slide and 78 (95% CI: [66–88]) seconds per case (i.e., many
slides/sections per case), consisting of 48 s for preprocessing and
24 s for parallel performance of image stitching, CNN-GNN
analysis, and tissue orientation (Supplementary Fig. 13b). Execu-
tion of the platform in series would take five to seven times longer
than parallelized, 494 (95% CI: [367–553]) seconds per case. For
computational systems with lower computational power (i.e., no

Fig. 4 Histological margin assessment workflow captures tissue orientation, completeness, and tumor localization in serial sections.
Margin assessment via the Histology Pane for two test cases: Patients 1 and 2 represented by panels (a) and b, respectively—three serial
sections per patient are numbered accordingly (1,2, and 3). Results are plotted on top of each WSI for assessments of orientation, tissue
completeness, and tumor localization. Screenshots of WSI from the Histology Pane. For tissue orientation, blue and red lines are drawn over
center of mass positions to define 12 o’clock and 6 o’clock respectively for each tissue section. High resolution completeness and tumor
results represented by thresholded heatmaps (where patches removed from display if failing to surpass probability threshold), where red
indicates whether part of tissue is incomplete or positive margins, and blue indicates lower yet non-negligible probability of incompleteness/
tumor.
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GPU), we have developed and timed execution of a CPU-based
workflow, which had an average execution time of 96 (95% CI:
[79–133]) seconds per case when computing on tissue sections in
parallel (92 s per WSI; 49 s for parallel performance of image
stitching, CNN-GNN analysis, and tissue orientation). Execution in
series through a CPU based workflow would take significantly
longer than parallel execution, requiring an average of 1392 (95%
CI: [907–1817]) seconds per case (Supplementary Table 9).

DISCUSSION
Tumor excision with real-time intraoperative 100% margin
assessment results in low recurrence rate and efficient delivery
of surgical care in MMS. Real-time margin analysis and/or
expanding the area of assessed tissue margins has the potential
to eliminate adverse outcomes associated with post-operative
positive margins (which necessitate additional treatment; i.e.,
repeat procedure) and false-negative margins (which can lead to
recurrence) across surgical oncology procedures. However, broad
applicability of real-time total margin analysis is relatively limited
outside the MMS setting. There are several logistical constraints
that contribute to this including separation of multiple experts in
time and space, inefficient manual laboratory processes, and
labor-intensive pathologic analysis of histologic specimens.
Factors such as the size and location of the tumor, as well as
access to real-time pathologic care, can impact the feasibility of
real-time margin analysis. In this study, a rapid tissue margin
assessment tool was designed and tested to address the rate

limiting steps in the current surgical tumor removal workflow. The
software developed in the present study aims to facilitate the use
of MMS (100% and real-time) margin analysis in a wider range of
surgical contexts, although we acknowledge that MMS is not a
replacement for all resection protocols. Additionally, it can be used
to support the current standard of care, rather than replacing it
entirely, by providing more accurate and efficient margin
assessment.
The developed digital assessment tool performs automated

tissue measurements aimed at improving laboratory workflow
through efficient grossing and inking recommendations. These
recommendations aim to maximize the amount of tissue per block
while decreasing the number of tissue blocks to be cut by the
histotechnician. However, it is important to note that the platform
does not aim to reduce the amount of time for the histotechnician
to gross and ink, embed, section, and stain the tissue, as these
rate-limiting steps require additional innovation to further
improve surgical care delivery. Additionally, unique predeter-
mined ink combinations allow the tissue sections to be
reconstructed and mapped to the 3D tissue model. These features
have the potential to standardize grossing and inking in the
surgical pathology laboratory thereby decreasing the time of
processing and required level of expertise. Future works will
attempt to encapsulate this 3D gross specimen modeling
functionality into an “augmented reality” cell phone application
that provides both tissue dimensions and where to section/ink for
MMS/radial grossing. However, the development and validation of
this application are outside the scope of this study.

Fig. 5 Surgical tumor mapping workflow transforms histological findings into patient-tailored, surgeon-drawn surgical tumor maps in
correct anatomical location/orientation for real-time surgical recommendations.Mapping margin assessment results to surgical tumor map
via Mapping Pane: representation of workflow using three separate sections, the first (a) from one case, and the second two (b, c) are serial
sections in another case; first, margins are assessed via Histology Pane and tissue orientation and tumor localization results are plotted over the
WSI; then, results are mapped to surgical tumor diagram selected by the user (a features top of scalp, while case b, c are of front of face),
where circle is drawn by user to represent surgical site anatomic location and an arbitrary orientation is defined via user drawing of blue/red
lines. Note how tumor results are morphed and rotated to match circle interior and orientation in surgical tumor maps, where density map in
surgical tumor map represents tumor at user defined threshold. For b, c, note how tumor is automatically rotated close to 180 degrees to
preserve orientation of margin on surgical map.
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Histotechnicians are highly trained and currently in high demand
in our healthcare system. Increasing the efficiency of the
histotechnician as well as decreasing the training required to
expertly process and section a tissue excision specimen are two
solutions to address the demand for more histotechnicians64. In
addition to the importance of the ‘Completeness’ algorithm for
tumor margin analysis, this digital assessment aid can also be used
as a training tool to assess the competency of histotechnicians
either in training or as part of an annual review of performance.
Taken together, the platform provides significant support in
training, standardization, and workflow efficiency for
histotechnicians.
The current study resulted in an AUC of 0.97 for tumor

detection at 256-pixel resolution (~64 microns at 40x resolution),
indicating high accuracy in identifying/localizing remaining tumor,
which is anticipated to increase with subsequent and expanded
training sets. These results are comparable to findings from
previous studies, which have reported AUCs between 0.9 and 0.99,
validated at different microscopic magnifications/resolutions (e.g.,
patient level presence of BCC), which can make it challenging to
place these study findings in the context of the prior art36,37,65,66.
Positive margins were correctly identified/located in the correct
anatomical orientation/position in 99.2% of our test set cases. Our
platform does differ in the following ways from previous studies:
(1) 3D gross specimen reconstruction/recommendations, (2)
tumor completeness assessment, (3) addition of a high-
resolution cell-level analysis, (4) identification of follicles and
inflammatory regions, and (5) mapping histological findings back
to the surgical site by using inking patterns for orientation.
Furthermore, previously reported compute times for margin
assessment (e.g., 13 min for 3 sections)65 were significantly slower
than that reported in the present study (78 s for more than 20
tissue sections). Identification of specific histologic BCC subtypes
or normal structures that present particular challenges for the
CNN-GNN will help to identify surgical cases that will be most
impactful for further improvement of the algorithm. In general, we
found that our algorithm performed well across different
histological subtypes. Interestingly, this study elucidates the
importance of the relationship between tumor and additional
cell populations including surrounding inflammation as an
indicator of the presence of tumor. Further delineation of the
tumor niche involves the classification of associated/confounding
cell types and stromal changes which if unaccounted for could
reduce the specificity of the algorithm. This step is essential in
order to enhance the specificity of the algorithm to delineate
tumor from surrounding benign tissue or structures such as hair
follicles which can have similar structures and nuclear morphol-
ogies to BCC. Accurately identifying stromal changes and
associated cell populations at tumor margins is crucial to avoid
overcalling tumor or positive margins– overcalling may result in a
less specific model. The creation of CNN-GNN for the margin
analysis of other solid tumors will require the identification of both
varied histologic tumor types and tissue specific cell populations
or tissue structures that aid in tumor identification.
MMS is possible because the surgeon removes the tumor and

examines the slides in a laboratory in close proximity to the
operating room. In other surgical settings, performing frozen
section margin analysis requires an onsite pathologist to assess
the slides and relay the results back to the surgeon in the
operating room. In these settings the laboratory and operating
room are separated by time and space. This prevents the use of
frozen sections in many healthcare settings, particularly smaller
rural hospitals, where caseload or demand may not support the
presence of an on-demand highly trained expert pathologist. By
creating an algorithm that enables rapid and accurate identifica-
tion of tumor combined with a virtual platform allowing for
remote whole slide imaging and result viewing, this software
obviates the pathologist being in physical proximity to the

operating suite. This allows a pathologist with expertise in one
particular tumor type or organ system to maintain a high case
load while providing highly specialized pathologic care to
healthcare settings that might not otherwise have such access.
High quality, complete tissue sections are critical to accurate
pathologic analysis and prior research has demonstrated that
tissue holes/tears, common to frozen sections, have been shown
to be the largest contributor to cases of local tumor recur-
rence67,68. If the margins come back clear with incomplete tissue/
tears at the margin of the resected specimen, it raises the
possibility of false negatives and additional assessment is
required– irrespective of whether an algorithm was used to assess
tissue completeness, similar to existing procedures for margin
assessment. Integration of the ‘Completeness’ algorithm, which
identifies holes and tears, will determine low quality or incomplete
sections prior to pathologic analysis and allow the histotechnician
to create additional sections as needed, prior to final pathologist
review. This will minimize recuts and allow rapid sign out and
reporting. Integration of the vast amount of data present in a
pathology report through automation will decrease the amount of
work on the back end and also provide both written and visual
outputs that can be used either in real-time or post-operatively.
Excessive charting and documentation result in pathologist
burnout, limiting the amount of manual documentation will both
increase productivity and decrease administrative burden69–71.
For skin cancer of the head and neck, which is more challenging

to assess than the model system featured in this work (BCC) due
to increased tissue size and complexity, decreased positive margin
and recurrence rates have been shown with real-time complete
margin analysis72–79. As many healthcare systems are functioning
with decreased staffing and disruption of supply chains, delivery
of efficient surgical care is critical for patient access and
maximizing hospital resources. Limiting positive margins, tumor
recurrence, or the need for adjuvant treatments will decrease the
burden on the surgical and medical system80–82. Access to remote
pathologists using informatics augmented platforms will allow
both hospitals that may otherwise not be able to offer a surgical
service to do so and increase the productivity of remote
pathologists. Providing histotechnicians with a platform that
automates their tedious tasks and makes grossing/inking recom-
mendations that are reflected in the pathology report will allow
them to focus their time and energy on embedding and
sectioning the tissue, thereby increasing the number of specimens
processed. Taken together, the use of technology in the delivery
of surgical care will not just provide better outcomes for the
patients, but also improve the efficiency of surgical care delivery in
an unprecedented time of resource shortages (e.g., access to care).
Limitations of this study include that it was performed at a

single site. Whole slide images in the training, validation, and test
set were generated in a single laboratory with a standardized
sectioning and staining protocol. Therefore, the next steps will
include creation of an external test set from outside MMS units.
This will be accomplished through a multicenter study, currently
outside of the scope of this work, which is proof-of-concept
informatics-augmented surgical workflow. The innovations fea-
tured and validated in this study establishes feasibility of a larger
multi-center study in the future. Validation of this workflow in this
context and in the real-world setting will also require adapting
virtual inking recommendations to the specific requirements of
each hospital, including their existing standardized inking
protocols.
As this proof-of-concept workflow was developed and validated

on BCC subtypes only, it will be necessary to incorporate the
detection and localization of collision lesions or other skin cancer
subtypes (e.g., Squamous Cell Carcinoma; SCC; Melanoma in Situ,
etc.) into this workflow to account instances where these tumors
may occur in the same field. Since incidental diagnoses are not
infrequent, future work is planned to identify additional tumor
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types to assess for this possibility. For these tumors, our approach
does not yet account for other histological structures such as
actinic keratosis (AK) and perineural invasion patterns which are
more common to these other skin tumor subtypes (e.g.,
aggressive SCC; tumor differentiation) and are relevant considera-
tions when improving our approach. Furthermore, while we
accounted for the presence of resident hair follicles, which are
often challenging to distinguish from BCC on the nose, through a
“post-hoc” adjustment using a follicle detection algorithm, the
follicle detection algorithm will be improved in future iterations of
this work through additional data collection in various tissue sites
(e.g., nose). We acknowledge that there are additional algorithmic
methods (e.g., image transformers, self-supervised pretraining)
which could be leveraged and compared to improve the precision
of the histological assessment, which will be the subject of future
work, though such comparisons were outside of the study scope
in favor of illustrating how these components (gross specimen 3D
modeling, histological assessment, and tumor mapping) can be
integrated together to augment current surgical practices.
Finalized tumor detection and completeness algorithms will

likely require an input of whole slide images from multiple
laboratories. Alternatively, sites aiming to use the platform could
adopt a standardized workflow including reagents and process
similar to those used to generate the tissue sections incorporated
into the algorithms in this study. Obstacles to the usage of the
platform include the availability of whole slide scanners, as these
are currently costly to obtain, and large file uploads which requires
robust computing infrastructure or a workstation capable of
handling high throughput assessment. With time, the cost of
scanners will decrease, while computing power will increase with
advances and cost reductions in graphics processing units (GPUs).
Timely tissue processing and analysis is critical to seamless
integration of the platform into the surgical workflow. The timing
featured in this study considers parallel execution of workflow
elements in optimal computing infrastructure. However, many
high-performance computing environments are bottlenecked by
the time it takes to submit and start simultaneous compute jobs as
well as communication bottlenecks which may be workflow
specific. In future studies, all aspects of the surgical workflow and
platform including: (1) tissue transport and processing, (2) slide
scanning, (3) image upload and processing, and (4) pathologist
review, will be timed via a simulated clinical trial to provide
practical time estimates. We have performed an initial evaluation
on the downstream effects of the algorithm on staff efficiency,
which has demonstrated that automated histologic analysis
results in significant reductions in staff waiting time and more
efficient delivery of surgical care. While these findings are outside
of the scope of the current study, which has focused on the
technical innovations introduced through this algorithmic work-
flow, initial findings have demonstrated time savings of more than
an hour per case. These findings will be discussed in detail in a
follow-up work focused on operational efficiency improvements
conferred through usage of this approach.
As multiple serial sections are assessed using this method,

corresponding WSIs could be co-registered to facilitate a
3-dimensional histopathological assessment to visualize the
spatial arrangement of structural and functional elements within
a single processed tissue. While this is a consideration for follow
up work, 3D reconstruction applied in this context will drastically
slow down our workflow, as sections still need to be mapped to
the anatomical orientation and position after a nuanced, complex,
and time-intensive co-registration process. We instead opted to
register tissue findings at each serial sections to a common
coordinate system defined by the inking patterns (e.g., 12 o’clock
and 6 o’clock) which could be more easily mapped to the patient
as defined by the surgical tissue map, which can summarize
information across multiple sections to report the location of true
positive margins. We would expect 3D co-registration of

histological sections, once mapped to the patient, to perform
similarly as mapping individual sections to a common coordinate
system, at slower execution times.
Complete surgical removal of solid tumors remains most

patients’ best chance at achieving a cure. In this study, MMS
removal of BCC is used as a model system to highlight the
integration of informatics technologies, including the incorpora-
tion of artificial intelligence where appropriate, into the surgical
workflow to address critical bottlenecks that might otherwise
prevent real-time and/or complete tumor margin analysis. This
model has the ability to improve surgical care delivery through
technology driven standardization and automation as one
approach to solve the significant labor and resource shortages
and mismatches in the current system. This can be accomplished
by: (1) improving the efficiency of the individuals and processes
within the system and (2) increasing the number of individuals
capable of performing a critical task. Nonetheless, adopting a
digital aid requires stakeholder buy-in and a readiness for
changing established practices, which carries significant barriers
for entry. Dissemination and implementation of such technologies
requires educational alignment and qualitative assessment of
stakeholder interests and values. In order for such technology to
be adopted, it will need to demonstrate significant improvement
in efficiency over traditional methods while meeting the needs of
surgeons, pathologists, and histotechnicians.

METHODS
Study design
The overall goal of our study was to demonstrate where artificial
intelligence technologies could provide efficiency gains for
intraoperative margin assessment by: (1) generating a
3-dimensional model of tissue for grossing recommendations,
(2) rapid localization of remaining tumor, and (3) mapping
histological findings to a display output familiar to the surgeon.
We first compared tissue gross measurements (length, width,
height) to computer generated measurements. Then, we calcu-
lated AUCs to communicate the accuracy of a CNN-GNN for tumor
localization. Finally, the surgeon reported the number of cases
which exhibited concordance between hand-drawn and
computer-generated tumor maps at the correct anatomical
position and orientation. Throughout the study, we consulted
with end-users (pathologists, surgeons) for the design of the
digital displays, and we utilized an independent test set of
randomly selected cases. Patients were randomized into training,
validation and held-out test set cohorts (i.e., serial sections and
WSI subimages were included in the same cohort to avoid target
leakage and inflating test set statistics). Sample size was based on
data availability to calculate concordance and accuracy. Con-
fidence intervals for the study findings were calculated using non-
parametric bootstrapping and posterior distributions. The authors
complied with all relevant ethical regulations including the
Declaration of Helsinki. Human Research Protection Program
(institutional review board, IRB) of Dartmouth Hitchcock Medical
Center gave ethical approval for this work. All necessary patient/
participant consent was obtained, including written consent, and
the appropriate institutional forms have been archived, and that
any patient/participant/sample identifiers included were not
known to anyone (e.g., hospital staff, patients or participants
themselves) outside the research group so cannot be used to
identify individuals.

Technology overview
ArcticAI is an AI-based software platform for the rapid assessment
of tumor margins. The functions of ArcticAI are encapsulated in
several modules including:
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Tissue grossing via the 3D Model Pane (Fig. 2a): When tissue
arrives at the pathology laboratory, it undergoes accessioning,
description, measurement, grossing, inking, processing, embed-
ding, sectioning, and staining prior to pathologic analysis. To
expedite this process, we have prototyped a mobile application
that takes multiple images / video of the tissue and synthesizes
them to form a 3D model of the tissue. This allows the system to:
(1) determine tissue size (e.g., length, width, height) and
orientation automatically and add this data to the pathology
report, (2) create optimal grossing guides for the histotechnician,
and (3) create optimum inking diagrams for the specimen (e.g.,
blue ink indicates piece is at 12 o’clock; ink used to establish a
“coordinate system” for tissue “map”).
Histological Assessment via the Histology Pane (Fig. 2b):

Following tissue processing, slides are scanned to generate high
resolution WSIs which are uploaded into the ArcticAI platform
where they are assessed for (1) tissue orientation by detecting
inking patterns, (2) tissue quality assessment (e.g. holes and tears
from processing and sectioning), and (3) presence or absence of
tumor, where (4) tumor confounders (e.g., identification of hair
follicles) and (5) nuclei are classified to provide further clarification
of histological findings (e.g., residual tumor within large pockets of
inflammation).
Mapping of Results to Surgical Specimen via the Mapping Pane

(Fig. 2c): Outputs of data from the aforementioned algorithms,
notably tissue inking/orientation and the presence or absence of
tumor, are used to automatically transpose tumor predictions onto
hand-drawn surgical maps. Automated mapping has the advan-
tage of providing the precise location of remaining tumor to
inform the surgeon if and where additional tumor needs to be
removed. A pathology text report with information on tissue
preprocessing is automatically generated and piped to the
patient’s electronic health record. This information is commu-
nicated back to the surgeon, and tumor mapping results (graphics
which resemble surgeon drawn tumor maps) are exported to the
EHR system to update the automatically generated pathology
report.
Workflow automation: Intraoperative resection with 100%

margin analysis typically involves the inspection of 6–10 serial
tissue sections and can take upwards of 30 min per patient under
general/local anesthesia. ArcticAI was optimized to reduce
histological inspection and tumor mapping time using a
sophisticated workflow engine that can be executed in both high
performance computing environments and local workstations
using Toil and Singularity. The pipeline is additionally capable of
processing multiple tissue sections across multiple whole slide
images in parallel.
Web Application: Histotechnicians, pathologists, and surgeons

can interact with the results in real-time as an interactive/
exportable pathology report through a dynamic web application
which contains the following panes: (1) Case upload and
execution (Selection Pane), (2) 3D specimen modeling and
pathology report generation (3D Model Pane), (3) histological
findings and quality report (Histology Pane), (4) tumor mapping
and orientation to surgical specimen (Mapping Pane).

ArcticAI Software Framework
The aforementioned functionality of ArcticAI is accomplished
through a self-contained software framework, comprised of:

1. A pip-installable Python package (arctic_ai) which contains
an Application Programming Interface (API) and command
line interface (CLI) that are organized into a collection of
modules:

a. 3D tissue modeling via photogrammetry (arctic_ai.mo-
del_3d)

b. Tissue Preprocessing (arctic_ai.preprocessing)
c. Histological Findings

i. Tissue Quality Prediction (arctic_ai.cnn_embeddings,
generate_graph, gnn_prediction, set to
macro_map mode)

ii. ii. Tumor Margin Assessment (arctic_ai.cnn_embed-
dings, generate_graph, gnn_prediction, set to
tumor_map mode)

iii. Ink detection and spatial statistics for tissue orienta-
tion (arctic_ai.ink_detection)

d. Tumor Confounder Identification
i. Follicle detection (arctic_ai.follicle_detection)
ii. Cell classification (arctic_ai.nuclei_detection)

e. Tumor and quality mapping onto surgical specimen
(arctic_ai.tumor_map)

f. Image stitching (arctic_ai.image_stitch)

2. A collection of docker and singularity containers that host
various subcomponents of the software to enable inter-
operability and ease installation/dependency conflicts
through self-contained linux subkernels.

3. Toil job scheduling tool and workflow engine for massive
parallelization across local and cloud computing clusters
(arctic_ai.workflow).

4. A dockerized dynamic web framework that can be hosted
online and interacts with the aforementioned software
elements and results output through Plotly Dash, which
contain the following panes:

a. Patient selection and workflow job submission (Selection
Pane)

b. 3D tissue model, size and orientation measurements,
smart grossing recommendations and report generation
(3D Model Pane)

c. Histological findings–tumor and tissue quality (e.g., holes
and tears), optional nuclei/follicle detection results, and
detected inks placed atop slide images (Histology Pane)

d. Mapping of tumor and/or hole/tear results back to
original specimen via computer generated surgical maps
(Mapping Pane)

In the following sections, we will elaborate on the functionality
of each of the ArcticAI modules, with reference to supplementary
methods if necessary.

Patient selection pane
A log-in pane allows for the selection of a patient/case. A database
containing the patient and file paths to existing results data are
searched and if results do not exist for the patient, the user is
prompted to upload data for the 3D Model and Histology panes,
whichever may exist. Upon uploading, jobs are deployed to a
high-performance computing cluster or within a GPU-capable
device for parallel execution, which dynamically updates the
database as results become available. If results exist, the 3D Model,
Histology, and Mapping panes become available for navigation.
Here, the user is also instructed to supply the number of sections
and tissue pieces per WSI based on their placement prior to image
scanning.

3D tissue modeling and grossing recommendations in 3D
Model Pane
Three-dimensional tissue modeling prior to histological assess-
ment provides smart grossing recommendations while automat-
ing the report of tissue size and orientation83. We utilized
photogrammetry techniques which triangulate image features
across multiple viewpoints/images to 3D coordinates in order to
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generate a 3D model of the tissue. We developed a low-cost
photogrammetry studio using a phone camera placed at a fixed
distance away from a turntable. Immediately after resection, the
tissue is placed on a turntable, from which a video of the tissue is
recorded on a smart phone as it revolves around the table for one
revolution. The video is then uploaded to the ArcticAI web app
interface. Three-dimensional modeling is accomplished using the
following two methodologies:

Point cloud based workflow.

1. Tissue Localization: First, the area of the turntable is
approximated using RANSAC-based ellipse finding algo-
rithm, which defines a static search area for tissue across the
video frames. Then, image segmentation is performed on
each video frame, which separates tissue from background
using intensity thresholding, a connected component
analysis for image labeling and an object size filter
(Supplementary Fig. 14a) with background removal using
the grabcut algorithm84,85. Under diverse imaging condi-
tions, intensity thresholding can return many objects;
however, only the gross specimen should follow an elliptical
pattern as it completes a revolution. As such, RANSAC ellipse
fitting and various fit statistics are again used to remove
non-specimen objects through consideration of gross
specimen’s temporal trajectory. Alternatively, segmentation
neural networks, which return pixelwise coordinates of the
tissue location, can also accomplish this task given training
data. Here, only one-tenth the number of segmented still
frames are selected for inclusion in the reconstruction
algorithms to reduce the compute time. This limits
reconstruction quality, but the number of frames used for
reconstruction can be varied based on speed/accuracy
preferences.

2. Feature Matching: Is accomplished with image matching
(e.g., SIFT, SURF, ORB, deep feature matching86,87), which
can find correspondent features across different viewpoints.
We utilized Colmap’s SIFT implementation, which was
accelerated using graphics processing units88–90.

3. 3D Reconstruction: Three-dimensional scene reconstruction
using colmap’s structure from motion (SFM) framework after
image pairing (i.e., match features between images from
similar perspective), registration, and triangulation of pixel
coordinates in a 3D cartesian coordinate system, which
yields a sparse point cloud91, after which a dense point
cloud is generated using a Multi-View Stereo (MVS) frame-
work via depth estimation.

4. Distance Calibration: Distance calibration (i.e., conversion of
pixel distance to physical distance) by measuring the
diameter of the turntable and fitting an ellipse (RANSAC)
to the edges of the turntable, where edges were detected
using a scharr filter (Supplementary Fig. 14b)52,92,93.

5. Measuring orientation: Since the 3D model is oriented
randomly upon creation, the 3D model is reoriented such
that the flat surface at the tissue bottom is fixed in the
downward (“negative-z” direction) position and the tissue is
translated to the (0,0,0) cartesian coordinate system. First, a
k-nearest neighbor’s outlier detection subroutine is used to
refine the point cloud. Calculation of the bottom tissue
surface is accomplished through RANSAC plane fitting,
where the normal plane vector is used to calculate a
rotation matrix94. Finally, the tissue’s 12 o’clock is calculated
through segmentation of the tissue suture as a point of
reference, which is used to rotate the tissue such that 12
o’clock aligns with the “positive-y” direction (Supplementary
Fig. 14c). In the absence of the suture or potential slight
misalignment, the web application features a slider to allow
minor rotational adjustments.

6. Measuring Tissue Size: Measurements of tissue size (e.g.,
length, width, height) are captured by calculating the
maximal x-y-z extents of the tissue respectively after tissue
orientation (Supplementary Fig. 14d).

7. Further Model Refinement: The output 3D model retains the
original color and texture of the excised tissue. The model is
further refined using a Radius Neighbor’s regression
algorithm, which interpolates color and texture from
adjacent points while estimating the z-coordinates from a
closely spaced x-y grid. Alternatively, Poisson mesh recon-
struction after estimation of triangle normals and/or
Delauney triangulation and alpha hull construction present
alternative refinement approaches (Supplementary Fig.
14e)95.

Automated neural network 3D modeling method with neural
radiance fields.

1. Automated Tissue Localization: This step was accomplished
using segmentation neural networks, which was used to
isolate tissue in individual images after training a general-
purpose neural network using hand annotations. Only
20–30 frames per video were captured to simulate a faster
one-second revolution around the turntable.

2. Estimation of Camera Intrinsics: Neural Radiance Fields
(NeRF) is a machine learning method that helps us
understand the 3D structure of tissues by learning to
generate images of tissue taken from previously unseen
angles and positions. These angles and positions used to
train each tissue-specific NeRF model were estimated for
each video through a GPU implementation of Colmap using
the previous described methodology90.

3. 3D Modeling with NeRF: One of the key innovations of NeRF
is its use of neural graphics primitives, which greatly reduces
its computational complexity, allowing for rendering of 3D
scenes in real-time, even on low-cost devices like cell
phones53. Our workflow uses a NeRF model trained with
hash encodings, which speeds up the learning process,
generating detailed 3D models from just a few 2D photos.
These high-quality tissue images are devoid any gaps or
holes, something that other techniques struggle to achieve.
By providing specific camera angles and orientations
relative to the tissue, the model can quickly measure the
tissue’s length, width, and height through assessment of the
segmented tissue at supplied side, front and top-
down views.

It should be noted that the 3D Modeling step does not model or
image deep margins since the bottom of the tissue sits on the
turntable, though this modeling step is entirely separate from the
histological findings (which do model deep margins) and
mapping those results to the surgical tumor map but may be
integrated with the other two modules in future iterations.
Grossing Recommendations and Size Report in 3D Model Pane.

The 3D tissue model is displayed using an interactive web
application using the dash_vtk package along with exportable
technical readouts on the tissue size measurements (3D Model
Pane)96,97. ArcticAI features two grossing recommendation tools,
one for Mohs and another for traditional excisions with
breadloafing. For the Mohs configuration, a 3D line is drawn from
12 o’clock to 6 o’clock in the web application. The 12 o’clock
portion of the line is colored blue while the 6 o’clock portion is
colored red. If the tissue is to be bisected, two pairs of blue-red
lines are drawn parallel to a black line, which is drawn in the
middle of the orientation lines. For breadloafing, the surgical
excision is arranged such that the Burow’s triangles/cones (i.e.,
superior/inferior or lateral/medial triangular excisions adjacent to
resection used as a skin graft to repair surgical defects) point in
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the forward/backward (“positive/negative-y”) direction. Colored
lines are placed across the specimen in the side-to-side direction
at regular 0.5 to 1-centimeter increments (or set by the user; based
on distance to the center) to represent placement of the breadloaf
section cuts. Lines to the left of the specimen are colored blue to
maintain orientation, while lines to the right are colored red,
yellow, green, purple and orange to denote unique sections. The
tissue can be inked in accordance with grossing
recommendations.

Whole slide image preprocessing
After uploading tissue image sections in Whole Slide Image (WSI)
format (TIFF/SVS file format, unsigned 8-bit color), slide images are
prepared for both tumor and hole/tear prediction subroutines.
First, tissue mask is created using a collection of image filters via
the PathFlowAI package98. The tissue mask is generated using the
following subroutine:

1. Using an intensity threshold filter, where objects of too high
intensity are removed/set to white and filtering out large
gray objects which may be artifactual (e.g., image scanner
text, background black pen, etc.).

2. Morphology (binary closing) and blurring operations to
smooth out the mask.

3. Removal of small objects and small holes.

Patch Extraction and Assignment of Tissue Piece and Section
Identifier. WSI are typically partitioned into patches/subimages
because they are too large to predict on using modern high
performance computing resources with limited GPU memory.
Therefore, subimages (256-pixel by 256-pixel) were extracted from
the source image. Patches were extracted given that they had a
significant overlap with the tissue mask as defined by a set
threshold of tissue present. Patches were appended with patch
metadata (e.g., x-y coordinate in WSI). The patch metadata also
contains which serial section the patch belongs to (multiple serial
sections per WSI). Oftentimes, each of the tissue sections were
bisected or cut into four quadrants and inked separately. We refer
to the resulting fragments as tissue pieces (one or more pieces
per section). Each piece was placed separately in the WSI and
physically close to other pieces in the same section, though there
were instances where pieces either overlapped or highly
separated which made it difficult to properly tag a patch with
the relevant section. Tagging patches with the section they
belong to is essential for tumor mapping, such that each section
can be isolated from the others and then mapped by itself to the
surgical tumor map after predicting the histological findings. As
many WSI may be extracted per excision stage/depth, and
multiple stages may be extracted during the excision procedure,
the naming convention for each section denotes the depth in the
specimen. Inadequate separation of sections and/or tissue pieces
by failing to tag patches with the correct section identifier may
degrade the performance of the tissue completeness, orientation
and mapping algorithms because patches will be extracted from
the space between the two conjoined section, which may contain
excess whitespace and distort the ink and shape statistics.
However, estimating which sections certain tissue pieces belong
to is non-trivial since neighboring pieces may be conjoined, which
resembles a section with fewer pieces that may fail to map well. To
this end, the preprocess module features a robust automated
section/piece splitting algorithm which can assign patches to the
appropriate tissue piece/section using the following subroutine
(Supplementary Fig. 15a):

1. Tissue patches are connected based on spatial proximity,
building a radius nearest neighbors graph. Sections
comprised of patches are established using a connected
component analysis that finds and labels contiguous sets of

patches. Sections are assigned based on a large neighbor-
hood of patches, large enough (within a 4096-pixel radius)
to connect patches between neighboring tissue pieces
within the section but small enough to not incorporate
adjacent sections. At this point, it is difficult to delineate
pieces from the section especially if they are conjoined,
because what constitutes a contiguous element is defined at
a large distance, and it is assumed that tissue pieces are the
tissue sections, which now must be further subdivided.
Then, pieces are initially broken based on connectivity at a
smaller distance (within a 512-pixel radius), small enough to
break apart pieces when they are separable in a section but
not small enough to separate conjoined pieces. This will
generate in most cases multiple pieces per section.

2. For each tissue section, if the number of tissue pieces for the
section matches expectations (input parameter), then piece/
section assignment for that section is complete. If the
number of pieces per section does not match expectations,
then the algorithm would divide largest candidate piece
into the expected section pieces using Spectral Clustering, a
technique that divides conjoined sections into separate
areas by regions of weak connectivity between conjoined
pieces. Repeat this step until optimal results are achieved.

The initial set of tissue subimages that remain after the above
procedure serve as input to the tumor prediction algorithm i.e.,
tumor_map configuration, which predicts presence of tumor on a
patch-by-patch basis. This configuration defines areas on a section
where tissue is present from which to predict location of tumor
but purposefully omits candidate holes and tears to avoid
predicting those regions as benign. Thus, this set of patches is
insufficient to predict where tissue is absent or incomplete (i.e.,
tissue quality, location of holes and tears that determine whether
the section should be assessed) since patches are, by definition,
absent.
Patches correspondent to candidate holes and tears are

extracted for each section piece using an alpha shape object
finding algorithm which outlines the section piece in a way that is
both tightly fit to the piece while also bridging tears that are
connected to the exterior of the object and thus are not normally
estimated using traditional hole finding algorithms (Supplemen-
tary Fig. 15b)95. These patches are added to the tumor_map
patches to form the macro_map configuration for tissue quality /
tissue completeness assessment. If tissue is incomplete, it is
inadvisable to assess margins. All tissue piece subimage patches,
tissue masks and their corresponding metadata are written to NPY
format (numpy array99) and serialized into pickle format respec-
tively for storage.

Feature extraction using convolutional neural networks
We trained ResNet-50 convolutional neural network (CNN) models
to extract predictors from the tissue subimages to be used in our
prediction workflow100. ResNet-50 was selected after comparing
the performance on the validation set between a myriad of CNN
models available in the PathFlowAI package and after conducting
a random/coarse hyperparameter search. First, convolutional
neural networks were trained and internally validated on a subset
of image patches (n= 122 WSI; 1,988,841 patches) for the
following prediction tasks, with a batch size of 32 patches,
learning rate of 1e–4, modulated with a cosine annealing learning
rate scheduler for 100 training epochs:

1. Tumor CNN: Tumor localization, where regions of tumor
were delineated from benign structures and inflammation. If
a patch contained both malignant and inflammatory cells,
the patch was labeled as having contained tumor.

2. Completeness CNN: Delineation of macro-architectural sub-
compartments, including: (1) hole/tear, (2) fat, which if not
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explicitly annotated, could closely resemble hole/tears, (3)
epidermis and (4) dermis. Here, patches of dermis contain-
ing wispy white patterns were removed from the training/
validation set to avoid conflating regions of dermis with
hole/tear.

After training, the two ResNet50 CNN models were used to
extract embeddings of image features from the penultimate layer
of the model as images passed through the neural networks. CNNs
were organized into multiple processing layers, each of which
represent objects/images at increasing levels of abstraction (i.e.,
each input register corresponds to a more complex image feature
at a deeper layer). Whereas the final CNN layer is used to output
the probability of the presence of a specific tissue architecture, the
penultimate layers output a rich feature set (embeddings) which
can be used as a generic representation of the image features and
if plotted could demonstrate how specific images cluster together
with dimensionality more expressive than the output layer alone.
The trained CNN models, Tumor CNN and Completeness CNN, are
configured to output 2048-dimensional embeddings for all
tumor_map and macro_map patches respectively for a given
tissue section. CNN models were configured using the PyTorch
package (v1.8.0) using Python v3.7101.

Graph neural networks for final histological assessment
WSI contain significant white space and the placement of tissue
on a slide is relatively arbitrary. The dimensions of WSI are typically
very large which necessitates dividing the tissue into smaller
subimages (tiles). However, prediction using a CNN assumes that
neighboring image patches are unassociated, which undervalues
their spatial context within the surrounding tissue architecture.
Graphs represent image patches and their spatial dependencies as
nodes and edges, capturing both feature and spatial information.
As such, graph-based neural networks (GNN) have emerged as
premier methods for histological assessment. Using GNNs,
predictions are invariant to the positioning and orientation of
the tissue and are enhanced by the incorporation of spatial
information encoded in the edges. The motivation for adopting
this methodology was based on previous reports of improved
performance by utilizing contextual information from surrounding
tissue54. The GNN architecture (e.g., number of layers, type of
layers– graph attention, etc.) was determined after a randomized
hyperparameter search, comparing performance on the internal
validation set. We fit two GNN models corresponding to the
following prediction tasks, with a batch size of 16 WSI graphs,
learning rate of 1e-2, modulated with a cosine annealing learning
rate scheduler for 1500 training epochs:

1. Tumor GNN: Analogous to Tumor CNN.
2. Completeness GNN: Analogous to Completeness CNN.

However, all patches are included in this analysis, including
wispy dermis which is now contextualized by the surround-
ing dermis and not subject to conflation with holes/tears.

Graphs were defined using a radius neighbors algorithm, which
connected patches (nodes) to their immediate neighbors (edges)
using their positional x-y coordinates54. Attributes of the graph
nodes were set to the embeddings extracted by the relevant CNN.
Node attributes (CNN features) were shared/passed to adjacent
patches using three graph attention layers of dimensionality 32,
32, and 64. The graph convolution layers were interspersed with
DropEdge and Dropout layers, which randomly pruned patch-wise
connections and graph-learned node features during training (to
enhance model robustness to noise). After running the graph
convolutional layers, these features were piped to a prediction
output layer that would return predicted probabilities (and their
logits) of each class for the respective tasks. GNN models were
configured using the PyTorch-Geometric package (v1.7.1) using
Python v3.755.

Ink detection and calculation of spatial statistics for tissue
orientation
The orientation of the WSI tissue section with respect to the
original specimen / surgical tumor map was inferred using spatial
statistics / tissue orientation algorithms. These algorithms were
developed to automatically identify ink colors and orient a WSI
tissue section based on a collection of applied inks: blue and red,
though subroutines exist in ArcticAI to additionally calculate:
yellow, green, orange, purple, and black. First, tissue edges were
segmented using a Sobel filter with morphological dilation and
opening operations. Then, sensitivity analysis over thresholds in
Hue, Saturation, Value (HSV) color space yielded optimal color
thresholds to detect inks, which were paired with a connected
component analysis to identify contiguous regions and remove
spurious applications of ink within the tissue edges (i.e., where ink
is erroneously applied / seeps). Alternatively, semantic segmenta-
tion algorithms based on annotations, and conditional random
field102 can further improve ink detection. After detecting ink,
orientation of the WSI section piece is inferred through calculation
of the center of mass of the x-y coordinates of each detected ink
color (using either the mean, median, or trimmed mean of each
pixel coordinate). In our practice setting blue defines 12 o’clock,
red defines 6 o’clock, in accordance with the 3D model of the
Mohs specimen and with the surgical tumor map. The line
between the blue and red ink defines tissue orientation relative to
blue and red locations defined in the surgeon’s hand-drawn tumor
map, where the relative angular difference between the blue-red
lines from the histology and blue-red lines from the tumor map
dictate the relative rotation required for the histology results to
match the same angle of the tumor map.

Image stitching
Input WSI are prepared for viewing using a subroutine which
converts the images of individual sections, extracted using the
preprocessing workflow, to a “Deep Zoom Image” (DZI) format, a
pyramidal file format which interfaces with openseadragon, a WSI
viewer. The aforementioned rapid histological assessment steps
(Preprocessing, CNN-GNN, Ink Detection) return positional predic-
tions for their respective coordinates. These positional predictions
are piped and prepared for display through a dynamic json export
of the histological results and imported into an openseadragon
SVG overlay component for viewing across the slide103.

Removal of potential tumor confounders and identifying
residual tumor in regions of predominant inflammation
Two R101-FPN neural network models using the computer vision
framework detectron2 (for panoptic segmentation) were trained
for the task of localizing follicles across a slide and residual tumor
within pockets of inflammation as an added layer of auditing.
Panoptic segmentation models can detect objects in an image
and their image class through proposals of bounding boxes using
neural network detected features while simultaneously segment-
ing the object using a segmentation architecture which operates
dynamically on the proposed regions56,57.
First, 672 follicles were annotated across 16 WSI (60 tissue

sections) from the training/validation sets, where 595 non-
overlapping 1024 pixel by 1024-pixel subimages were extracted
and assigned to training and validation sets whether they
belonged to WSI of the training or validation set for the CNN-
GNN algorithms (i.e., different set of patients within these cohorts).
A panoptic segmentation network was fit to the data at a starting
learning rate of 1e–3 and was trained for 1000 epochs. The trained
neural network was applied to patches suspected to contain
tumor in the test set WSI (i.e., different set of patients from the
training and validation sets) to eliminate patches with significant
confounding. This was done using an adjustment scheme in which
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tumor scores were reduced more for patches with greater
proximity to the follicle based on the overlap between the
predicted follicle and three concentric circles (128, 256, 512-pixel
radii respectively) around each patch. The percentage overlap
with the follicles and each circle multiplied by a circle specific
penalty (higher for the 128-pixel circle and lower for the 512-pixel
radius circle), normalized to a scale between zero and one was
used to determine the tumor prediction probability to dock from
the original score.
Inflammatory patches were assessed at the level of individual

nuclei via the creation of a workflow to detect, classify, and
segment nuclei. Using the nuclei annotations that were manually
annotated by four pathologists using the Automated Slide
Analysis Platform (ASAP), we extracted 795 patches of size 128
by 128, correspondent to approximately 32,763 nuclei, across
three whole slide images (WSI) from the training/validation set.
The model was trained to detect and delineate the following cell
types: (1) fibroblasts, (2) hair follicles, (3) inflammation, (4)
malignant basal cells, and (5) benign epidermal keratinocytes.
For our train-validation split, 80% of these patches were randomly
chosen for our training/validation dataset and the algorithm was
evaluated using the remaining 20% of the image patches prior to
prediction on the held-out test WSI. The held-out test set was
comprised of an entirely different/unique set of patients than the
training and validation sets. We reported the predictive statistics
for detection accuracy on an internal validation set using the Dice
score (related to Intersection over Union). Predicted cell types
were refined from the detected nuclei using a CNN (ResNet-50
architecture) and GNN model using the same training/validation
sets. F1-score statistics were recorded as a final measure of fit
across the test set cells, separately comparing the detection, CNN
and GNN models for their prediction accuracy, bootstrapping on
the patch and slide level since the nuclei are nested within
patches.
Optimal hyperparameters were identified from evaluated

results on this held out validation set prior to application across
test slides. We timed both algorithms through evaluation across
test set WSI and similarly recorded the uncertainty through non-
parametric bootstrapping while accounting for clustering on the
WSI level.
For these assessments, algorithms were trained, validated and

evaluated on training, validation and test sets respectively which
were comprised of a different set of patients to avoid target
leakage from having serial sections placed in different cohorts.
Data within each patient was not included in both the training
and test sets. These cohorts were partitioned using the Group-
ShuffleSplit iterator available in the scikit-learn package.

Compilation of histological assessment results into Histology
Pane
The results from the histological assessment models (Tumor CNN-
GNN, Completeness CNN-GNN) are passed to an OpenSeadragon
plugin that features the DZI image correspondent to the selected
case, resection site/stage and section depth. This plugin operates
within a plotly dash environment that interfaces the WSI viewer
with the results data104. The user has the option of selecting
whether to display a heatmap containing the tumor or complete-
ness (holes/tears) prediction results over the slide using the SVG
plugin as aforementioned. A slider controls the minimal prediction
probability for inclusion in the heatmap to filter out irrelevant
regions. The patches’ color intensity (blue to red and opacity) is
determined by their prediction scores. The predictions from image
patches can be optionally refined using an interpolation method
which uses a custom prediction propagation GNN to yield refined
predicted probabilities that exist between the original patches
(e.g., if we had four patches in locations (1024,256), (1024,512),
(1024,768), (1024, 1024), we could infer information at tile position

(1024, 640) by leveraging information from all four tiles, though
primarily from adjacent tiles)105. The SVG display can be toggled
on and off. The tissue orientation may also be toggled on and off,
where red and blue lines may be automatically placed on the slide
based on detected inking patterns and associated spatial statistics.

Mapping tumor and completeness results to surgical
specimen using the Mapping Pane
Results (tumor/completeness) from user selected tissue sections
for each case can be mapped to the surgical specimen that is
featured on a hand-drawn surgical tumor map at arbitrary
locations using an interactive image display. First, the user selects
from a set of prepopulated surgical map templates representing
various anatomical positions (e.g., back of hand, neck). After
selecting the position template, the user draws a black ellipse on
the image template representing the removal site. The user also
defines tissue orientation by drawing blue and red inks at the
circle’s edge to define 12 o’clock and 6 o’clock respectively, which
is correspondent to inking patterns recommended/selected from
the 3D Model and Histology panes. Tissue sections comprised of
1-2 tissue pieces are represented by a 2D point cloud or a
collection of points, where each point is tagged with positional x-y
coordinates within the WSI, the tumor/hole/tear predicted
probabilities and ink locations. These points are “morphed” or
registered to locations in the interior of the circle using an
optimizer for optimal transport, which minimizes the cost or effort
required to match the points to the interior of the circle while
maintaining the relative positioning of the coordinates comprising
the histological section. The distributional difference between the
histological section and surgical mapping ellipse is estimated
using the sliced Wasserstein (“Earth Movers”) distance and
minimized using gradient descent via pytorch and python optimal
transport (POT) libraries60–62,101. In sum, this methodology morphs
the arbitrary shapes of the histological specimen, which are
dependent on serial sectioning of the gross specimen, to the
elliptical shape drawn by the Mohs surgeon. The relative
positioning of ink is preserved during this transformation and
the angular difference between the ink after tissue morphing and
that defined via the Mapping pane are used as a final rotational
adjustment to match the surgical tumor map. Finally, the
histological section results are placed in the circle on the Mapping
pane in the correct orientation, where a kernel density contour
map defined over the tumor/completeness results is placed to
highlight tumor/holes/tears. Like the Histology pane, the density
map can be thresholded with arbitrary probability cutoffs by the
user to yield specific tumor locations and the finalized map can be
exported to the pathology report.

Differentiating 3D modeling approaches
In the supplementary information file, we have included several
supplementary figures (Supplementary Figs. 1, 9–11; Supplemen-
tary Videos 1–4) illustrating methods to study tissue in 3D, which
have been summarized below:

1. 3D reconstruction of the gross specimen: Use of photo-
grammetry techniques to image tissue at numerous angles
prior to histological examination and using triangulation of
imaging features or use of neural radiance fields to measure
tissue dimensions and suggest inking/sectioning recom-
mendations (Supplementary Videos 1, 2)53.

2. 3D histopathology: Co-registering WSI corresponding to
serial sections through image registration methods and then
identifying histological structures persistent through these
serial layers– does not consider position and orientation of
tissue at surgical site and due to high dimensionality of
images convergence time can be slow across many serial
sections40,41. This technique was not employed in this
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computational workflow due to limitations precluding real-
time analysis though 3D meshes of the tumor margin were
reconstructed from alignment of serial sections to demon-
strate application of these methods (Supplementary Video
4).

3. Tumor mapping: Mapping each serial section to a common
coordinate system through identification of inks as means to
perform rapid co-registration and orientation to the original
surgical site (Supplementary Video 3, Supplementary Data
1).

Workflow specification
All aforementioned ArcticAI jobs execute using a Toil job
executor63, which can run jobs in parallel either locally (on a
GPU-capable machine) or in an HPC environment using a Slurm or
alternative job submission system. Here, we will enumerate which
components execute in parallel based on their respective work-
flows, where we have denoted which set of subcomponents
execute in series or parallel.

1. 3D model pane (series)

a. Tissue preprocessing (series)
b. 3D Reconstruction (series)
c. Final tissue filtering (series)

2. Histology pane (series)

a. Tissue preprocessing and section assignment (series)
b. Parallel components, where final subworkflow time is

assessed by the subcomponent and tissue section which
took the longest time to execute (below subpoints are
parallel)

i. CNN-GNN subcomponents for tumor/completeness pre-
diction, comprised of CNN embedding creation, graph
generation and GNN prediction (parallel)

ii. Ink detection and orientation (parallel)
iii. Image stitching (parallel)

c. Based on CNN-GNN results (parallel)

i. Follicle detection (parallel)
ii. Nuclei detection (parallel)

Finally, we have included a Histology workflow diagram which
illustrates how results from various workflow components feed
into subsequent steps (Supplementary Fig. 13). It should be noted
that after tissue preprocessing, tissue pieces/sections all execute in
parallel, from which the aforementioned subworkflows also
execute in parallel.

Experimental Objectives
Tissue Grossing Measurement Concordance: Length, width and
height measurements of the 3D reconstruction of resected tissue
was compared to hand measurements of the original specimen
using median absolute deviation and spearman correlation
statistics. These statistics were also recalculated under the
assumption that the calculated tissue dimensions were off on all
3 dimensions by a proportional constant (i.e., improper calibration
of the video with distance measurements).

Concordance of Algorithm to Hand-Drawn Maps from Surgeon: To
assess the accuracy of the Arctic grossing, completeness, and
tumor detection algorithms and mapping of histological findings
to the surgical tumor map, we included the following compar-
isons, assessing accurate: (1) calculation of tissue size, (2) analysis
of tissue quality or completeness of tissue as judged by the
localization of holes and tissue tears, common to frozen
specimens, (3) localization of tumor in WSI, (4) orientation of
tissue section, (5) mapping of tumor to surgical tumor map, and
(6) a prediction of whether and where additional tumor removal is
required.
In comparison to previous studies which examine the

diagnostic significance of positive margins on post-operative
BCC sections, we assessed whether pathologists would manually
map tumors similarly in digital versus analog mediums by
comparing hand-drawn tumor maps to digital ones. After
establishing concordance between histological findings via
pathologist annotations and BCC predictions, we established the
concordance between the automated tumor map with the
intraoperative hand generated map that was produced by the
Mohs Micrographic Surgeon at the time of surgery. If there were
discrepancies between surgeon-generated and ArcticAI-generated
tumor maps, both the original glass slides and WSI were manually
reviewed.
A receiver operating characteristic curve (ROC; sensitivity

analysis) was performed to establish predictive probability cutoffs
which result in high sensitivity to minimize the potential for false
negatives. Results are reported with a 1000-sample non-para-
metric bootstrap 95% confidence interval with bootstrapping
performed on the WSI level to capture clustering on the slide level
(i.e., variation in performance statistics between and across slides).
Separately, concordance between hand-drawn and digital

tumor maps was calculated based on the proportion of cases
the surgeon subjectively rated as equivalent (orientation of map
and position of tumor) to the original map. Uncertainty in this
proportion was assessed through calculation of the 95% credible
interval (CI; like the confidence interval) of a Beta posterior
distribution (Beta a ¼ 0:5þ 28; b ¼ 0:5þ 0ð Þ), updated through a
beta-binomial conjugate prior, with a Jeffrey’s prior (Beta 0:5; 0:5ð Þ)
and Binomial likelihood (Binomial n ¼ 28; p ¼ 1:0ð Þ; 28 cases with
positive margin, 28 successful trials; three cases had clear
margins).
Execution Time: To demonstrate the timely execution of the

ArcticAI system, the following steps in the process were precisely
timed: (1) image preprocessing; (2) tissue quality and tumor CNN-
GNN prediction; and (3) tumor mapping and pathology report
output. We report median times across slides to account for
outliers, with 1000-sample nonparametric bootstrap 95% con-
fidence intervals. Details on the calculation of timing given
optimal parallelization can be found in the methods section,
section “Workflow Specification”. Test cases were evaluated using
four compute nodes in the Dartmouth Discovery computing
cluster which shared between them 13 Nvidia v100 GPUs (32 Gb
memory each), 272 CPUs, and 1.9 TB RAM.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets presented in this article are not readily available because of participant
privacy concerns. A subset data produced in the present study may be made
available upon reasonable request to the authors. A subset of data is also readily
accessible through our web application: https://
arcticai.demo.levylab.host.dartmouth.edu/. Requests to access the datasets should
be directed to joshua.j.levy@dartmouth.edu or joshua.levy@cshs.org.
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CODE AVAILABILITY
ArcticAI is a publicly available package that can be installed using pip (pypi: arctic-ai)
and is hosted on GitHub at the following URL: https://github.com/jlevy44/ArcticAI/.
To ensure reproducible computing, ArcticAI is also available as a Docker/Singularity
container, with installation instructions on the GitHub website. For readers who are
interested in developing their own intraoperative margin assessment workflows,
documentation for operating the application programming interface (API) and
command line interface (CLI) can be found on our GitHub wiki (https://github.com/
jlevy44/ArcticAI/wiki) and on our accompanying ReadtheDocs website (https://
jlevy44.github.io/ArcticAI/). Please note that as the neural network models were
developed at a single site– separate models will need to be trained at each institution
and models trained for this manuscript can be made available upon reasonable
request. A tutorial for training graph neural networks can be found at the following
GitHub URL: https://github.com/jlevy44/WSI-GTFE. To learn more about the ArcticAI
approach and how to operate it, we have provided a publicly available web
application at the following URL: https://arcticai.demo.levylab.host.dartmouth.edu/.
This application demonstrates 3D specimen grossing recommendations, histological
examination, and mapping of histological results back to the surgical site for select
cases. We have also included a video demonstrating operation of this web
application at the following URL (Supplementary Figs. 16–18): https://
www.youtube.com/watch?v=I1Gfe6xI3Yg. ArcticAI relies on the following Python
packages: alphashape (v1.3.1), click (v8.1.3), dask (v2023.2.1), fire (v0.5.0), kornia
(v0.6.10), pathflowai/pathpretrain (latest version), numpy (v1.24.2), pandas (v1.5.3),
tifffile (v2021.11.2), opencv (v4.5.5.62), scikit-learn (v1.2.1), scikit-image (v0.18.3),
pytorch (v1.13.1), torchvision (v0.14.1), torch-geometric (all related packages with
versions compatible with pytorch), detectron2 (latest version), seaborn (v0.12.0),
shapely (v2.0.1), matplotlib (v3.7.0), plotly (v5.17.0), dash (v2.14.0), toil (v5.12.0),
instant-ngp (latest version), and POT (python optimal transport). Jupyter notebooks
were used for custom prototyping, training and evaluation of the model results while
ArcticAI was used for large scale inference across the test set slides. Default training/
inference input arguments can be found in the GitHub repository. Credible intervals
for concordance assessments between hand-drawn and digital tumor maps
developed using R v4.1.
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