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Radiological artificial intelligence - predicting personalized
immunotherapy outcomes in lung cancer
Laila C. Roisman 1,2,6✉, Waleed Kian1,3,6, Alaa Anoze1, Vered Fuchs2, Maria Spector4, Roee Steiner5, Levi Kassel 1, Gilad Rechnitzer1,
Iris Fried1, Nir Peled1✉ and Naama R. Bogot4

Personalized medicine has revolutionized approaches to treatment in the field of lung cancer by enabling therapies to be specific
to each patient. However, physicians encounter an immense number of challenges in providing the optimal treatment regimen for
the individual given the sheer complexity of clinical aspects such as tumor molecular profile, tumor microenvironment, expected
adverse events, acquired or inherent resistance mechanisms, the development of brain metastases, the limited availability of
biomarkers and the choice of combination therapy. The integration of innovative next-generation technologies such as deep
learning—a subset of machine learning—and radiomics has the potential to transform the field by supporting clinical decision
making in cancer treatment and the delivery of precision therapies while integrating numerous clinical considerations. In this
review, we present a brief explanation of the available technologies, the benefits of using these technologies in predicting
immunotherapy response in lung cancer, and the expected future challenges in the context of precision medicine.
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THE CHALLENGE OF PERSONALIZING TREATMENT
In oncological practice, personalized medicine—which has tradition-
ally relied on the molecular characterization of tumors using
genomic, and proteomic techniques, aims to customize treatment
and ultimately guide clinical decisions and therapeutic interventions1.
However, this approach has presented substantial difficulties for
clinical oncologists, who are expected to develop a precise treatment
plan for each patient based on these complex clinical data.
Personalized medicine in oncology traditionally involves inva-

sive procedures to gain access to cancerous tissues, which only
provides insight into small parts of the tumor and occasionally
may be complicated by tumor placement and the potential risks
of surgical biopsies2–4. While ‘liquid’ biopsies are a safer alternative
to procuring solid tumor tissue and have shown promise in
personalized medicine owing to the presence of circulating tumor
DNA/RNA5–8, both liquid and tissue biopsies capture only a small
spatiotemporal snapshot of notably heterogeneous and con-
stantly evolving solid tumors9. Thus, tumor heterogeneity presents
a barrier to personalized treatment10

AI-based analyses of radiological features from standard-of-care
(SOC) images can serve as biomarkers and could play a
considerable role in overcoming the challenges of personalized
medicine. Although there are currently limitations to the technol-
ogy, particularly with smaller tumors, the next-generation imaging
analysis could ultimately be used to predict responses to therapies
and develop more precise treatment plans for individual cancer
patients in the era of personalized medicine. More recently, efforts
to standardize radiomics via the integration of AI algorithms have
steered the field of radiomics away from handcrafted features,
thereby reducing bias and increasing accuracy and general-
izability11–16. This will only serve to increase the diagnostic and
prognostic accuracy of radiomics and strengthen associations
between extracted data and biological and clinical endpoints to
expedite and further optimize personalized treatment.

WHY NEXT-GENERATION MEDICAL IMAGING ANALYSIS?
Diagnostic imaging—a qualitative and non-invasive method for
assessing internal structures—has historically been the corner-
stone of analytical and diagnostic workflows in oncology and
helps to inform the course of treatment in clinical oncology
practice10,17. While routine medical imaging (i.e., ultrasound [US],
computed tomography [CT], magnetic resonance imaging [MRI],
and positron emission tomography [PET]) can capture the overall
spatial and temporal heterogeneity of solid tumors, qualitative
visual assessments lack the granularity and objectivity to assess
inter- and intratumour heterogeneity within the complex tumor
microenvironment (TME)9.
Solid tumors not only vary in size and shape over time but are

also known to be both phenotypically and genotypically hetero-
geneous, where tumor cells can vary in cell type, genomic
sequence, gene expression, vascularization, oxygenation, meta-
static potential, and response to treatment within the TME18–24.
Furthermore, it has been established that heterogeneous tumor
features are valuable prognostic indicators of variability in
tumorigenesis, treatment efficacy, metastatic potential, and
patient outcomes9,10,25–28.
Radiomics is an evolving field of study in which large numbers

of quantitative features are extracted from standard-of-care (SOC)
radiographic images and linked to clinical outcomes using either
handcrafted or machine learning methodologies29. First proposed
in 2012, radiomics leverages the heterogeneous nature of solid
tumors by converting medical images into “mineable data” via the
high-throughput extraction of high-dimensional quantitative
features30–32. Burgeoned by increasing computational capabilities,
radiomics has been used for nearly a decade to link quantitative
features of tumors (i.e., intensity, texture, shape, volume, and
wavelets) to clinical endpoints, such as response to therapy,
metastases, and survival in a variety of cancers using multiple
imaging modalities3,12,16,33–35. Despite the utility of this

1The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel. 2Ben-Gurion University of the Negev, Be’er Sheva, Israel. 3The Institute of
Oncology, Assuta Ashdod, Ashdod, Israel. 4The Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel. 5The Institute for Nuclear Medicine, Shaare Zedek
Medical Center, Jerusalem, Israel. 6These authors contributed equally: Laila C. Roisman, Waleed Kian. ✉email: dr.roisman@gmail.com; nirp@szmc.org.il

www.nature.com/npjprecisiononcology

Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-023-00473-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-023-00473-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-023-00473-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-023-00473-x&domain=pdf
http://orcid.org/0000-0001-8455-9327
http://orcid.org/0000-0001-8455-9327
http://orcid.org/0000-0001-8455-9327
http://orcid.org/0000-0001-8455-9327
http://orcid.org/0000-0001-8455-9327
http://orcid.org/0000-0001-8607-0218
http://orcid.org/0000-0001-8607-0218
http://orcid.org/0000-0001-8607-0218
http://orcid.org/0000-0001-8607-0218
http://orcid.org/0000-0001-8607-0218
https://doi.org/10.1038/s41698-023-00473-x
mailto:dr.roisman@gmail.com
mailto:nirp@szmc.org.il
www.nature.com/npjprecisiononcology


approach3,36, issues such as inconsistencies in image acquisition;
motion artifacts; variability in segmentation and image processing;
the limited reproducibility of features across centers, studies, and
software tools; and analytical variability have been barriers to the
adoption of radiomics into clinical workflows (please refer to the
Supplemental Material for more technical details)9,14,37,38.
Deep learning—a subset of machine learning that uses multi-

layered artificial neural networks to transform input data (e.g.,
images) to output data (i.e., diagnostic parameters) while learning
increasingly higher-level features in each layer—has been used to
automate and optimize the extraction of features from medical
images for nearly a decade39,40. The integration of DL into radiomics
workflows (i.e., deep radiomics) bridges a gap in the field and
mitigates many of the prevailing inconsistencies with “handcrafted”
radiomics, in which human variability can introduce error at any
point in the radiomics pipeline12,14,38. Notably, although radiomics
and deep radiomics have been well investigated in a variety of
cancers and have been used successfully to assess treatment
response and predict survival in patients enrolled in clinical trials41,
to the best of our knowledge, radiomics and deep radiomics have
not yet been utilized in real-world clinical workflows.
Thus, while the integration of radiomics and AI offers

oncologists a unique opportunity to predict personalized
responses to immunotherapy in lung cancer prior to treatment,
there are some barriers to incorporating these techniques into
real-world clinical scenarios. The present paper aims to briefly
review the current application of these technologies in lung
cancer, as well as current obstacles to integrating radiomics
techniques into clinical lung cancer workflows (please refer to the
Supplemental Material for more technical details).

CLINICAL APPLICATIONS
There is an indisputable link between the radiomic features of tumor
heterogeneity—both handcrafted and AI-enabled—and biological
and clinical end points. In lung cancer, radiomic biomarkers have
been shown to predict distant metastases42–44, malignancy in
pulmonary nodules45,46, primary tumor stage10, histology10,47,
pathological response after chemoradiation48, disease recurrence49,
somatic mutations50–54, gene expression profiles and molecular
pathways10,55, adverse events56, and survival54,57–60. Likewise,

radiomic signatures can also be used to optimize treatment plans
in NSCLC patients, such as chemoradiotherapy61, immunother-
apy34,54,62, and tyrosine kinase and immune checkpoint inhibi-
tors54,63. In the following sections, we will summarize the potential
roles of handcrafted and deep radiomics in predicting personalized
responses to immunotherapy in lung cancer (Fig. 1).

Biomarkers for response to immunotherapy: beyond PD-L1
Immune checkpoint inhibitors that target biological biomarkers
such as programmed death ligand 1 (PD-L1) have revolutionized
lung cancer treatment as an alternative to cytotoxic chemothera-
pies64,65. However, despite the success of immunotherapy for
some patients, a substantial number of patients do not experience
clinical benefit, even in highly selected cohorts65,66. In this section,
we will explore how the integration of radiomic biomarkers with
SOC biomarkers could substantially impact patient care by helping
to predict the response to immunotherapy.
Delta radiomic (DelRadX) features—changes in radiomic

features over time—have been used to predict clinical outcomes
in a variety of cancers67. A DelRadX signature based on CT images
at baseline and at the end of the second treatment cycle
performed satisfactorily in distinguishing between responders and
nonresponders when used in combination with the clinical factor
of distant metastasis (area under the curve [AUC] of 0.83 vs 0.81,
respectively)34. Furthermore, this DelRadX signature was signifi-
cantly more predictive of the response to immunotherapy than
PD-L1 expression alone (p < 0.001). Khorrami et al.68 found that
DelRadX using intranodular and perinodular texture features of
malignant NSCLC nodules from CT images predicted the response
to immunotherapy and overall survival (OS). Sun et al.69 deter-
mined the radiomic signature of CD8 cells using RNA-seq data
combined with a radiomic analysis of solid tumors in a variety of
cancers (including lung cancer) and validated it using two
independent cohorts of patients. The radiomic signature of CD8
cells was predictive of the immune phenotype (dense vs low CD8
cell infiltration). In this study, a higher radiomics score—derived
from five radiomic features extracted from each lesion, two
discrete labels related to lesion location, and one imaging
acquisition-related variable—was significantly associated with
the response to anti-PD-1 or anti-PD-L1 monotherapy at both 3
and 6 months after the start of treatment, as well as OS.

Fig. 1 Clinical Opportunities in Precision Medicine via the integration of next-generation medical imaging analyses (NGMIA). Currently,
medical images play a predominant role in evaluating treatment responses. However, the introduction of innovative strategies such as
radiomics and artificial intelligence provides a domain of predictive capabilities, augmenting treatment decision-making and complementing
traditional tissue and liquid biopsy approaches.
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Additionally, Trebeschi et al.70 developed a radiomics biomarker
from CT imaging by training a model on all lesions (i.e., progressive,
stable, and responding) to discern progressive disease. This
biomarker was significantly associated with response vs nonre-
sponse to immunotherapy in NSCLC patients. More specifically,
tumors with increased morphological heterogeneity, nonuniform
density patterns, and compact borders were more likely to respond
to immunotherapy, while more compact and spherical profiles were
associated with better response in nonresponding tumors. A gene
enrichment analysis was performed to define the biological basis of
the radiomic biomarker and found significant associations with
pathways involved in mitosis, indicating a relationship between
increased cell division and response to immunotherapy. Several
other studies have used radiomic features to stratify NSCLC patients
and to significantly predict survival outcomes in patients treated
with immunotherapy71,72. Furthermore, other studies demonstrate
that prognostic biomarkers perform best when combining radiomic,
genetic, and clinical data, highlighting the complementary nature of
these analyses55.
Tumor mutational burden (TMB) has also been shown to be a

significant predictor of immunotherapy efficacy73. The deep learning
model 3D-DenseNet was used to estimate the target tumor area in
CT images from 327 NSCLC patients with TMB data and identified
1020 deep features to distinguish between patients with high and
low TMBs. The TMB radiomic biomarker was a significant predictor
of immunotherapy efficiency and distinguished between high-TMB
and low-TMB patients in the training and test cohorts better than
histological subtype. Moreover, the TMB radiomic marker was more
robust than both the radiomic and clinical models.
Last, as somatic mutations, such as EGFR, are known to be

associated with low response rates to anti-PD-1/PD-L1 immunother-
apy74, DL models that predict mutation status from imaging could
also predict response to immunotherapy. A study that used a PET/
CT-based DL model with high accuracy in predicting EGFR mutation
status across patient cohorts demonstrated a significant association
between high EGFRmutation status and low durable clinical benefit,
low PD-L1, high hyperprogression, and lower progression-free
survival (PFS) in immunotherapy patients, indicating that EGFR
mutation status assessed using SOC imaging could indeed serve as
a biomarker to predict response to immunotherapy54.

Predicting the best combination therapy
Owing to the heterogeneous nature of lung cancer and the
substantial number of patients who do not experience clinical
benefit from immunotherapy alone, combining therapies can be
an effective way to improve outcomes75,76. In this subsection, we
will discuss the use of radiomics and DL technologies in
supporting treatment decision making and predicting the best
combination therapy to suit each patient.
A study by Sun et al.77 used a CD8 T-cell-associated radiomics

signature to predict lesion response in irradiated and abscopal
lesions using clinical data from patients with advanced solid
tumors (including lung) from six independent clinical studies of
combined radiotherapy and immunotherapy. The authors found
that CD8 radiomics scores exhibited significantly higher tumor
responses (i.e., decrease in lesion size) and that more hetero-
geneous CD8 radiomics scores across lesions were associated with
mixed response or uniform progression, poor PFS, and OS.
Additionally, heterogeneous CD8 radiomics scores based on the
entropy of the distribution were significantly associated with the
response evaluation criteria in solid tumors (RECIST)-based
response in abscopal tumors. Not only can this study help to
inform prognostic features for combined therapy and inform the
choice of target lesion, but this study demonstrates that a
radiomics score previously validated in a cohort treated with
immunotherapy alone could be predictive in the context of
combined therapies69.

Another study that used radiomics to study the response to
combined therapies showed that a radiomic risk score (RRS),
calculated using radiomic textural patterns within and around
NSCLC nodules from pretreatment CT images, was found to be
significantly associated with PFS and OS (p < 0.05) in patients treated
with both chemoradiation and chemoradiation+ immunotherapy78.
The RRS also effectively stratified between low and high risk and was
significantly associated with OS in the low PD-L1 group.

Predicting resistance to therapy
Acquired and inherent resistance mechanisms continue to be a
considerable factor in poor lung cancer prognosis79. Most patients
with NSCLC develop primary resistance during PD-1/PD-L1 mono-
therapy, of which only 15–20% exhibit a partial or complete
response80. Acquired resistance can also occur despite initial clinical
benefits. Notably, there are numerous mechanisms of resistance to
immunotherapy in NSCLC beyond PD-L1 expression that could
serve as predictive radiomic biomarkers in precision therapy, such as
high microsatellite instability/defective DNA mismatch repair; tumor
mutational burden; DNA polymerase (POLE) mutations; cytokine
expression (e.g., interferon-gamma [IFN-γ], tumor necrosis factor-
alpha [TNF-α], and interleukins); and point mutations, deletions, or
homozygous or heterozygous loss of beta-2-microglobulin
(B2M)81–84. Similarly, molecular mechanisms and tumor character-
istics such as the overexpression of oncogenes (e.g., MDM285), EGFR
mutations and associated changes in the TME86, or tumor hypoxia87

can also be predictive of the response to immunotherapy.
While there is a growing body of research that links radiomic

features of tumors and the TME to tumor genotype, histology,
immune state and clinical end points, studies that investigate
radiomic biomarkers of resistance — both handcrafted and AI-
enabled — are sorely lacking. The use of DelRadX to elucidate
genotypic and phenotypic changes in response to treatment over
time could expose underlying mechanisms of resistance. Public
datasets for gene expression88 in NSCLC could be leveraged to
identify prognostic biomarkers or to assess the multivariate
performance of radiomic signatures10. Furthermore, existing
knowledge of somatic mutations involved in resistance to
targeted therapies74 or the role of immune cells (i.e., CD8
T cells) in tumor growth, metastasis, and resistance to immu-
notherapy89 could be leveraged to develop radiomic signatures
that predict resistance to therapy.

Predicting side effects
The early detection of treatment-related adverse events is crucial
for improving patient outcomes. Radiomics can also be applied to
predictions of life-threatening adverse events such as cardio-
toxicity, pneumonitis, and hyperprogression, as well as the
misinterpretation of pseudo progression, to optimize patient care.
Several studies suggest that PET and CT-based radiomic

features in NSCLC patients undergoing immunotherapy could be
used to predict inflammatory conditions such as immunotherapy-
induced pneumonitis90,91 or risk for developing severe immune-
related adverse events (irSAEs)92. By capturing features at baseline
that are predictive of potential irSAEs, treatment plans could be
optimized early to minimize risk. For example, Mu et al.92 found
that creating a radiomics nomogram that included a radiomics
score based on features extracted from baseline (i.e., pretreat-
ment), the type of immunotherapy, and dosing schedule
effectively predicted patients with and without irSAEs with AUCs
of 0.92, and 0.88 in the testing, and validation sets, respectively.
However, the sample size of this study was relatively small for
positive cases. As rule-of-thumb guides for binary classification
studies suggest that sample size should be 10–15 times that of the
number of features used, studies with smaller samples sizes
should be interpreted with caution93.
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Biomarkers that differentiate between pseudoprogression,
progression, and hyperprogression during immunotherapy are
lacking. Hyperprogression is an adverse reaction to anti-PD-1/PD-
L1 immunotherapy in some NSCLC patients and is associated with
significantly shorter survival. Vaidya et al.94 extracted 198
intratumoural and peritumoural radiomic textural patterns and
tortuosity features of the nodule-associated vasculature from
pretreatment CT scans. They found that the top features
associated with hyperprogression were able to distinguish
between hyperprogression and other patterns with AUCs of 0.85
in the training set and 0.96 in the validation set. A study by Tunali
et al.95 created rapid disease progression phenotypes composed
of time to progression (TTP)/tumor growth rates and hyperpro-
gression in NSCLC patients being treated with immunotherapy
using the following baseline predictors: patient demographics,
clinical data, driver mutations, hematology data, and radiomic
features from CT scans. As a result, the authors identified several
effective clinical-radiomic models that predicted rapid disease
phenotypes with AUC values of 0.80–0.86 and classified patients
with TTP of <2 months and hyperprogression with 73 and 82%
accuracy, respectively. Finally, DL biomarkers for somatic muta-
tions such as EGFR have also been shown to be associated with
high hyperprogression in patients undergoing immunotherapy54

and thus show promise as noninvasive biomarkers for predicting
adverse events.

Tumor microenvironment
The tumor microenvironment (TME) is known to promote the
growth and metastasis of lung tumors and has recently gained
recognition as an important factor in understanding tumor
behavior and response to immunotherapy96. Here, we will discuss
the role of radiomics and DL in elucidating TME characteristics
related to treatment outcomes.
Peritumoral radiomics—the use of radiomic techniques to

assess heterogeneity of the peritumoral environment—has been
investigated in a wide variety of cancers, in which the inclusion of
the peritumoral region increases the predictive power of radiomic
signatures compared to intratumoral signatures alone in a variety
of cancers (see ref. 16 for review). Features of the TME have been
specifically shown to have significant predictive and prognostic
value in lung cancer68,94. For example, radiomic features of the
tumor rim (i.e., 3 mm outside the tumor border) have been shown
to be predictive of distant metastases in NSCLC, where the
combination of clinical data and rim signatures was the most
effective for stratifying patients97. Likewise, Hosny et al.60 used DL
to create prognostic signatures of quantitative imaging features
and found that the tumor–stroma interfaces exhibited the largest
contributions to the prognostic signature, highlighting the
importance of the TME in patient stratification. Furthermore, the
authors created activation heatmaps overlaid on CT images to
visualize the “importance” of each node or voxel relative to the
final prediction, both within and beyond the tumor. A subsequent
analysis that disregarded the data beyond the tumor resulted in a
substantial drop in prognostic power, thereby confirming the
importance of textural features in the tumor-surrounding region. A
radiomics model developed by Tang et al.98 characterized the
immune state of the TME in NSCLC patients using baseline CT
images, percent tumor PD-L1 expression, and the density of
tumor-infiltrating lymphocytes (CD3) to stratify patients into four
clusters that were significantly correlated with overall survival
(OS)82. The most favorable outcome group was characterized by
low CT intensity and high heterogeneity, low PDL1, and high CD3
infiltration, suggesting a high immune-activated state. Finally, the
infiltration of CD4 and CD8 T cells is also known to be an
important mediator of responses to immune checkpoint inhibi-
tion96 and could make effective targets as biomarkers.

Radiogenomics
Radiogenomics is the study of the connections between SOC
radiographic images and tumor genomics. While tumor molecular
profiling is becoming SOC for NSCLC and provides a vast amount
of information for personalized treatment, traditional molecular
biomarker analyses often fail to capture the full picture of spatial
and temporal intratumoural heterogeneity. Handcrafted and deep
radiomics can bridge the gap between imaging phenotypes and
tumor genomics to identify noninvasive, image-based genetic
biomarkers to elucidate the underlying mechanisms of resistance
and response to therapy and ultimately improve patient care.
Tumor genotype plays an important role in personalized

treatment for lung cancer patients, where mutations in common
proto-oncogenes and oncogenes such as EGFR, ALK, ROS1, and RET
have been associated with radiomic signatures see 11 for review. In
particular, EGFR has been widely investigated as a noninvasive
biomarker using both handcrafted50,53 and deep radiomic
methods52,54,59. Aerts et al.10 found that radiomic data were
strongly prognostic and were associated with underlying patterns
of gene expression in a lung cancer dataset using a gene-set
enrichment analysis (GSEA) of 21,766 genes. Notably, features III
and IV of the four-feature radiomic signature were strongly
correlated with cell cycling pathways. Grossman et al.55 linked
numerous imaging features based on intratumoural heterogeneity
to RNA polymerase expression, the autodegration pathway E3
ubiquitin ligase COP1, p53, cell cycle regulation checkpoints, TGF-
β signaling, mitochondrial pathways, lipoprotein metabolism,
TRAF6-mediated NFkB activation, and axon guidance. Further-
more, several imaging features were linked to EGFR, KRAS, and
TP53 mutants, as confirmed by Sanger sequencing. Another study
used a 3D-CNN and transfer learning approach to identify both
prognostic signatures using NSCLC CT images and correlations
between the radiographic phenotypes quantified by CNN and
global gene expression patterns using a pre-ranked GSEA60.
Similar to other radiogenomic analyses in NSCLC, the authors
found that the most significantly enriched pathways were linked
to the cell cycle and transcriptional processes.

Predicting brain metastases
Lung cancer is one of the most common primary tumors leading
to brain metastases (BrMs), accounting for more than 50% of all
brain tumors99. The presence of BrMs plays a major role in guiding
treatment, as brain-penetrating therapies are generally necessary
in combination with immunotherapy to improve sensitivity to
treatment. Radiomics has been used extensively to predict the
local response for BrMs after stereotactic radiosurgery100, differ-
entiate between BrMs and glioblastoma101, predict the primary
tumor of origin102, assess the diagnostic ability of BrMs to predict
EGFR mutation status in primary lung cancer BrMs103, and predict
survival104. While the risk of BrMs in NSCLC patients has been
predicted using a nonradiomic nomogram105 and based on total
lesion glycolysis and metabolic tumor volume106, very few studies
have used radiomics or DL to predict the development of brain
metastases. To the best of our knowledge, no studies have
leveraged DL to this end.
One study found that a radiomics score—based on seven

potential predictors of BrMs in curatively resected locally advanced
NSCLC patients—was significantly associated with BrMs in both the
training and validation cohorts, in which combining clinical risk
factors and radiomics data improved performance107. Additionally,
patient smoking status and histology were both independent
predictors of BrMs. In contrast, another study found that CT-based
radiomics features of primary NSCLC did not improve a model based
on clinical data108. Nonradiomic prognostic biomarkers of BrMs have
been developed by characterizing the functional gene expression
signatures of lung tumor tissue, BrMs, and their respective TMEs,
indicating that the immune and fibrosis status of BrMs should guide
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therapeutic strategies109. The TMEs of both lung tumors and BrMs
were enriched for genes associated with cancer-associated fibro-
blasts and the extracellular matrix and endothelium, suggesting that
fibrosis and angiogenesis play a key role in tumor progression and
metastasis. The expression of tumor proliferation genes was higher
in the primary tumor. The authors also noted significantly higher
expression of epithelial to mesenchymal transition (EMT) genes (i.e.,
laminins, integrins, and inflammatory and neutrophil-acting chemo-
kines) in both tumors than in the TMEs, as EMT is thought to be the
most common mechanism for metastasis110. Assessing differentially
expressed genes from lung tumor cores between slow and fast
metastatic cohorts revealed a metastatic signature gene set that also
individually predicted survival in both the study cohort and a lung
adenocarcinoma cohort (n= 501). These molecular biomarkers
could potentially be incorporated into radiomics and deep learning
models to predict BrMs in lung cancer patients.

FUTURE CHALLENGES AND IMPLEMENTATION
While new technologies such as radiomics and DL have
substantially advanced the field of personalized immunotherapy
treatment in lung cancer, integrating these technologies into
clinical workflows will presumably be an uphill climb. Several
challenges will need to be addressed before we can create a
roadmap to clinical application.
While numerous studies have improved the quality and

interpretation of radiomics studies3, have worked to standardize
radiomic features37, and have devised methods of moderating
‘center effect’ to reduce multi-center variability111,112, there are
still multiple points in the handcrafted radiomics pipeline where
errors and variability can be introduced37. While DL methods do
mitigate issues with handcrafted radiomics—such as time-
consuming manual feature selection and inter-observer and
intra-observer variability—by minimizing operator input31,113,
working with DL algorithms is a specialized skill and may not be
readily available to radiologists and clinicians. To this end, public
dataset repositories such as RIDER10,60 and The Cancer Imaging
Archive114 can be leveraged to validate the performance of
radiomic signatures, while open-source toolkits—such as PyR-
adiomics115, RaCaT116, and ImaGene117—allow researchers to use
radiomics without having to develop feature pipelines from
scratch16,118. Additionally, “how to” guides for implementing
radiomics in medical imaging118,119 that include tools for both
handcrafted and deep radiomics provide a valuable roadmap for
those starting out. The use of AI-based tools such as I3Lung—
which uses biological, molecular, radiological, and clinical data
from more than 2000 NSCLC patients to predict individual
responses to immunotherapy—could be a straightforward and
cost-effective alternative to developing de novo DL models120.
Lastly, using a transfer learning paradigm on pretrained DL
models trained on large datasets makes DL more accessible while
mitigating the need for large datasets in clinical workflows (see
Supplemental Material for more detail).
Koçak et al.118 outlined three-tiered suggestions for radiologists

interested in using radiomics: (i) paid software programs, (ii) free
programs [see paper for suggestions] that allow radiomic feature
extraction using a graphical user interface, or (iii) the development
of coding skills necessary to use MATLAB or Python platforms. To
become involved in AI, the authors offer a similar three-tiered
approach: (i) become part of a data science collaboration, (ii) acquire
statistical skills necessary to perform AI tasks without code, and (iii)
learn coding language such as Python. Bera et al.16 Note that the
pathway to regulatory approval is the main roadblock to adopting
AI-based predictive and prognostic tools into clinical workflows.
Furthermore, the authors state that while billing and reimbursement
present yet another challenge, pursuing a regulatory pathway for
lab-based diagnostic tests could be a viable option. It is also possible
that efforts to unpack the “black box” of AI will increase transparency

and explainability on the road to approval (see Supplemental
Material for more detail).
No two cancers are alike. Deep radiomics holds the promise of

predicting personalized responses to immunotherapy in lung
cancer patients using SOC images, thereby expediting treatment
and tailoring treatment to individuals. Although the road to
adoption could be long, precision oncology will undoubtedly
benefit from more objective and accurate characterizations and
predictions of disease, ultimately serving to improve patient
outcomes.
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