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Artificial intelligence-powered spatial analysis of tumor-
infiltrating lymphocytes for prediction of prognosis in resected
colon cancer
Yoojoo Lim 1,6, Songji Choi2,6, Hyeon Jeong Oh3✉, Chanyoung Kim3, Sanghoon Song1, Sukjun Kim1, Heon Song1, Seonwook Park 1,
Ji-Won Kim 2, Jin Won Kim2, Jee Hyun Kim2, Minsu Kang 2, Sung-Bum Kang4, Duck-Woo Kim4, Heung-Kwon Oh4,
Hye Seung Lee 5 and Keun-Wook Lee2✉

Tumor-infiltrating lymphocytes (TIL) have been suggested as an important prognostic marker in colorectal cancer, but assessment
usually requires additional tissue processing and interpretational efforts. The aim of this study is to assess the clinical significance of
artificial intelligence (AI)-powered spatial TIL analysis using only a hematoxylin and eosin (H&E)-stained whole-slide image (WSI) for
the prediction of prognosis in stage II–III colon cancer treated with surgery and adjuvant therapy. In this retrospective study, we
used Lunit SCOPE IO, an AI-powered H&E WSI analyzer, to assess intratumoral TIL (iTIL) and tumor-related stromal TIL (sTIL) densities
from WSIs of 289 patients. The patients with confirmed recurrences had significantly lower sTIL densities (mean sTIL density 630.2/
mm2 in cases with confirmed recurrence vs. 1021.3/mm2 in no recurrence, p < 0.001). Additionally, significantly higher recurrence
rates were observed in patients having sTIL or iTIL in the lower quartile groups. Risk groups defined as high-risk (both iTIL and sTIL
in the lowest quartile groups), low-risk (sTIL higher than the median), or intermediate-risk (not high- or low-risk) were predictive of
recurrence and were independently associated with clinical outcomes after adjusting for other clinical factors. AI-powered TIL
analysis can provide prognostic information in stage II/III colon cancer in a practical manner.
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INTRODUCTION
The standard treatment of resectable colon cancer consists of
surgery with or without adjuvant therapy, guided by the TNM
staging system1. Although advances in screening, surgical
techniques, and adjuvant therapies led to substantial improve-
ment in outcomes of patients diagnosed with colon cancer,
approximately 20–30% of stage II–III colon cancer patients are
estimated to relapse2,3, and there remains significant variability in
clinical outcomes among patients in the same risk categories,
emphasizing the need for more precise prognostic biomarkers.
Tumor-infiltrating lymphocytes (TIL) in the tumor microenviron-

ment, which can reflect the host’s immune response to the tumor,
have long been recognized as a biomarker that can be related to
cancer prognosis4–6, and have recently been highlighted as a
practical prognostic biomarker for colon cancer. Several recent
studies have demonstrated that higher densities of TIL in tumors
or their surroundings are associated with better prognoses after
standard therapies7–11. The most representative example is the
“Immunoscore”, which is a scoring system that utilizes CD3+ and
CD8+ immune cell densities in the tumor core and the invasive
margin, by dedicated software. The assay’s prognostic value has
been proven in a large-scale, international cohort of colorectal
cancer patients7,12. Although other studies evaluating the prog-
nostic value of TILs in colorectal cancer have employed various
methodologies concerning the selection of T-cell subsets and the
specific spatial regions of the tumor microenvironment to assess
the TIL densities, they have converged on similar conclusions
regarding the prognostic significance of TILs11. While there

remains no definitive method for quantification of TILs, evaluating
TIL densities in the tumor microenvironment may provide
clinicians with additional prognostic information to guide treat-
ment decisions and ultimately improve patient outcomes.
However, the manual evaluation of TIL densities can be a
laborious and time-consuming process and can also be prone to
inter- and intra-observer variations13,14. Additionally, it may
require additional steps in tissue preparation such as special
staining for lymphocytes15,16. Even with the more established
“Immunoscore”, there is no global consensus, particularly regard-
ing the cut-off values distinguishing the high or low CD3 or CD8
densities.
To overcome such limitations, there has been a growing interest

in developing automated methods for TIL evaluation. The
continued development and advances in artificial intelligence
(AI) technologies, particularly those involving deep learning
techniques, present the possibility of automated analysis of
intricate visual data sources, such as hematoxylin and eosin
(H&E)-stained histopathological images. The convolutional neural
network (CNN) is the most representative deep learning model
that is being applied to medical image analysis. It can
automatically and adaptively learn features from images to
accomplish tasks such as classification, detection, and segmenta-
tion17,18. Early AI-based approaches performed TIL evaluation by
classifying TIL density at the tile or patch level, and then
constructing maps of TIL scores for analysis at the full WSI level19.
Concerns on the accuracy and interpretability of such methods for
TIL evaluation, especially in terms of capturing the broader
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context of the entire WSI20,21 have led to the development of
deep learning methods that classify individual cells22. AI-based
methodologies are also capable of segmenting areas of interest,
such as cancerous regions from medical images including
pathology slides23. By analyzing each cell and region in the

aforementioned manners, explicit and fine-grained measurements
of TIL density can be made, improving the accuracy and reliability
of AI-based TIL analysis. Such analysis using AI could provide
efficiency and improve the reproducibility and thus reliability of
TIL as a biomarker.
Lunit SCOPE IO is an AI-powered spatial TIL analyzer, based on

CNN models that include both the cell detection and tissue
segmentation AI models24,25. It was developed and trained using a
significant volume of pathology images annotated by board-
certified pathologists. The cell detection AI model identifies the
location of tumor cells and lymphocytes, while the tissue
segmentation AI model determines whether a pixel belongs to a
cancer area, cancer stroma, or a non-tumor background region.
The system recognizes TILs within spatial segmentation contexts
from H&E-stained whole slide images (WSI) and quantifies TILs to
calculate TIL densities in two areas of interest: 1) intratumoral TIL
(iTIL) density, and 2) tumor-related stromal TIL (sTIL) density. Using
the spatial TIL density information, it can also derive immune
phenotypes of each WSI, which was defined and shown to be
correlated with local immune cytolytic activities in a previous
study26. The correlation between the TIL assessments and immune
phenotyping by Lunit SCOPE IO and clinical outcomes to immune
checkpoint inhibitors (ICI) were reported in non-small cell lung
cancer and nasopharyngeal carcinoma as well as in a retrospective
study of ICI-treated populations with any cancer types, showing
that the results can predict clinical outcomes such as survival and
response to immunotherapies26–28.
In this study, we aimed to evaluate the clinical utility of AI-

powered spatial TIL analysis for predicting the prognosis of stage
II–III colon cancer patients who underwent curative resection and
adjuvant chemotherapy.

RESULTS
Patient characteristics and overview of spatial TIL analysis
A total of 289 patients and their WSIs of primary colon cancer
tissues were included in this analysis. The clinical characteristics of
the included patients are summarized in Table 1. Overall, the
median age of the patients was 64 years (interquartile range [IQR]
54–70), and 165 (57.1%) patients were male. 108 (37.4%) patients
had stage II and 181 (62.6%) patients had stage III disease. Ninety
patients (31.1%) had T4 or N2 disease, and 131 (45.3%) and 121
(41.9%) patients exhibited lymphovascular or perineural invasion,
respectively. The median follow-up duration of the included
patients was 8.0 years (IQR 5.8–9.8 years), and 91.3% (232/254) of
the patients without any events of interest (tumor recurrence or
death) were followed for at least 5.0 years. During the follow-up
period, 28 (9.7%) clinical recurrences and 23 (8.0%) death events
were observed, including 7 deaths not related to colon cancer.
In all patients, the TILs within the tumor microenvironment

were predominantly found to be localized in the stroma, with the
median sTIL density of 878.0/mm2 (IQR 554.9–1209.6/mm2) and
the median iTIL density of 44.4/mm2 (IQR 28.4–71.8/mm2)
(Supplementary Table 1). The sTIL densities showed a strong
positive correlation with the average of the TIL scores estimated
by two pathologists in accordance with the International TILs
Working Group (ITWG) guideline (Spearman’s r= 0.820, p < 0.001,
Supplementary Fig. 1). The densities of iTIL and sTIL showed a
modest positive correlation as continuous variables (Spearman’s
r= 0.464, p < 0.001). Distribution of the mean iTIL and sTIL
densities according to clinicopathologic risk factors are summar-
ized in Table 2. The iTIL and sTIL densities were significantly lower
in patients with stage III disease compared to stage II (iTIL 58.3/
mm2 in stage III vs. 79.5/mm2 in stage II, p= 0.046; sTIL 926.4/mm2

in stage III vs. 1079.0/mm2 in stage II, p= 0.049). Additionally, the
patients having T4 or N2 disease or perineural invasion showed
significantly lower sTIL densities (sTIL 844.9/mm2 in T4 or N2

Table 1. Patient characteristics.

Characteristics All patients

N= 289

Age, median (interquartile range) 64 (54–70)

Sex

Male 165 (57.1%)

Female 124 (42.9%)

Primary site of diseasea

Right colon 90 (31.1%)

Left colon 199 (68.9%)

Stage

II 108 (37.4%)

Stage II with high-risk featuresb 70 (24.2%)

III 181 (62.6%)

T stage

T1–3 236 (81.7%)

T4 53 (18.3%)

N stage

N0–1 238 (82.4%)

N2 51 (17.6%)

T4 or N2 disease 90 (31.1%)

Histology

Adenocarcinoma, not otherwise specified 282 (97.6%)

W/D 17 (5.9%)

M/D 234 (81.0%)

P/D 31 (10.7%)

Mucinous adenocarcinoma 7 (2.4%)

Lymphovascular invasion

No 158 (54.7%)

Yes 131 (45.3.%)

Perineural invasion

No 168 (58.1%)

Yes 121 (41.9%)

Microsatellite instability

MSS/MSI-L 262 (90.7%)

MSI-H 20 (6.9%)

NA 7 (2.4%)

Adjuvant chemotherapy regimens 289 (100.0%)

FL/Capecitabine/Tegafur-uracil 126 (43.6%)

FOLFOX/XELOX 163 (56.4%)

W/D well-differentiated, M/D: moderately-differentiated, P/D poorly differ-
entiated, MSSmicrosatellite stable,MSI-Lmicrosatellite instability-low, MSI-H
microsatellite instability-high, FL 5-fluorouracil + leucovorin, FOLFOX
5-fluorouracil + leucovorin + oxaliplatin, XELOX capecitabine + oxaliplatin.
aRight-sided colon cancer: cecum, ascending, hepatic flexure, or transverse
colon; left-sided colon cancer: splenic flexure, descending, sigmoid, or
rectosigmoid colon.
bHigh-risk features in stage II patients were defined as having one or more
of the following: T4 disease, poorly differentiated histology, lymphovas-
cular/perineural invasion, bowel obstruction or perforation, fewer than 12
lymph nodes harvested or high initial plasma carcinoembryonic antigen
(CEA) level (>5 ng/mL).
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disease vs. 1046.1/mm2 in others, p= 0.007; sTIL 849.2/mm2 with
perineural invasion vs. 1080.1/mm2 without perineural invasion,
p= 0.001). The tumors with high microsatellite instability (MSI-H)
exhibited significantly higher infiltrations of TIL intratumorally (iTIL
161.5/mm2 in MSI-H vs. 58.9/mm2 in MSI-L/MSS, p= 0.024) but not
in their stroma, and similar iTIL differences were also observed in
right-sided tumors vs. left (iTIL 85.4/mm2 in right-sided tumors vs.
57.6/mm2 in left-sided tumors, p= 0.030), and poorly differen-
tiated (P/D) tumors vs. others (iTIL 149.4/mm2 in P/D tumors vs.
56.3/mm2 in others, p= 0.004).

Spatial TIL analysis in association with clinical outcomes
When the spatial TIL densities were analyzed in relation to clinical
outcomes, the sTIL densities were significantly lower in the 28

patients with confirmed recurrences (mean sTIL 630.2/mm2 in
cases with confirmed recurrences vs. 1021.3/mm2 in no recur-
rence, p < 0.001, Fig. 1a). However, the difference in the mean iTIL
densities was not prominent by clinical recurrences (mean iTIL
60.4/mm2 in cases with confirmed recurrences vs. 66.9/mm2 in no
recurrence, p= 0.731, Fig. 1b).
By dividing the patients by sTIL densities into four groups using

quartile cutoffs, the recurrence rate at 5 years was observed to be
the lowest in the highest quartile group (1.4%) and increased with
decreasing sTIL densities (4.2%, 12.5% and 17.2% in the 50–75%,
25–50%, and <25% groups, respectively), with the unadjusted
hazard ratio (HR) of time to recurrence (TTR) for the highest vs. the
lowest quartile groups of 0.07 (95% CI 0.01–0.55, p= 0.011,
Fig. 2a). Furthermore, a similar pattern was observed in disease-
free survival (DFS), with the most substantial differences between
groups observed at the median value of sTIL densities (5-year DFS
rate 94.4% in sTIL ≥50% vs. 83.3% in sTIL <50% [log-rank
p= 0.001], Supplementary Table 2).
Analysis with iTIL densities showed that the recurrence rate at 5

years was significantly higher in the iTIL <25% group, with a
recurrence rate of 16.6% (vs. 6.7% in the rest [iTIL ≥25%], with
unadjusted HR of 0.37 in iTIL ≥25% vs. <25%, 95% CI 0.18–0.78;
p= 0.009). Unlike the sTIL quartile groups, the recurrence risk did
not sequentially increase with the reduction in the quartile value
of iTIL densities in the iTIL ≥25% groups (Fig. 2b). Combining the
iTIL to sTIL quantification did not add value to recurrence
prediction in sTIL ≥25% groups, but in the lowest sTIL group
( < 25%), the recurrence was significantly higher if iTIL was also
<25% (5-year recurrence rate of 26.1% [in sTIL <25% and iTIL
<25%] vs. 10.3% [in sTIL < 25% and iTIL ≥ 25%]; p= 0.044).

Combined iTIL/sTIL risk groups for prediction of prognoses
Based on the analysis of iTIL and sTIL results in predicting
recurrences and survival outcomes, we defined three recurrence
risk groups using the combined sTIL and iTIL values: high-risk
(both iTIL <25% and sTIL <25%), low-risk (sTIL ≥50% with any iTIL),
and intermediate-risk (not meeting the criteria for high or low;
Fig. 3). Using these categorization cutoffs, 31 (10.7%), 113 (39.1%),
and 145 (50.2%) patients were grouped into high-risk, inter-
mediate-risk, and low-risk, respectively. The combined three risk
group categorization significantly stratified patients for TTR
(p < 0.001, Fig. 4) and DFS (p < 0.001, Supplementary Fig. 2). The
three-risk group categorization remained effective in stratifying
patients in subgroups of right-sided and left-sided tumors, or in
subgroups of stage II and stage III (Supplementary Table 3). In the
multivariable analysis for TTR or DFS adjusting for the age, sex, T,
and N stages, tumor differentiation, lymphovascular/perineural
invasion, and tumor sidedness, the combined TIL risk groups were
shown to be significantly and independently associated with the
clinical outcomes (Table 3).

DISCUSSION
In this study, we have investigated the potential of AI-powered
spatial TIL analysis for predicting prognosis in patients with colon
cancer treated with surgery and adjuvant therapy. In the context
of stage II–III colon cancer, the infiltration of TILs in the tumor
microenvironment was predominantly in the stroma surrounding
the tumor and the densities of sTIL demonstrated a significant
association with patient prognosis. The density of iTIL was found
to have a lower mean density and exhibited less variance
compared to sTIL, but the lowest quartile of iTIL densities was
also found to be related to higher risk of recurrence.
In recent years, there has been a growing interest in evaluating

TILs as a prognostic factor in solid tumors. In colorectal cancer,
numerous studies have been conducted to explore the prognostic
significance of TILs, encompassing both general and marker-selected

Table 2. Distribution of iTIL and sTIL densities by clinicopathologic
variables.

iTIL (/mm2)
mean (SD)

p-value sTIL (/mm2)
mean (SD)

p-value

Age

<64 68.1 (72.6) 0.695 1041.9 (696.6) 0.108

≥64 64.4 (86.1) 925.3 (518.8)

Stage

II 79.5 (96.8) 0.046 1079.0 (662.4) 0.049

III 58.3 (66.3) 926.4 (580.2)

T stage

T1–3 64.7 (75.8) 0.553 1018.2 (608.5) 0.050

T4 73.0 (94.9) 828.6 (628.7)

N stage

N0–1 66.4 (78.4) 0.943 1016.8 (648.8) 0.008

N2 65.5 (85.4) 827.8 (396.6)

T4 or N2 disease

No 65.4 (77.9) 0.789 1046.1 (632.8) 0.007

Yes 68.2 (83.4) 844.9 (554.1)

Tumor location

Right 85.4 (113.7) 0.030 1022.5 (590.7) 0.459

Left 57.6 (56.2) 965.7 (627.1)

MSI status

MSI-H 161.5 (186.3) 0.024 1109.9 (582.3) 0.312

MSS/MSI-L 58.9 (60.5) 969.4 (620.1)

Lymphovascular invasion

No 70.6 (89.5) 0.290 1023.6 (636.7) 0.220

Yes 60.9 (65.5) 934.9 (587.7)

Perineural invasion

No 72.2 (88.8) 0.114 1080.1 (669.1) 0.001

Yes 58.0 (63.9) 849.2 (505.0)

Differentiationa (all patients)

High-grade 149.4 (163.2) 0.004 1168.0 (790.4) 0.168

Low-grade 56.3 (55.2) 961.3 (589.1)

Differentiationa (MSS/MSI-L)

High-grade 111.8 (123.8) 0.054 1060.7 (904.2) 0.494

Low-grade 54.6 (50.0) 961.8 (592.6)

SD standard deviation, iTIL intratumoral tumor-infiltrating lymphocyte, sTIL
stromal tumor-infiltrating lymphocyte, MSI microsatellite instability, MSS
microsatellite stable; MSI-L microsatellite instability-low, MSI-H microsatel-
lite instability-high.
aHigh-grade tumor differentiation includes poorly differentiated or undiffer-
entiated tumors; low-grade includes well- or moderately-differentiated tumors.
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subsets, and in various locations within the tumor microenviron-
ment, such as the tumor center, invasive margin, or the surrounding
stroma7,10,11. The large-scale validation of ‘Immunoscore’, which
quantifies CD3+ and CD8+ lymphocytes in the tumor center and
invasive margin, showed that Immunoscore could predict the risk of
recurrence with higher risk contribution than other clinical
parameters including the TNM classification system7. The ITWG
suggested a standardized approach for evaluating the degree of TIL
infiltration in breast cancer, by assessing stromal TILs as a percentage
of stromal area occupied by the TILs29,30, and the evaluation of TILs
with the same scoring method proved to be prognostic in colorectal
cancer as well31. Despite the existence of various evaluation methods
for assessing TILs, the studies of TILs in relation to clinical outcomes

consistently indicate that TILs may serve as an independent
prognostic biomarker in colon cancer and highlights the necessity
for developing efficient and reliable assessment techniques.
Recent advances in deep learning technologies have facili-

tated the development of AI-based methodologies that can
extract features from medical images. Deep learning models
used for medical images, especially pathology images, need to
be trained on relatively limited data, due to the inherent
challenge of obtaining reliable ground-truth annotation by
experts. Our model used one of the well-established CNN
architectures. While alternative feature extractors could be
utilized, newer structures, such as those based on Vision
Transformer architectures, may not offer benefits over more

Fig. 1 The distribution of tumor-infiltrating lymphocyte densities according to recurrence events. The distribution of (a) tumor-related
stromal (sTIL) and (b) intratumoral (iTIL) tumor-infiltrating lymphocyte densities according to recurrence events. In the plot, the upper and
lower boundaries of the box represent the upper and lower quartiles, while the line inside the box represents the median of the data
(Recurrence (+), cases with confirmed recurrences; Recurrence (-), cases with no recurrence events during the follow-up period; SD, standard
deviation; IQR, interquartile range).

Fig. 2 Kaplan Meier curves of time to recurrence (TTR) according to tumor-infiltrating lymphocyte densities. Kaplan Meier curve of TTR
according to (a) tumor-related stromal tumor-infiltrating lymphocyte (sTIL) densities and (b) intratumoral tumor-infiltrating lymphocyte (iTIL)
densities. In Fig. 2b, when patient groups with iTIL densities ≥25% were combined together, the recurrence rate at 5 years was 6.7%. The
hazard ratio (HR) of recurrence in the combined group (iTIL ≥25% vs. <25%) was 0.37 (95% confidence interval [CI] 0.18–0.78; p= 0.009).
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traditional designs when there are constraints on the number of
inputs.
A key advantage of developing AI-based methods for TIL

evaluation is that it can provide consistent and reproducible
outcomes, in addition to streamlining the labor-intensive work
process. The consistent evaluation by AI-based methods can be
particularly beneficial in situations such as the evaluation of iTILs
in our dataset, where the densities are low and within a restricted
range. In such cases, even small differences in TIL counting caused
by subjective variations in human observation can lead to a
considerable disparity in evaluating the case to have high or low
TIL densities. This underscores the value of an AI-based method
that can provide a consistent evaluation process.
Our methodology of assessing the degree of TIL infiltrations by

using only the H&E-stained images has advantage of not requiring
any additional procedures such as immunohistochemistry (IHC),
thus simplifying the methodology and offering wide applicability.
Furthermore, the straightforward nature of the process reduces
the likelihood of introducing artifacts that may be caused by
additional experimental steps32,33. However, this approach does
not consider the subtypes of lymphocytes4,11,34. Instead, we
incorporated spatial information between the tumor, stroma, and
TILs in our analysis. Our findings demonstrate that while stromal
TILs play a significant role in the prognostic prediction of colon
cancer, intratumoral TILs can also aid in identifying patients with

particularly poor prognoses. Although positive correlations with
clinical outcomes were observed in this study, future research may
be necessary to improve the predictive accuracy through the
incorporation of additional features, such as more detailed spatial
boundary delineation by utilizing the distance from the tumor
center or the invasive border. In addition, there exists a need to
validate the prognostic value of our spatial TIL-based risk groups
using fixed cutoff values with an expanded, multicentric dataset in
order to have the model applicable to the clinical setting.
Nevertheless, our results hold significance in that they

Fig. 3 Representative images of Lunit SCOPE IO-inferenced hematoxylin and eosin-stained whole slide images. The representative image
of a Lunit SCOPE IO-inferenced whole slide image in, (a) a high-risk case, (b) an intermediate-risk case, and (c) a low-risk case (blue: cancer area,
green: cancer stroma, cyan dots: tumor-infiltrating lymphocytes. Unmarked areas in the whole slide images refer to background area not
directly related to either cancer area or the cancer related stroma).

Fig. 4 Kaplan Meier curves of time to recurrence (TTR) according
to combined iTIL/sTIL Risk Groups. The Kaplan Meier curves of TTR
according to the combined intratumoral (iTIL)/tumor-related stromal
(sTIL) tumor-infiltrating lymphocyte risk groups (HR, hazard ratio; CI,
confidence interval).

Table 3. Multivariable analysisa of time to recurrence and disease-free
survival according to TIL risk groups, adjusted for other
clinicopathologic variables.

Time to recurrence Disease-free survival

HR (95% CI) p-value HR (95% CI) p-value

TIL risk categories

High-risk 1 0.010 1 0.018

Intermediate-risk 0.41 (0.18–0.96) 0.040 0.49 (0.22–1.09) 0.081

Low-risk 0.18 (0.06–0.56) 0.003 0.25 (0.10–0.65) 0.004

Age, per year increase 1.02 (0.98–1.06) 0.285 1.03 (1.00–1.07) 0.070

Sex

Male 1 0.406 1 0.184

Female 1.40 (0.63–3.13) 1.64 (0.79–3.41)

T stage

T4 1 < 0.001 1 < 0.001

T1–3 0.16 (0.07–0.35) 0.18 (0.09–0.37)

N stage

N2 1 0.007 1 0.004

N0–1 0.34 (0.16–0.74) 0.35 (0.17–0.71)

Tumor differentiationb

High-grade 1 0.172 1 0.212

Low-grade 0.50 (0.19–1.35) 0.56 (0.22–1.40)

Lymphovascular/perineural invasion

Yes 1 0.067 1 0.020

No 0.36 (0.12–1.08) 0.31 (0.12–0.83)

Tumor sidedness

Right 1 0.872 1 0.283

Left 0.93 (0.41–2.14) 0.68 (0.34–1.37)

HR hazard ratio, CI confidence interval, TIL tumor-infiltrating lymphocytes.
aMicrosatellite instability status was not included in the multivariate
analysis as there were no recurrence events observed in the 20 patients
having microsatellite instability-high tumors.
bHigh-grade tumor differentiation includes poorly differentiated or
undifferentiated tumors; low-grade includes well- or moderately-
differentiated tumors.
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demonstrate, although in a pilot stage, that predicting clinical
outcomes through the utilization of an AI-powered model could
aid in standardizing the evaluation process and streamlining the
workload.
The 5-year recurrence rate of 9.7% observed in the patients

included in this study is notably lower than the widely reported
recurrence rate of 20–30% for this patient population. All patients
included in this study were treated at Seoul National University
Bundang Hospital (SNUBH). SNUBH is the first fully digitalized
paperless hospital in Korea from its beginning in 2003, and all
patients’ clinical and radiologic data at SNUBH have been
electronically recorded and maintained in the electronic medical
record system. In addition, clinical data of colorectal cancer
patients who underwent surgery have been collected and
maintained by constructing a prospective database in the
department of surgery at SNUBH35. Although the data analysis
of this study was conducted retrospectively, patients’ data had
already been collected prospectively based on the above
databases, and cancer recurrence was reviewed once again for
this study. All patients in our analysis underwent surgery and
received adjuvant chemotherapy as appropriate according to
clinical practice guidelines at the time. Most (89.6%) patients had
completed their adjuvant therapy as planned. Among all included
patients, thirty-eight patients (13.1%) had low-risk stage II disease.
In case of low-risk stage II colon cancer, either adjuvant
chemotherapy or observation without chemotherapy can be
considered because of modest survival benefit1; in these patients
with low-risk stage II disease, after the shared discussion of the
actual expected benefit of adjuvant chemotherapy, fluoropyrimi-
dine monotherapy was used in all cases who wanted adjuvant
treatment in our patient cohort. Apart from the pathologic stage
and the treatment factor, patient selection was based solely on
the availability of slides for the WSI analysis and not on any other
criteria, thereby reflecting the comprehensive patient population
during the predetermined treatment period (2009–2012). More-
over, we were able to gather the follow-up information for enough
time in most of the included patients. Probably, the fact that all
patients included in this study received adjuvant chemotherapy
and showed high compliance with adjuvant treatment may
partially explain the good treatment results compared to other
reports. Therefore, we believe that the reported outcomes on
cancer recurrence and survival in this study reflected the actual
reality at SNUBH. Since the analysis in this study is based on
single-institution patient data, we emphasize once again that
validation is required in the future.
In conclusion, AI-powered TIL analysis has the potential to serve

as a robust and practical tool to provide prognostic information in
stage II–III colon cancer. Further validation in a larger number of
cases is necessary to establish the full extent of its applicability.

METHODS
Study patients and data sets
First, patients with pathologic stage II or III colon cancer who were
treated with curative surgery between Jan 2009 and Dec 2012 at
SNUBH were selected in this retrospective study. Among these,
patients who received adjuvant chemotherapy and had available
H&E tumor slides were finally included in this study (N= 289). All
patients received fluoropyrimidine-based adjuvant therapy (with
or without oxaliplatin). WSIs of H&E-stained primary tumor tissues
prepared from formalin-fixed paraffin-embedded samples
obtained at the time of surgery were scanned at a 40x
magnification using Aperio AT2 (Leica Microsystems Inc, Buffalo
Grove, IL, USA) for the AI-based spatial TIL analysis. A single H&E-
stained WSI of a representative primary tumor tissue block was
selected and scanned for the TIL analysis of each patient.

The study was conducted in accordance with the Declaration of
Helsinki for biomedical research. The Institutional Review Board of
SNUBH approved this study and obtaining informed consent from
individual patients was waived considering the retrospective
nature of this study (B-2110-716-302).

Spatial TIL analysis by AI-powered WSI analyzer
Lunit SCOPE IO (Lunit Inc., Seoul, Republic of Korea) is a deep
learning-based TIL analyzer, comprised of two complementary but
separate deep learning models each developed for cell detection
and for tissue segmentation, as previously described (Supplemen-
tary Fig. 3)26,27,36. The deep learning models are based on the
DeepLabV3+ convolutional neural network architecture, with a
ResNet-34 backbone network37,38. The models were developed
and trained with patches extracted from WSIs of 25 tumor types
including colon cancer, annotated and segmented by board-
certified pathologists and were updated from a previous version26

using 13.5 × 109 µm2 tissue regions and 6.2 × 105 TILs on 17,292
H&E-stained WSIs from 17 tumor types also including colon
cancer. The performance of the model, assessed using the tuning
dataset prior to and independently of its application to the dataset
of this study, yielded the intersection over union (IoU) of 0.82 and
0.67 for the model’s capacity of segmentation of cancer area and
cancer stroma respectively, and mF1 score of 0.71 for the
detection of TILs or tumor cells. To ascertain the performance of
Lunit SCOPE IO on segmenting and detecting TIL in colon cancer,
the performance was separately validated using samples included
in The Cancer Genome Atlas (TCGA) colon adenocarcinoma
(COAD) dataset. An experienced pathologist (H.J.O.) annotated
106 tumor-containing test grids randomly selected from the WSI
in the TCGA COAD dataset for the ground-truth of tissue
segmentation and TIL identification. The segmentation and TIL
identification results of Lunit SCOPE IO were compared to the
pathologist’s annotation to evaluate the performance of the
model, yielding the IoU of 0.84 for segmentation of cancer area,
0.85 for segmentation of cancer stroma, and mF1 score of 0.71 for
TIL detection.
For this study, Lunit SCOPE IO quantified TIL and combined the

spatial segmentation data with the location data of lymphocytes
on a WSI. iTIL and sTIL densities, defined as the number of TILs per
1 mm2 of cancer area or the cancer stroma were obtained for
analysis in association with clinical outcomes. To compare the TIL
densities determined by Lunit SCOPE IO to the results using a pre-
existing model, two pathologists (H.J.O. and C.K.) independently
scored the TIL densities of the same dataset included in this study
using the standardized approach suggested by the ITWG29,30. The
ITWG TIL scores examined by the two pathologists were compared
to the sTIL densities calculated by Lunit SCOPE IO, as the ITWG
method specifies to evaluate only the TILs within the stromal
compartment.

Statistical analysis
Differences in means for continuous variables between the two
groups were compared using the Wilcoxon rank-sum test. The
categorical variables between the two groups were compared
using the Chi-square test and Fisher’s exact test was applied if the
expected frequencies in >20% of the cells were below 5. The
correlation between two continuous variables was assessed using
Spearman’s rank correlation coefficient. TTR was defined as the
time from surgery to confirmation of recurrence (distant or
locoregional), and DFS was defined as the time from surgery to
confirmation of recurrence or death from any cause. Patients alive
without an event of interest were censored at the date of the last
follow-up visit. The univariate comparisons of TTR or DFS were
performed using the log-rank tests, and the multivariate
comparisons were performed using the Cox proportional hazard
model. Two-sided p-values were reported and p-values of less
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than 0.05 were considered statistically significant. The statistical
analysis was performed using R version 4.2.2 (www.r-project.org).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The AI-powered analysis results of spatial TIL density data generated during this
study are included in this article and the supplementary information files. The other
data will be made available upon reasonable request to the corresponding author.
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