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Biology-aware mutation-based deep learning for outcome
prediction of cancer immunotherapy with immune checkpoint
inhibitors
Junyan Liu1, Md Tauhidul Islam 1, Shengtian Sang1, Liang Qiu1 and Lei Xing1✉

The response rate of cancer immune checkpoint inhibitors (ICI) varies among patients, making it challenging to pre-determine
whether a particular patient will respond to immunotherapy. While gene mutation is critical to the treatment outcome, a framework
capable of explicitly incorporating biology knowledge has yet to be established. Here we aim to propose and validate a mutation-
based deep learning model for survival analysis on 1571 patients treated with ICI. Our model achieves an average concordance
index of 0.59 ± 0.13 across nine types of cancer, compared to the gold standard Cox-PH model (0.52 ± 0.10). The “black box” nature
of deep learning is a major concern in healthcare field. This model’s interpretability, which results from incorporating the gene
pathways and protein interaction (i.e., biology-aware) rather than relying on a ‘black box’ approach, helps patient stratification and
provides insight into novel gene biomarkers, advancing our understanding of ICI treatment.
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INTRODUCTION
Cancer immunotherapy, an approach to utilize the patient’s own
immune system against cancer, is recently considered the ‘fourth
pillar’ of oncology, besides surgery, radiation therapy, and
chemotherapy1. Among different types of immunotherapy,
immune checkpoint inhibitor (ICI) has revolutionized cancer
treatment and provides comprehensive insights into the tumor
microenvironment2. Cancer cells evade their host’s immune
system by negatively regulating T cells via immune checkpoints
(e.g., CTLA-4 and PD-1). By blocking these checkpoint proteins, the
ability of the immune system to recognize and kill cancer cells
restores3. Following the authorization of the first ICI drug,
ipilimumab, which targets CTLA-44, in 2011, the U.S. Food and
Drug Administration (FDA) has since granted clinical approval for
various ICI drugs such as anti-PD1 drug pembrolizumab, as well as
anti-PDL1 drug atezolizumab5. These advancements have sig-
nificantly broadened the range of effective treatments for
numerous types of cancer, including melanoma, non-small-cell
lung cancer (NSCLC), and renal cell carcinoma (RCC)6. Despite the
promising results7,8, the individual response rate of ICI varies
among patients, with 50–80% in specific types of cancer such as
melanoma and Hodgkin lymphoma, while only 15–30% in most
other tumors9. While studies9 have demonstrated the significant
impact of tumor mutation burden10 on treatment outcomes, a
comprehensive understanding of individual gene mutations
remains elusive.
To address this question, survival analysis, including the gold

standard Cox regression model, utilizes statistical methods to
establish the relationship between treatment response and risk
factors (i.e., gene mutations in our application). While the Cox
model examines the linear relationships between risk factors,
recent advancements in Cox-based deep learning models,
including DeepSurv11, AECOX12, and SurvivalNet13, have expanded
to investigate the non-linear relationships between risk factors.
These models were originally developed for analyzing clinical (e.g.,
age, sex) and gene expression data. And they are not designed

specifically to handle gene mutation data, which consists of solely
binary values (where a value of ‘1’ indicates the presence of a
mutation and ‘0’ indicates no mutation for each gene, as shown in
Fig. 1a). Binary features contain limited information as they
represent only two states. Furthermore, they are not suitable for
capturing gene relationships and fail to encode the hierarchical
structure of gene pathways. None of these models are informed
with biological knowledge, despite the wealth of research on
genes and pathways that have emerged since the introduction of
the Cox model nearly 50 years ago. We hypothesize that a deep
learning model that recapitulates the gene pathways and protein
interactions may offer new insights into survival analysis. Among
deep learning techniques, the self-attention mechanism14 holds
promise for developing interpretable models, where important
genetic biomarkers receive more ‘attention’ (i.e., assigned larger
weights). Ying et al. introduced the Graphomer network which
leverages both graph and the self-attention to encode structural
information15. Building upon these previous efforts, we propose a
biology-aware mutation-based framework for ICI survival analysis
that makes the following contributions: (i) explicitly incorporate
gene pathways and protein interactions into the deep learning
model, (ii) make interpretable survival predictions, and (iii) identify
potential biomarkers.
In our approach, patient mutation data involving 296 genes are

transformed into binary arrays (where ‘1’ indicates mutation and
‘0’ represents wildtype genes). As illustrated in Fig. 1b, these arrays
undergo an embedding layer, inspired by the concept of semantic
relations in word embeddings used in natural language proces-
sing (NLP)16. Each gene is embedded via a vector representation,
and genes with similar expression and co-occurrence are
embedded closer to each other in Euclidean space. Afterwards,
the embedded data is fed into our model, which incorporates prior
biology knowledge through the construction of a graph
representation. This representation is generated using gene
pathways sourced from a publicly available protein–protein
interaction (PPI) database17. In this graph, individual genes are
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represented as nodes, while the interactions between genes are
represented as edges, as illustrated in Fig. 1c. The impact of
mutations along the pathway is assessed based on the graph’s
characteristics, including the length of gene pathways and the
centrality of the nodes. Genes that are closely connected to
mutated genes or have a higher number of interactions in the
graph are assigned larger weights. This method mimics the
underlying biology where upstream mutations affect the down-
stream genes. Genes that are directly linked to the mutation
receive high attention (i.e., larger weights) as they are directly
impacted, while genes further away from the mutations in the
graph receive low attention. Eventually, the model outputs a
predictive score indicating the patient’s survival outcome. Model
accuracy is evaluated via the concordance index (also known as
the c-index)18, a common statistical method for analyzing
censored survival data. Our results demonstrate that the proposed
framework achieves accurate and robust predictions across nine
types of cancer, outperforming biology-unaware models. The
model presents a promising approach to analyze gene mutation
data, generate personalized predictions and discover key biomar-
kers to guide the clinical management of ICI treatment.

RESULTS
Biology-aware self-attention mechanism helps identify novel
biomarkers
Interpreting deep learning models poses a significant challenge,
particularly within the domain of healthcare19. Traditional ‘black
box’ deep learning models only allow for reliability assessment
based on predictive accuracy, providing little understanding of the
model’s decision-making rationale. However, our model leverages

the self-attention mechanism, facilitating visualization of the
prediction. It achieves this by revealing the attention weights
allocated to each gene interaction, thereby introducing additional
model validation. (i.e., important genes should receive high
attention). Figure 2a illustrates the average weighted attention
across patients for each cancer type. The weighted attention (i.e.,
based on the weighting scheme as described in the “Methods”
subsection “Biology-aware self-attention model” has a dimension
of 296 by 296 (i.e., gene number by gene number). Thus, we can
interpret every entry (i, j) (i ≠ j) as the importance of interactions
between gene i and j towards the treatment outcome, and
interpret the diagonal entry (i, i) as the importance of the specific
gene i. This explanation motivates our investigation into
biomarkers by selecting the genes with the highest attention.
We then identify the top ten highest-attention genes, as
demonstrated in Fig. 2b. Our model represents a different
approach compared to the original COX-PH model. The original
Cox-PH model, described in Eq. (1), determines risk hazard h
according to the base hazard h0 and gene mutation xi. If the gene
mutates, xi= 1; otherwise, it is 0. The learnable parameter βi
represents the weights of individual gene. However, our model’s
weights are based on gene interaction pairs. Genes without
interaction receive low attention (as denoted by black in Fig. 2a)
while critical interactions receive high attention (as denoted by
yellow and white in Fig. 2a). Note that it is feasible to include the
interaction term into the COX-PH model (e.g., by adding the xixj
product term). By leveraging a deep learning framework, we are
relieved of the need to manually define the interaction term. This
is particularly beneficial when dealing with potentially complex,
non-linear gene interaction, which can be arduous to define
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Fig. 1 Framework. a The diagram in a illustrates the sparse and binary nature of mutation data, where each row corresponds to a patient and
each column represents a gene. Black dots represent gene mutations, while white space indicates the absence of gene mutations. b outlines
the framework of our biology-aware model. The mutation data, after undergoing the embedding layer, are fed into the model. The model
then generates a predictive score, indicating whether the patient responds to the treatment. Model prediction accuracy is evaluated using the
concordance index (c-index). c provides a visualization of how we incorporate graph properties into the model. Initially, we construct the
graph representation by utilizing information obtained from a publicly accessible protein–protein interaction (PPI) database. Each gene is
represented as a node, while the interactions between genes are represented as edges. Subsequently, we calculate various graph properties,
such as the shortest pathway length between genes and the centrality of nodes. These properties are utilized to adjust the weight of the self-
attention mechanism in the model.
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explicitly.

h ¼ h0 � exp
X

βixi
� �

(1)

To validate our findings, we initiated a comprehensive literature
review of all the listed genes. The literature review is provided in
Supplementary Method 1.
In addition to the literature review, we present the pan-cancer

survival analysis by providing the Kaplan–Meier curves of patients
categorized by the status (i.e., mutated or wildtype) of the
identified genes, as depicted in Fig. 2c. It is important to mention
that not all identified genes can stratify patients into two groups
with a significant survival difference (P > 0.1, e.g., KRAS, p= 0.624;
SMARCA4, p= 0.951). Nonetheless, these genes are linked to
biomarkers that do stratify patients with substantial survival
disparities. (e.g., KRAS is an upper stream gene of BRAF, p= 8.66e
−6 < 0.1; SMARCA4 interacts with ARID1A, p= 0.0024 < 0.1). When
we calculate the attention of individual genes (as described in the
“Methods” subsection “Biomarker discovery and validation”, these
biomarkers receive considerable weight due to their interactions
with other high-attention genes.

The predictive scores correlate with the TMB and MSI status
Tumor mutation burden (TMB) is recognized as a predictive
biomarker of the ICI treatment response20,21, Similarly, a deficiency
in mismatch repair genes (dMMR), potentially resulting in elevated

levels of microsatellite instability (MSI), has also been associated
with the response rates to ICIs22,23, Although our model does not
explicitly incorporate TMB or dMMR status as part of its inputs, we
conduct an examination whether our model’s predictive scores
align with these well-established indicators. Figure 3a and b
respectively portray the results of the comparison between TMB
and MSI status against predictive scores. The TMB values are
directly available for the same dataset. The MSI status is inferred
from the mutation status of the Mismatch Repair (MMR) genes,
which includes the mutations of the MLH1, MSH2, MSH3, MSH6,
and PMS224. If patients exhibit no mutations in these MMR genes,
they are classified as “Wt” in Fig. 3. If such mutations are present,
they are designated as “Mut” in Fig. 3. Figure 3b is used as an
additional “model sanity check”, as patients with these mutations
are likely to have dMMR tumors. However, note that the mutations
in MMR genes do not perfectly align with the clinical definition of
dMMR/ MSI, which is a limitation of the current approach. (e.g., the
most common cause for dMMR in colorectal cancer is MLH1
promoter hypermethylation25, but this information is not available
in the current dataset).
As a result, the predictive scores demonstrate a strong

correlation with TMB and indicate a statistically significant survival
disparity between patients with mutations in MMR genes
(p < 0.05). Only three cancer types are exceptions to this trend.
In the cases of RCC and glioma, our model exhibits relatively low
predictive accuracy, indicating potential prediction errors. Regard-
ing breast cancer, the ability to draw robust statistical conclusions
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Fig. 2 Explore important biomarkers. a Displays the average weighted attention map for each type of cancer. Each map, comprising the
dimension of 296 by 296 (corresponding to gene number by gene number), has been downsampled to a size of 30 by 30 for illustration
purposes (please refer to Supplementary Method 2 for the original attention map). The value at each position (i,j) signifies the model-assigned
attention between gene i and j by the model. b Enumerates the top 10 genes receiving the highest attention. The mutation frequency is
plotted in green, while the attention weight is exhibited in blue. Note that a high mutation frequency does not necessarily equal a larger
weight. For instance, P53, in comparison to TERT, BRAF, and NRAS, is less frequently mutated in melanoma patients, yet the model still allocates
the highest weight to P53. c We provide the Kaplan–Meier curves based on the status (mutation vs wildtype) of the genes listed in (b). The
mutation status of certain genes, including p53, TERT, PIK3C2G, divide patients into groups with significantly different survival status (p < 0.1).
While some genes (e.g., KRAS and SMARCA4) do not lead to significant survival differences, their high weights originate from the interactions
with other biomarkers.
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is constrained by the limited sample size of only 44 patients
present in the dataset.

Better prediction accuracy compared to conventional survival
analysis
We train, validate, and test the model on 1571 patients across nine
types of cancer. The prediction accuracy (i.e., c-index) is derived
from an average of repeated ten-fold cross-validation (as
described in the “Methods” subsection “Model training, validation
and testing”. We achieve an averaged c-index of 0.601 ± 0.009
(mean ± standard error) for NSCLC, 0.582 ± 0.010 for melanoma,
0.603 ± 0.018 for bladder cancer, 0.580 ± 0.021 for RCC,
0.611 ± 0.018 for head and neck cancer, 0.634 ± 0.022 for
esophagogastric cancer, 0.534 ± 0.016 for glioma, 0.556 ± 0.024
for colorectal cancer, and 0.601 ± 0.015 for breast cancer,
respectively, as illustrated in Fig. 4a. See Supplementary Method
4 for the fitting outcome of k1, k2 and k3. Our model significantly
outperforms the commonly used Cox-PH model and DeepSurv
(p < 0.05 in all cancer types via one-way ANOVA test except two,
detailed below). Note that DeepSurv was originally developed for
tabular clinical data, not gene mutation data. However, it remains

relevant as it represents one of the simplest non-linear models.
Our prediction shows an insignificant accuracy increase (p > 0.05)
for two cancer types: glioma and RCC. For glioma, nearly 90% of
patients in our dataset die within the first 30 months, posing a
challenge to discern the effectiveness of treatment. Studies have
suggested26,27, the ICI treatment does not show consistent
survival improvement for glioma patients. Low ICI response rates
contribute to the insignificant performance compared to Deep-
Surv (p= 0.124). As for RCC, VHL is listed as the highest-attention
gene (as seen in Fig. 2b); however, even though VHL is a
recognized biomarker for RCC28, we find insufficient evidence in
the current literature regarding its role in immunotherapy. This
suggests a potential error in attention, resulting in the model’s
poor accuracy compared to Cox-PH (p= 0.356).
Subsequently, we remove the high-attention genes from the

data (i.e., remove genes listed in Fig. 2b), re-train and re-predict
the model. We observe a notable decrease (p < 0.1) in the overall
prediction accuracy, as depicted in Fig. 4b, confirming the
predictive value of these biomarkers for the treatment outcome.
Nonetheless, for melanoma, we observe an insignificant accuracy
reduction (p > 0.1). Upon examining the new attention map post
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the removal of high-attention genes, we discern that the model
now places more attention on genes HRAS, AKT2, PIK3CA for
melanoma. These genes interact closely with the removed genes
(e.g., within the PI3K-PTEN-AKT pathway29). These observations
suggest that, even in the absence of certain gene biomarkers in
the data, the model may identify alternative upstream or
downstream genes during the prediction process. This explains
why the removal of high-attention genes does not significantly
impair the prediction accuracy.

Patient stratification based on the predictive scores
In this study, patient stratification refers to classifying patients into
distinct groups—non-responders and responders—based on the
predictive scores generated by our model. We have excluded
glioma from this process due to its low response rates and
significant variability across different studies. When a new patient
presents with known mutations, we can run the model with
calibrated weights and categorize the patient as either a
responder or a non-responder. This technique could potentially
contribute to the personalization of ICI treatment, tailored to the
patient’s gene mutation profile. The Kaplan–Meier survival curves
for both subgroups are illustrated in Fig. 4c. The curve positioned
lower, representing a shorter survival duration, corresponds to
non-responders, whereas the curve positioned higher, indicative
of extended survival, pertains to responders.

DISCUSSION
In this paper, we introduce a biology-aware mutation-based
model for predicting the ICI treatment outcome. We then validate
the model on nine types of cancer. Previous studies have explored
gene expression and clinical tabular data (e.g., age, sex) using
various learning-based survival models11–13 While gene mutation
is another common measurement, it is rarely incorporated into
such models since it consists solely of binary values, which
conveys limited information and are not suitable to represent
gene relationships. A preliminary attempt was made by the clinical
transformer30, which directly applied the transformer structure to
mutation data and achieved accurate predictions. However, the
model still implicitly learns the gene interactions from the data,
without considering prior biological knowledge. This study
addresses this gap by presenting a method to combine the
binary mutation data with deep-learning survival models.
The proposed method offers several advantages compared to

previous survival models on mutation data. Genes are embedded
into continuous vectors based on their expression. The weighted
attention map mimics the underlying biology where an upstream
gene mutation can affect the downstream. Additionally, we validate
our model prediction based on the identified biomarkers. Indeed,
we have performed a literature review and compared the model
predictions with TMB and MSI statuses. Several identified biomarkers
(e.g., P53, KRAS, BRAF) align with previous studies31 that already used
mutations as predictors of ICI treatment response. This method has
the potential to advance our understanding of current ICI treatment
and reduces the risk of drawing unreliable conclusions from ‘black
boxes’ deep learning models that are difficult to interpret.
Several factors may affect the model’s accuracy. Primarily, our

current model solely considers gene mutation data, excluding
patient clinical information such as age and sex. While this enables
the model to concentrate exclusively on mutation biomarkers, we
may also overlook valuable factors. For example, the human
immune system is known to be influenced by age32, a variable not
currently accounted for in our model. Meanwhile, gene expression
provides additional information beyond mutation data. Incorpor-
ating other clinical data (e.g., age, gene expression) into our model
is a future direction we are actively pursuing. Secondly, our
approach makes several simplifications. Our PPI graph only

accounts for the direct or indirect interactions among the 296
genes present in our data. Biologically, it’s possible for two genes
to be indirectly linked via a third gene not included in our current
selection of 296 genes. Nevertheless, considering all genes in the
PPI library would significantly increase the computational cost
associated with constructing the PPI graph. Our model also
simplifies the mutation status as binary, neglecting the variety of
mutation types, including deletions, missense mutations, and
frameshift mutations. Lastly, survival outcomes (i.e., how long a
patient survives following treatment) result from complex factors
such as the tumor microenvironment, pre-treatment health status,
pharmacodynamics, and others, in addition to gene mutation. Like
all other survival models, ours does not encapsulate every aspect
of ICI treatment and, as such, has its limitations.
In this study, we developed a biology-aware mutation-based

deep learning model integrating gene pathways and protein
interactions. This framework enables interpretable survival analysis
for patients receiving ICI treatment, highlighting its capacity to
uncover predictive biomarkers. The model is not limited to
immunotherapy and can be extended to other types of cancer
treatment (e.g., targeted therapy) where gene mutation is crucial,
thereby having an impact beyond ICI treatment. For future studies,
we plan to incorporate additional clinical information into the
framework such as the multivariate survival analysis and the MSI
score. It is also crucial to examine whether this learning-based
approach adds value beyond conventional biomarkers in patient
care.

METHODS
Dataset ethics and preprocessing
Our study utilized a dataset comprising 1571 patients across nine
cancer types treated with ICI at Memorial Sloan Kettering Cancer
Center (MSKCC), collected via the MSK-IMPACT assay33. This
includes 349 NSCLC patients, 320 melanoma patients, 215 bladder
cancer patients, 151 RCC patients, 139 head and neck cancer
patients, 126 esophagogastric cancer patients, 117 glioma
patients, 110 colorectal cancer patients, and 44 breast cancer
patients. Note that we remove patients whose cancer types are
labeled unknown34. The protocols of sequencing and variant
calling are available in the original study35. This dataset is
institutionally reviewed and approved by MSKCC and is down-
loaded from the open-source database cBioPortal36. For each
patient, mutation data involving 468 genes and clinical informa-
tion are available. The survival status and the overall survival serve
as our ‘ground truth’ for model training and prediction. During
data preprocessing, genes mutated in <1% of the total population
(i.e., genes that mutate in ≤16 patients) were removed, reducing
the gene count to 296. Each patient is represented as an array
consisting of binary values, indicating whether the gene is
mutated (i.e., ‘1’ for mutation and ‘0’ for wildtype).

Embedding layer
To address the data non-continuity resulting from the binary
nature of the mutation input, we represent each gene with a 50-
dimensional vector via a previous embedding method proposed
by Choy et al.37. These embeddings are achieved through a
shallow two-layer artificial neural network trained on transcrip-
tomic data from The Cancer Genome Atlas (TCGA), encapsulating
gene expression and co-occurrence. Once generated, these
embeddings remain fixed throughout the study. Consequently,
each patient is characterized by a 296-by-50 matrix, where
mutated genes are substituted with their corresponding embed-
ding vectors, and wildtype genes, originally marked as ‘0’, are
represented by a 50-dimensional zero vector, as shown in Fig. 5.
The potential influence of the embedding dimension is examined
further in Supplementary Method 3.
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Biology-aware self-attention model
To make the model biology-aware, we create a graph based on
the protein–protein interaction (PPI) database sourced from the
UCSC genome browser17. This database captures interactions of
human genes that have been identified through biological
experiments or PubMed text mining. By targeting the 296 genes
of interest, we extract a total of 6004 gene interactions. Utilizing
the Python library ‘networkx’, we establish our PPI graph by
setting the 296 genes as nodes and the 6004 gene pairs as graph
edges. This is a directed graph as the library specifies the direction
of interactions (gene A pointing to B means A acting upon B). The
function of PPI graph is analogous to the “positional encoding” for
words in the natural language processing. The whole process is
illustrated in Fig. 1c.
Following the embedding layer, each patient is represented by

a 296 by 50 matrix denoted as x. The attention map is acquired
with Eq. (2), where FC1 and FC2 represent the two fully connected
layers illustrated in Fig. 6a.

attentionmap ¼ FC1ðxÞ�FC2ðxÞTffiffiffiffi
dk

p þ k1 � pathway
þ k2 � connection
þ k3 � padding

(2)

The first term on the right-hand side is the biology-unaware
attention score. It is calculated by multiplying the output matrices
produced by two fully connected layers and then normalizing by the
embedding dimension dk= 50. This attention score is subsequently
weighted against three additional matrices: the pathway matrix, the
connection matrix, and the padding matrix. All four matrices
(including the attention map) have a shape of 296 by 296. k1, k2,
and k3 are learnable parameters that determine the relative weights
among these matrices. Without these additional matrices, the
attention map only reflects the implicit relationships learned solely
from the data. The overall goal of this step is to adjust the weights of
a given gene interaction (i, j) based on our prior biological knowledge.
The ‘pathway’ matrix assigns greater weights to closely

associated genes. Specifically, it quantifies the shortest path
length from gene i to gene j, as per Eq. (3). If gene i and j are
disconnected on the graph, the value at (i, j) is 0; if connected, it is
the reciprocal of the shortest path length Lshortest navigating from

gene i to j. The ‘pathway’ matrix is shown in Fig. 6b.

pathwayði; jÞ ¼ 0; if i; j not connected
1

Lshortest
; if shortest path from i to j exists

(
(3)

The ‘connection’ matrix quantifies the closeness centrality of
gene pair (i, j) based on Eq. (4). In graph theory, centrality
measures the importance of nodes. The mutation that connects to
a significant number of downstream genes warrants larger
weights over genes with fewer connections. The degree of
centrality is shown in Fig. 6c.

connectionði; jÞ ¼ centralityi þ centralityj (4)

The ‘padding’ matrix serves as an additional penalty for gene
pairs (i, j) that are not connected (i.e., mutation of gene i will not
affect j). This penalty can be mathematically described as Eq. (5).

paddingði; jÞ ¼ 0; if i; j are connected

�1; if i; j are not connected

�
(5)

Loss function for survival analysis
The concordance index (c-index) is one of the statistical methods
to evaluate the model accuracy with censored data18 by
comparing the prediction for every pair of patients i and j. We
name (i,j) as a concordant pair if the predictive score pi > pj when
the overall survival Ti > Tj, given both patients decrease, or
patient i is surviving while j decreases. Conversely, if both
patients are still alive, or Ti > Tj when patient i is decreased while j
survives, we label the pair (i,j) as incomparable since patient j ’s
eventual survival duration remains uncertain. The c-index is
defined as the proportion of concordant pairs to all comparable
pairs38. The original concordance index is discrete and does not
have a continuous gradient for optimization. As a solution, we
implement a sigmoid approximation based on Schmid et al.39.
Survival models typically offer two prediction types: those
estimating patient response efficacy and those providing a ‘risk
score’. Our model falls under the first type. Accordingly, we seek
to maximize the c-index by minimizing the loss function as Eq.
(6). L2 regularization defined as the sum of squared model
parameters, is utilized as a common strategy to reduce over-
fitting.

loss ¼ 1� cindexþ 0:01 � L2regularization (6)
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Fig. 5 Embedding layer. This figure shows the embedding outcomes for four sample patients. Their respective mutation data, initially
encoded as binary vectors of dimension 296 by 1, are transformed into a 296 by 50 matrix. In this format, each gene is signified by a 50-
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Model training, validation, and testing
In order to fully utilize the available data, we employ a pre-training
procedure with repeated 10-fold cross-validation, as depicted in
Fig. 6d. Initially, for each cancer type, we pre-train the model using
all patient data from the other eight types, excluding the target
cancer. Subsequently, for the specified cancer type, the model is
initialized with pre-trained weights, and a ten-fold cross-validation
is conducted. For each round of cross-validation (i.e., ten rounds in
total), the target cancer patients are randomly divided into a 10%
test set, used for model accuracy evaluation, and a 90% non-test
set, for model parameter calibration, using the scikit-learn
“train_test_split” function. This guarantees that the data used for
assessment remains unseen by the model during the training and
validation. Within the 90% non-test set, the data is further
randomly split into an 80% training set and a 20% validation set
using “train_test_split”. Model parameters that yield the highest
validation accuracy are saved and then used to make predictions
on the test sets.
This entire procedure is repeated five times, generating 50

values (i.e., 10-fold multiplied by five iterations). We use the mean
and standard error of these 50 values to represent our model
accuracy. Notably, for breast cancer, due to the limited patient
count of 44, we conducted a repeated five-fold cross-validation
instead of 10-fold.

Numerical implementation
Data preprocessing is performed via Python library Pandas 1.4.1.
Deep learning models are developed via Pytorch 1.11.0. All data
processing, model calibration and prediction were performed on a
computer with a 3.7 GHz Intel i9-10900K and Nvidia 3080 Ti. Using
this system, a single ten-fold cross-validation took <30min with
200 epochs and a learning rate 1e−3. Cox-PH is implemented by
Python library ‘lifelines’40, while DeepSurv is implemented by

Python library ‘Pycox’41. Figures are plotted with Python library
‘Matplotlib’ 3.6.3.

Biomarker discovery and validation
To assess the significance of individual genes, we scrutinize the
attention weights associated with each gene, as illustrated in Fig.
6e. We sum up all weights involving a specific gene as Eq. (7),
including the downstream interactions (the first term), the
upstream interactions (the second term), as well as the self-
attention (the third term). In Eq. (7), the weight(i) represents the
total weights of the specific gene i, while att(i,j) denotes the
attention map (i,j). To ensure a fair comparison between
frequently and infrequently mutated genes, we normalize the
attention value of each gene by its mutation frequency, which is
calculated as the proportion of patients with a specific gene
mutation over the total number of patients. We then ranked the
top 10 genes with the highest weights.

weightðiÞ ¼
X296
j¼1;j≠i

attði; jÞ þ
X296
j¼1;j≠i

attðj; iÞ þ attði; iÞ (7)

To validate the credibility of the identified biomarkers, we
employ three verification procedures: (1) A literature review to
ascertain the role of the identified genes in ICI treatment. (2) The
retraining, revalidation, and retesting of the model after removing
all identified genes from the data, to assess if their exclusion leads
to reduced prediction accuracy. (3) Stratification of patients into
two groups based on gene mutation and plotting of their
Kaplan–Meier survival curves.

Patient stratification
It is feasible to cluster responders from non-responders based on
predictive scores. While the model generates a predictive score
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indicating the relative survival status, it does not know the clinical
threshold to distinguish between responders and non-responders.
Documented response rates from existing literature42 are used for
this purpose (e.g., for instance, research indicates that breast
cancer patients have an overall response rate of 17% to ICI
treatment. Consequently, we classify patients with the top 17% of
predictive scores as responders). Kaplan–Meier curves for each
subgroup are then plotted via Python function ‘kaplan_meier_-
estimator’ from ‘sksurv’. And the P values between the two groups
are calculated using the function ‘compare_survival’ from ‘sksurv’.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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