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sequencing (WES) for cancer patients
Michael Menzel 1,2, Stephan Ossowski3,4,5,23, Sebastian Kral 6,7,23, Patrick Metzger 7,8,23, Peter Horak 2,9,10,23,
Ralf Marienfeld11,12,23, Melanie Boerries 7,8,13,14, Steffen Wolter 6,7, Markus Ball 1,2, Olaf Neumann 1,2, Sorin Armeanu-Ebinger3,4,
Christopher Schroeder 3,4, Uta Matysiak6,7, Hannah Goldschmid1,2, Vincent Schipperges7,8, Axel Fürstberger 11,12,15,
Michael Allgäuer1,2, Timo Eberhardt11,12, Jakob Niewöhner11, Andreas Blaumeiser7,8,14, Carolin Ploeger1,2, Tobias Bernd Haack3,4,
Timothy Kwang Yong Tay1,2,16, Olga Kelemen3,4, Thomas Pauli7,8, Martina Kirchner1,2, Klaus Kluck 1,2, Alexander Ott3,4,
Marcus Renner1,2,9, Jakob Admard 3,4, Axel Gschwind 3,4, Silke Lassmann6,7, Hans Kestler11,12, Falko Fend 17, Anna Lena Illert18,19,20,
Martin Werner6,7,14, Peter Möller11, Thomas Theodor Werner Seufferlein12,21, Nisar Malek4,22, Peter Schirmacher1,2,10,
Stefan Fröhling 2,9,10,24, Daniel Kazdal 1,2,24, Jan Budczies 1,2,10,24✉ and Albrecht Stenzinger 1,2,10,24✉

A growing number of druggable targets and national initiatives for precision oncology necessitate broad genomic profiling for
many cancer patients. Whole exome sequencing (WES) offers unbiased analysis of the entire coding sequence, segmentation-based
detection of copy number alterations (CNAs), and accurate determination of complex biomarkers including tumor mutational
burden (TMB), homologous recombination repair deficiency (HRD), and microsatellite instability (MSI). To assess the inter-institution
variability of clinical WES, we performed a comparative pilot study between German Centers of Personalized Medicine (ZPMs) from
five participating institutions. Tumor and matched normal DNA from 30 patients were analyzed using custom sequencing protocols
and bioinformatic pipelines. Calling of somatic variants was highly concordant with a positive percentage agreement (PPA)
between 91 and 95% and a positive predictive value (PPV) between 82 and 95% compared with a three-institution consensus and
full agreement for 16 of 17 druggable targets. Explanations for deviations included low VAF or coverage, differing annotations, and
different filter protocols. CNAs showed overall agreement in 76% for the genomic sequence with high wet-lab variability. Complex
biomarkers correlated strongly between institutions (HRD: 0.79–1, TMB: 0.97–0.99) and all institutions agreed on microsatellite
instability. This study will contribute to the development of quality control frameworks for comprehensive genomic profiling and
sheds light onto parameters that require stringent standardization.
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INTRODUCTION
Scientific advances and technological developments over the past
few decades led to a growing number of drugs that are available
for treatment of cancer patients1. The paradigm of precision
oncology, which is based on a mechanistic understanding of
tumor biology and fine granular diagnostic profiling, is supported
by the majority of clinical trials2. Furthermore, the clinical
relevance of complex biomarkers, like microsatellite instability
(MSI), tumor mutational burden (TMB), and homologous recombi-
nation deficiency (HRD), is increasing since they have been shown
to be meaningful predictive biomarkers for patient stratification.
As a result, there is movement towards more comprehensive DNA

sequencing in routine clinical care, evident in the shift from the
use of smaller (few to 100 genes) to larger (around 1Mb) targeted
panels in Next Generation Sequencing (NGS)3–6. While this
diagnostic approach is generally supported by reimbursement
schemes in national health care systems, whole exome sequen-
cing (WES) and whole genome sequencing (WGS) are currently
employed mainly in dedicated research programs aimed at
comprehensive screening and identification of novel biomarkers
and druggable targets7–9. But, with increasing sequencing
capabilities and decreasing sequencing costs, WES and possibly
even WGS have the potential to enter the clinical setting10–15.
Compared to panel sequencing, WES offers the opportunity to (i)
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comprehensively cover the coding sequence so that either the
entire exome or virtual gene panels can be investigated in the
light of present and future diagnostic needs, (ii) facilitate
comparability and standardization across different laboratories
by avoiding bias of custom gene panels which may differ in
design and require repetitive updates on gene content, and (iii)
accurately measure (instead of estimate) complex biomarkers such
as TMB, HRD, and MSI16–19.
WES focusing on cancer diagnostics has been investigated in

various single center studies9,12,20–22, as well as in multi-center
studies focusing on singular metrics including variant detec-
tion23–28, panel-based somatic variant detection29–33, CNAs34–37,
or complex biomarkers38–41. However, WES studies that assess the
use of real-world clinical tissue samples and investigate the
reproducibility of diagnostic results across different diagnostic
institutes covering the entire workflow from laboratory analysis to
bioinformatic evaluation are scarce. To fill this gap, the Centers of
Personalized Medicine of Baden-Wuerttemberg (ZPM)42 embarked
on a joint pilot study to pave the way for the use of WES in routine
cancer diagnostics.
Tumor and matched normal DNA samples from 30 patients

covering a variety of cancer entities and molecular alteration types
were distributed to four participating centers, located in Heidel-
berg, Freiburg, Ulm and Tübingen. The samples were sequenced
in the respective molecular laboratories according to their
protocols and analyzed using the local bioinformatic pipelines of
five different institutions at the four ZPM partner sites. The
institutions reported a set of pre-defined molecular biomarkers:
somatic mutations and CNAs in a list of relevant genes as well as
the complex biomarkers HRD, TMB, and MSI. Inter-institution
comparisons showed a high concordance for the somatic variant
calls, CNA calls and the three complex biomarkers. An in-depth
analysis was performed to reveal the causes for differences
between the results of the participating institutions.

RESULTS
Paired tumor and normal DNA samples from 30 patients were
subjected to WES at four ZPM laboratories with subsequent data
analysis performed at five ZPM bioinformatic institutions (Fig. 1).

DNA was originally derived from fresh-frozen samples that had
been analyzed by WES within the multicenter MASTER (Molecu-
larly Aided Stratification for Tumor Eradication)9 program of the
German Cancer Research Center (DKFZ), the National Center for
Tumor Diseases (NCT) Heidelberg/Dresden, and the German
Cancer Consortium (DKTK) before. The cohort consisted of a
variety of rare cancer types including carcinomas, sarcomas, and
other tumor entities selected to represent a wide variety of
molecular alterations (Supplementary Table 1). Sequencing and
bioinformatic analysis were performed agnostic of the tumor
entity.
All DNA samples were successfully sequenced by all participat-

ing centers utilizing their local enrichment-kits, sequencers, and
wet-lab protocols (Supplementary Table 2). Quality measures
calculated for each of the sampels resuloted in on-target rates
(percentage of bases in the interrogated region) of 41–83% and
mean coverages after deduplication of 56–504x (Supplementary
Figure 1). Concordance analysis between the five institutions of
the four centers was performed in a predefined set of 494
oncological relevant genes (Supplementary Table 3).

Somatic variant calling
Somatic variants were compared between institutions based on
their chromosomal position and alteration at the DNA level. Only
exact matches were accepted as the same variant. In the
predefined gene set, a total of 960 somatic variant calls including
804 single-nucleotide variants (SNV) and 156 deletions/insertions
were made by the five participating institutions. The variant calls
corresponded to 270 unique variants of which the majority of 141
(52%) variants were detected by all five institutions, 59 (22%)
unique variants were detected by two to four institutions, and 70
(26%) variants by a single institution (Fig. 2). We carried out an in-
depth analysis of the discrepant variant calls by separately
analyzing the variants that were detected by two to four
institutions but missed by the remaining institutions (potentially
false-negatives), and the variants detected by only a single
institution (potentially false-positives).
Altogether, 59 unique variants were found by some but not all

institutions (23 variants were found by four, 21 variants by three,
and 15 variants by two institutions), corresponding to 110 missed
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Fig. 1 Overview on the study design. Tumor and normal DNA of 30 patients were distributed by DKFZ and NCT Heidelberg to four
participating NGS laboratories. Bioinformatic analysis was performed at five participating departments. Additionally, all sequencing data were
collected and analyzed with the same bioinformatic pipeline (blue arrows). Therapeutic relevant results from the DKFZ/NCT/DKTK MASTER
program were collected and included in the comparative analysis.
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findings of which 23 (21%) had a VAF < 10% or coverage < 100
(Fig. 2, orange subtree). For the remaining variants most misses
were due to different filtering procedures including quality, PASS
and other filters (37 missed variants, 34%). In addition, 22 (20%)
variants were called, but annotated as part of other alterations.
Only a small minority of 14 (13%) variant calls were missed due to
the lack of supporting reads, technical errors, or not being covered
by the target region. Two variant calls (2%) were falsely labeled as
germline variant. Six (5%) variants were only identified as
structural variants which were not assessed in this study. The
remaining 6 (5%) variants were detected, but differently filtered
due to intron location or labeling as polymorphism. The
percentage of insertions/deletions (indels) missed by at least
one of the centers (33%, CI 20–50%) was higher than the
percentage of SNV missed by at least one center (20%, CI 15–26%).
Furthermore, 70 variants were called by only a single institution

(Fig. 2, blue subtree). Out of these, 30 (43%) variants had
VAF < 10% and 4 (6%) had a coverage < 100. Ten (14%) variants
were splice site mutations that were detected by other institutions
but classified as not affecting alternative splicing. Also, there were
10 (14%) insertions/deletions that were detected by only a single
institution. The remaining variants were found in promoter
regions (3 variants), were false-positives due to missed germline
variants (4 variants), or a special case of loss of heterozygosity
(LOH) as a somatic event (5 variants). Three variants were reported
in the literature as common misidentified variants due to highly
homologous genomic regions43, while only a single reported
variant had no supporting reads in the data of the other
institutions. The percentage of indels detected by only a single
center (24%, CI 12–39%) was similar to the percentage of SNV
detected by a single center (29%, CI 23–35%).
Unfortunately, there is no ground truth that can serve as

absolute reference for variant calling in clinical tissue samples. To
address this limitation, the performance of the participating
institutions was evaluated with respect to three different
references: (i) a consensus list including all variants detected by
at least three institutions (consensus 3x), and (ii) a consensus list
including all variants detected by at least two institutions
(consensus 2x), and (iii) the TSO500 assay that is used at our
institution as validated laboratory developed test (LDT) for clinical
mutation testing (Fig. 3a). When using the three-institution
consensus as reference, all institutions achieved 100% sensitivity
for 9 and at least 85% sensitivity for 16 of the 30 analyzed cases.
Across the analyzed 30 cases, the five institutions achieved a
positive percentage agreement (PPA) of 91–95% for the three-
institution reference, 87–91% for the two-institution reference,

and 90–94% for the TSO500 data reference (Fig. 3b). The
corresponding PPV was in the range of 82–95%, 85–98%, and
78–86%, respectively (Fig. 3b).

Therapeutically relevant variants
We carried out an in-depth analysis of variants in druggable genes
according to OncoKB, evidence level 1–444. Of 17 variants in
druggable genes 16 were detected by all five institutions (Fig. 3c).
The NF-1 variant in sample 26 was reported by three institutions,
while two institutions identified it as structural variant. The ATM
variant in sample 14 was only detected by a single institution. We
also compared the detected variants to the therapeutically
relevant variants reported in the DKFZ/NCT/DKTK MASTER
program (Supplementary Figure 2). The vast majority including
34 of 36 (94%) variants was detected by all institutions and the
remaining two variants were found by all but one institution.

Calling of somatic copy number alterations
For each of the 30 tumors, segmentations of the genome in
regions of constant copy number (CN) were compared pairwise
between institutions. The genomic regions were classified as (i)
exact matches, (ii) regions matching after considering genome
duplication calls, and (iii) non-matching regions (Fig. 4). Summar-
izing the results for all 30 tumors, 76% of the genomic regions
were matching exactly or after considering genome duplication
calls (Fig. 4a, green/purple bars), while copy numbers were non-
matching for 24% of the genomic regions (Fig. 4a, red bars). CN
differences in divergent intervals were predominantly off by a CN
of 1 (56%), followed by CN of 2 (26%), CN of 3 (11%), and higher
CN (8%) (Supplementary Figure 3).
To distinguish between wet-lab variation and bioinformatic

variability, we reanalyzed the data from all sequencing institutions
using the same bioinformatic pipeline. Now 77% of the copy
numbers were matching exactly or after considering genome
duplications, while the remaining 23% of the copy number were
non-matching (Supplementary Fig. 4). Thus, the result did hardly
improve when harmonizing the bioinformatics and we can
conclude that wet-lab variability was the main contributor to
the observed inter-institution CN variability.
Tumor purity (determined by bioinformatics) appeared to be an

important confounder for the determination of CNA: Cases with
low tumor purity or variable estimates of tumor purity (cases 5, 16,
17, 20) had worse agreements between institutions (Supplemen-
tary Fig. 5).

Fig. 2 Inter-institution concordance of the detected somatic variants. Numbers in brackets refer to the numbers of somatic variants. Most
variants were detected by all institutions (52%, red bar), while lower percentages of variants were detected by two to four institutions (22%,
orange bar), and by only a single institution (26%, blue bar). Potential causes for discordant variant detection were analyzed and the variant
sets were split accordingly.
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Therapeutic relevant gene amplifications and deletions
We carried out an in-depth analysis of all high-level (CN ≥ 5
delta from ploidy) amplifications (n= 22) and deep biallelic, as
well as monoallelic gene deletions (n= 23) that were detected
by at least two institutions (Fig. 4b). For 16 (73%) of the highly
amplified genes, all institutions reported a high-level gene
amplification. In five genes only two to four institutions
reported a high-level amplification while the others reported
an amplification below the high-level threshold. For the
remaining single gene, four institutions reported a high-level
amplification, while a single instution did not report any
amplification. Eleven deletions (48%) were detected by all
institutions of which two were deep deletions found by four
institutions. Seven deletions were missed by a single institution,
while the remaining five deletions were not reported by either
two or three institutions. For sample 7, institution ZPM-4
detected deletion of CDKN2A and CDKN2B with CN= 1, while
deep deletion of the two genes was detected by all other
institutions. This discrepancy persisted when data processing
was performed using a uniform bioinformatic pipeline meaning
that it was caused by wet-lab variability.

Complex biomarkers
The HRD scores of the 30 tumors correlated strongly between the
institutions (Pearson R between 0.79 and 1, Fig. 5). We observed
systematic deviations between institutions in the range of −15%
to +9%.
Four institutions used the same bioinformatic workflow

(Sequenza45 and scarHRD46) and the same cut-off point of 42
for HRD calling, with one institution using a different segmenta-
tion tool (ClinCNV47). Different numbers of HRR-deficient tumors
were detected: ZPM-4 reported five, ZPM-1 reported eight, ZPM-2
and ZPM-3 each seven, and ZPM-5 ten HRR-deficient cases. For
five tumors, all institutions concordantly reported HRD (cases 9,
14, 15, 22, 26). For two additional tumors (cases 21 and 27), four
institutions concordantly reported HRD, while the cut-off point
was just missed by a single institution (HRDsum=37 and 39, both
ZPM-4). In four cases (case 12, 16, 18, and 24) HRD was detected
only by a single institution, once by ZPM-1 and three times by
ZPM-5.
The TMB scores of the 30 tumors correlated strongly between

the participating institutions (Pearson R between 0.97 and 0.99,
Fig. 5). In-depth analyses showed a significant systematic
deviation of institution ZPM-5 that reported 9–20% lower TMB

Fig. 3 Comparison of the somatic variants detected by each of the institutions with a consensus list including all variants detected by at
least three institutions. a Number of variants (3x consensus) for each of the cases as well as sensitivity and positive predictive value for each
of the cases and institutions. Empty boxes (case 29) = no variants detected. b Sensitivity and positive predictive value for each of five
institutions in comparison to three different references: consensus list of variants found in at least two institutions (Consensus 2x, triangle),
consensus of variants found in at least three institutions (Consensus 3x, square), and TSO500 (circle). c Inter-institution concordance of
therapeutic relevant somatic variants (OncoKB levels 1–4) with associated treatments and their OncoKB level. Boxes indicate detected variants
and are colored by treatment option, variants marked with “SV” were found as structural variant.
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scores compared to ZPM-1, ZPM-2, ZPM-3, and ZPM-4. Two of the
tumors (cases 10 and 15) were identified as TMB-high by all
institutions. Both were also reported as TMB-high in the DKFZ/
NCT/DKTK MASTER program. Case 1 was reported as TMB-high by
a single institution (TMB= 10.19) and close to the threshold of 10
mut/MB by the remaining four institutions (TMB between:
9.35–9.95). The remaining 27 tumors were concordantly reported
as TMB-low by all institutions.
All tumors in the study cohort were MSS/MSI-L according to the

NCT DKFZ/NCT/DKTK MASTER program. Accordingly, none of the
institutions reported MSI-H for any of the tumors (Fig. 5). Four
institutions used the same bioinformatic tool MSIsensor-pro48

resulting in a high concordance between MSI scores (Pearson R
between 0.89 and 1). The usage of the tool Mantis49 by ZPM-1
together with a different cut-off point of 40% by ZPM-1 resulted in
lower correlation of the MSI scores with the other institutions, but
concordance concerning MSI status.

Dissecting wet-lab and bioinformatic variability
To distinguish between wet-lab and bioinformatic variability, (i)
sequencing data from three wet-labs were reanalyzed using the
same bioinformatic pipeline and (ii) the sequencing data
generated in Freiburg were analyzed by the bioinformatic
pipelines of the Freiburg Institute of Pathology, the Freiburg
ISBM, and the Heidelberg Institute of Pathology (Fig. 1).
Results reveal that the median standard deviation (SD)

separated for both wet-lab and bioinformatic effects is of relatively
low influence for each biomarker (Fig. 6). For HRD, the median SD
was 3.6 for the deviations by different wet-lab procedures and 1.7
for the deviations explained by different bioinformatics, both
values being small compared to the cut-off point of 42. For TMB,
the median SD was 0.34 mut/MB for the wet-lab and 0.18 mut/MB
for the bioinformatics evaluation. Although the variability of TMB
attributed to the wet-lab procedures was significantly higher than
the bioinformatic variability, the former was still very low
compared to the cut-off point of 10 mut/MB. For MSI scores, the

median SD was 0.069% for the inter-wet-lab variabilty and 0.017%
for the bioinformatic variability, both values being small compared
to the cut-off point of 10%. For tumor purity, estimations also
showed a very low median SD of 0.8% for the wet-lab divergence
but showed outliers up to 45%, while the deviations in tumor
purity estimation explained by bioinformatic variance had a
median SD of 0.6% and outliers of up to 30%. For tumor ploidy,
the median SD was similar for the variability explained by wet-lab
difference (0.13) and for variability from bioinformatic processing
(0.18).
For some of the samples, a high variability was observed

simultaneously for several complex biomarkers. Cases 16, 28, and
29 showed high variability of HRDsum and simultaneously of the
tumors purity estimations. As shown previously50, the influence of
tumor purity and ploidy estimation on HRDsum scores calls for an
accurate histological determination of tumor purity to improve the
selection of a correct HRD score. Case 28 showed a high inter-wet-
lab variability simultaneously for HRDsum, TMB, and tumor purity.

DISCUSSION
We performed a multicenter comparison of WES analysis of clinical
cancer samples covering the entire sample-to-result workflow.
This pilot study aimed to assess the level of concordance as well as
to identify factors of inter-institutional variability. To this end, we
analyzed (i) the inter-center concordance of the results and (ii) the
dry lab as well as wet lab factors influencing the results. The study
focused on three clinically relevant data layers, somatic variants,
CNAs, and complex biomarker (HRD, TMB, MSI), and revealed high
concordance between the participating institutions. However, we
also identified areas of variability, notably the identification of
CNAs. Collectively, these data provide a solid source and basis for
standardization and harmonization of WES as a clinical-grade test
and contribute to the conceptualization and design of future
external quality assessment (EQA) schemes.
The majority of variants was detected by all institutions (52%)

and almost all clinically relevant mutations (16 of 17) were

Fig. 4 Inter-institution concordance of CNA calls. a Samples were compared between all pairs of institutions and the genomic sequence was
split into segments with concordant CN (green), segments with concordant CN after correction for genome duplication (purple), and
discordant CN (red). b Inter-institution concordance of amplifications and deletions in the set of oncogenic/likely oncogenic (according to
OncoKB) genes. Colored box = CNA detected with number referring to the detected CN with amplifications in red and deletions in blue.
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consistently identified by the five participating institutions. In
most cases the reasons for discrepancies could be identified,
which are predominantly attributable to differences in quality and
annotation-based filtering. Only a small fraction (1.5%) of
consensus variants were missed due to shortcomings in sequen-
cing or bioinformatic analysis. Our comparison of the WES data to
the TSO500 panel derived data also showed that even mutations
with lower VAF ( < 10%) could be identified in most institutions,
yet are the most prominent reason for potential false-positive and
false-negative calls. The clinically relevant ATM variant found by
only one institute also showed low VAF (5.3%) and coverage (78X).
In multi-center panel-based somatic variant calling studies
detection rates of 80–100% were shown for clinically relevant

alterations29–32. In one of the studies, the detection rate for SNV
dropped to 82% when the restriction to clinically relevant
variants was lifted32. In contrast to variant caller comparison
studies26,28 where low concordance was observed, the down-
stream comparison utilized in our study improved results
dramatically, even though a variety of variant callers was utilized
(Supplementary Table 2). While detection rates of low frequency
somatic variants are presumably biased using WES compared to
panels due to reduced coverage, the advantages in routine
diagnostics are profound. Alterations found in genes that are
currently not clinically relevant can be reanalyzed in the future if
required and complex biomarkers can be inferred directly from
the same data.

Fig. 5 Inter-institution concordance of HRD, TMB, and MSI scores. Left: Distribution of the complex biomarkers scores together with the
institution-specific cut-off points. Boxplots show the median, quartiles and whiskers up to 1.5 times of the box size. Right: Pearson correlation
of the scores between pairs of institutions (upper triangle). Systematic deviation (in %) between two institutions (lower triangle).
Red= systematic higher scores. Blue= systematic lower scores.
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Analysis stratified by variant type across the five participating
centers showed that variants were missed more often for indels
(33%) than for SNV (20%), while false positive variant detections
were similar for both indels and SNV. These results are in line with
earlier studies showing lower agreement of different variant
callers for indels compared to SNV24. Thus, attention should be
payed to implementation of a sensitive indel calling in bioinfor-
matic pipelines to avoid missing of clinically relevant alterations
such as for example activating indels in the exon 19 of the EGFR
gene or truncating indels in tumor suppressor genes.
Compared to point mutations a larger variability was observed

for CNA calling. High-level gene amplifications were found
concordantly for most high-level amplifications calculated as
delta from the ploidy. This raises the question as to which
approach should be utilized. Gene deletions were shown to be
disparate for several cases as a result of the previously described
wet-lab variability. There is a lack of multi-center studies on CNA
calling variability, but some reports indicating that the use of
different bioinformatic tools for CNA detection is associated with
significant variability34,35. However, we observed a high concor-
dance of oncogenic/likely oncogenic amplifications and deletions
between the utilized tools Sequenza (ZPM-2 to ZPM-5) and
ClinCNV (ZPM-1) (Fig. 4b).
For the complex biomarkers HRD, TMB, and MSI, strong

correlations of scores and high concordance of the diagnostic
classification were observed even though bioinformatic pipelines
were not harmonized prior to the pilot study. In contrast to
previous studies performed using gene-panels, a higher con-
cordance was observed for TMB39,51,52, which is attributable to the
broader genomic footprint of WES. The high concordance of WES
TMB values was also reported previously with correlations
between 0.85 and 0.99 depending on tumor entity20. The same
bioinformatic tools were used by all institutions for the
determination of the HRD score. This leaves the observed
variability attributed to wet-lab variance and configuration of
bioinformatic tools. No multi-center study comparing HRD calls is
currently known to the authors thus precluding consideration of

the deviations in this context. Separation of bioinformatic and
wet-lab variability allowed for an in-depth examination of inter-
center variability leading to several lessons learned which will be
discussed below.
Since the study focused on the entire sample-to-result workflow

(result quality) including the laboratory analysis and the bioinfor-
matic pipeline, we did not standardize wet-lab methods prior to
the study (such as pre-analytics, library preparation, and sequen-
cing). The study also did not specify the use of certain alignment
or variant calling tools. This approach was taken intentionally to
compare the performance of different NGS labs in the determina-
tion of clinically relevant somatic variants and genomic biomar-
kers in a real-world setting but is also a limitation of the study. A
systematic comparison of different wet-lab methods, different
variant callers or other bioinformatic tools was not intended and
not feasible based on acquired data.
The study lacked a ground truth for the somatic variants, the

CNA and complex biomarkers that could have been used as
reference for comparison with the results of the participating
institutions. Absence of a ground truth is unavoidable in
comprehensive analysis of clinical tissue samples where a large
number of genes are interrogated, but this is addressed in the
current study by using a consensus reference and by comparison
with deeper coverage panel sequencing data. Other studies have
evaluated the performance of WES and WGS in samples with
available ground truth but had to use artificial models such as cell
lines26,33 or sequencing data with artificially added mutations to
achieve this25, which does not reflect the clinical diagnostic
setting. Taken together, the multitude of genetic events analyzed
in WES coupled with the absence of a simply determinable ground
truth when analyzing real-world clinical samples leads to a highly
complex exercise compared to single-gene or few-gene tests
which needs to be addressed conceptually by new kinds of
proficiency tests.
The current study was performed using DNA extracted from

fresh-frozen samples. Similar studies are warranted to evaluate the
inter-center variability when analyzing formalin-fixed, paraffin-

Fig. 6 Comparison of bioinformatic and wet-lab inter-institution variability. To obtain “SD Bioinformatics”, the data of a single sequencing
institution were evaluated by three bioinformatic institutions. To obtain “SD Sequencing” the data of three sequencing institutions were
evaluated by a single bioinformatic institution. Outliers are annotated with the sample number. Boxplots show the median, quartiles and
whiskers up to 1.5 times of the box size.
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embedded (FFPE) samples, as low-confidence calls are more
difficult to identify correctly in FFPE-material53. A further limiting
factor for the generalization of the results was the location of all
participating centers in Germany.
Based on our findings the following points should be

considered for the implementation of WES as a clinical test in
routine diagnostics: (i) Current clinically relevant alterations are
identifiable with high precision and sensitivity despite non-
harmonized wet lab and dry lab procedures. (ii) Detected somatic
SNVs and indels show fairly high concordance with divergence
mainly observed for low VAF variants in low-coverage regions,
which were the main source of decreased sensitivity and PPV.
Moreover, differences in the assessed region, annotation of
variants in splice sites and promoter, and other quality or
annotation-based filter criteria let to a small number of
differentially reported variants, indicating the need for further
harmonization of bioinformatics pipelines. (iii) Complex biomarker
results show high concordance but are sensitive to issues with
purity and ploidy estimation. (iv) High-level gene amplifications
were reliably identified but other CNA (low level amplifications
and deletions) were more difficult to detect primarily due to wet-
lab variance and this needs to be reviewed accordingly.
In summary, calling of somatic variants was highly concordant

with a PPA of 91–95% and a PPV of 82–95% compared against the
three-institution consensus and full agreement for 16 of 17
druggable targets. Complex biomarkers correlated strongly
between institutions (HRD: 0.79–1.00, TMB: 0.97–0.99) and all
institutions agreed upon microsatellite stability status. Our data
argue for the development of stringent standards defining a
clinical-grade WES test and emphasize the need for harmonization
of both wet lab and dry lab settings between institutions to ensure
robust and comparable diagnostic results. The design of the
current study and the strategies developed for the data evaluation
will serve as a basis for a WES pilot involving 20 centers within the
German Network for Personalized Medicine (DNPM54) and informs
the development of future EQA schemes (e.g. in GenomDE55),
including ring trials, for clinical-grade WES tests.

METHODS
Case selection and distribution
Paired tumor and normal DNA samples from 30 patients were
subjected to WES at four NGS laboratories and analyzed at five
bioinformatic departments of the ZPM (Fig. 1). The 30 cases were
selected from patients enrolled in the German DKFZ/NCT/DKTK
MASTER program to represent a wide variety of molecular
alterations. DKFZ/NCT/DKTK MASTER (NCT05852522) is a multi-
center registry trial for prospective, biology-driven stratification of
younger adults with advanced-stage cancer across all entities and
patients with rare tumors. MASTER patients consented to banking
of tumor and control tissue, molecular profiling of both samples,
and clinical data collection (S-206/2011, Ethics Committee of the
Medical Faculty of Heidelberg University). Tumor and germline
DNA were shipped to each of the participating centers based on
specific material transfer agreements. The cohort included a
variety of rare cancer types including carcinomas, sarcomas, and
other tumor entities, with a histopathologically determined tumor
purity between 46% and 90% (Supplementary Table 1).

Sequencing and data analysis
WES was performed independently by each laboratory using the
established protocols with different sequencers, library kits, and
sequencing chemistry. ZPM-1 and ZPM-5 generated sequencing
libraries for tumor and normal samples using 100 ng of DNA and
Twist Human Comprehensive Exome 2.0 (with additional custom
regions), which were sequenced on Illumina NovaSeq6000 or
NextSeq550Dx (see Supplementary Table 3). ZPM-4 also used the

Twist Human Comprehensive Exome 2.0 sequenced on Illumina
NovaSeq6000 with a varying amount of DNA for tumor and normal
samples (Supplementary Table 3). ZPM-3 used the Agilent SureSelect
XT Human All Exon V8 and sequenced on Illumina NextSeq 550
(Supplementary Table 3). Bioinformatic processing was performed
independently in each institution using its custom pipeline
(Supplementary Table 2). Quality control metrics were calculated
using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and qualimap bamqc56 with each center using their target
region as reference.
Furthermore, all tumor samples were re-analyzed using the

Illumina TruSight Oncology 500 (TSO500)-panel. DNA integrity was
assessed using the Genomic DNA ScreenTape Analysis on a 4200
TapeStation System (both Agilent, Santa Clara, California). To
fragment DNA to a mean fragment size of around 200 bp, 80 ng
DNA of each sample was sheared for 50 to 78 seconds using a
focused ultrasonicator ME220 (Covaris, Woburn, Massachusetts).
The library preparation for the capture-based TSO500 panel was
performed according to the manufacturers’ manual with a final
amplification of 15 cycles for the final libraries. Quality control and
quantification was conducted using the KAPA SYBR Library
Quantification Kit on a StepOnePlus quantitative PCR system
(both Thermo Fisher Scientific). Up to eight libraries were
sequenced simultaneously on a NextSeq 500 (Illumina) using
high-output cartridge and v2 chemistry resulting in ~100 M read
pairs (2 × 150 bp) per sample. All assays were performed according
to the manufacturers’ protocols. DNA sequencing data was
analyzed by TruSight Oncology 500 Local App (Illumina, pipeline
version 2.2).

Data collection and reference gene list
The following data were collected from the participating
institutions in a predefined format: (1) variant calls, (2) copy
number variation segments including allele-specific information,
and (3) TMB, HRD, and MSI scores. The concordance of variant calls
was evaluated in a list of 494 genes that included the American
College of Medical Genetics (ACMG) list of cancer-related genes57

and genes utilized in the NCT MASTER program (Supplementary
Table 3). Therapeutically relevant results for targetable genetic
alterations reported in the NCT MASTER program were also
acquired for each case.
Somatic variants were classified as therapeutically relevant if an

annotation in level 1–4 of OncoKB of the corresponding entity or
higher-level entity based on Oncotree58 was found.
Oncogenic deletions, oncogenic and likely oncogenic amplifica-

tions were downloaded from OncoKB44, and intersected with the
segmented CNAs using BedTools59. Reported deep deletions and
high-level amplifications (CN ≥ 5) were filtered based on the
OncoKB list.
Variant calls from the TSO500 panel were filtered by the

intersection of genes present in the gene list and panel (n= 274).
As the TSO500 panel was used for sequencing of tumor DNA,
germline variants were removed by subtracting the WES germline
calls from all institutions combined.

Bioinformatic versus sequencing variance
To distinguish between wet-lab and bioinformatic variability, raw
sequencing data (FASTQ files) from all sequencing centers were
re-analyzed using the same bioinformatic pipeline (Fig. 1, blue
arrows). Conversely, raw sequencing data from the Freiburg
sequencing center were analyzed using three different bioinfor-
matic pipelines. As a result, wet-lab variability and bioinformatic
variability could be evaluated separately. For the complex
biomarkers, values were normalized by fitting a linear model with
the intercept fixed at zero against the Heidelberg pipeline prior to
calculation of the standard deviations. Statistical difference was
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assessed using the paired Wilcoxon test. P-values < 0.05 were
considered significant.

Inter-institution comparison of somatic variant, copy number,
and complex biomarkers
Somatic variants were compared based on their chromosomal
position, and alteration at the DNA level. Percentages of SNV and
of indels were reported with 95% confidence intervals and
calculated using the Clopper-Pearson method.
Copy numbers (CN) were collected as genomic intervals with

position and respective allele-specific copy numbers. Regions
without reported CN change were set to a CN of two. The
proportions of the genome having CN= 0, 1, 2, 3, 4, … and the
predominant ploidy were extracted. CN for each base of the
genome were compared between each pair of two institutions. CN
agreement was assessed as follows: (1) exact match, (2)
discrepancy explained by the difference of the predominant
ploidies (e.g., one institution reported a genome duplication, while
the other institution did not), and (3) unexplained discrepancy.
HRD, TMB, and MSI scores were compared pairwise between

institutions by correlations analysis (Pearson correlation) and by
fitting of a linear model with the intercept fixed at zero. Statistical
significance of difference was assessed with a one-sided Wilcoxon
test and p < 0.05. All institutions used a cut-off point of 42 for HRD
and a cut-off point of 10 mutations per megabase (MB) for TMB.
For MSI, four institutions used a cut-off point of 10%, while a single
institution used a cut-off point of 40% due to the application of a
different bioinformatic approach for MSI detection (Supplemen-
tary Table 2). For sample 14 institution ZPM-1 was unable to
determine the tumor purity and therefore correlations were
calculated using 29 samples.

Software for statistical analysis and graphics generation
Statistical analysis and figure creation were performed using
Python with scipy60, pybedtools61, and numpy62. Figures were
created using Matplotlib63, seaborn64, SankeyMatic (https://
sankeymatic.com/), and Pandas65.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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